高等数学试题库

合集下载

高等数学试题及答案完整版

高等数学试题及答案完整版

高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

《高等数学》练习题库及答案

《高等数学》练习题库及答案

《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 23.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54 C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ) A.1 B.0 C.2 D.1/27.设=+∞→x x xk )1(lim e 6 则k=( ) A.1 B.2 C.6 D.1/68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x 2-1B. x 3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ( )A 、是连续的B 、无界函数C 、有最大值与最小值D 、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x0必不连续在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足14、设f(x)=()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、 -8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A 、-1B 、0C 、л/2D 、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 x x x x sin 1sinlim 20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x2-4x+3的顶点处的曲率为()A、2B、1/2C、1D、042、抛物线y=4x-x2在它的顶点处的曲率半径为()A、0B、1/2C、1D、243、若函数f(x)在(a,b)内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数0|3x+1|dx=()47、∫-1A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A 、原点(0,0,0)B 、三坐标轴C 、三坐标轴D 、曲面,但不可能为平面54、方程3x 2+3y 2-z 2=0表示旋转曲面,它的旋转轴是( )A 、X 轴B 、Y 轴C 、Z 轴D 、任一条直线55、方程3x 2-y 2-2z 2=1所确定的曲面是( )A 、双叶双曲面B 、单叶双曲面C 、椭圆抛物面D 、圆锥曲面 56下列命题正确的是( )A 、发散数列必无界B 、两无界数列之和必无界C 、两发散数列之和必发散D 、两收敛数列之和必收敛57.f(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A 、.必要条件B 、充分条件C 、充分必要条件D 、无关条件58函数f(x)=tanx 能取最小最大值的区间是下列区间中的( )A 、[0,л]B 、(0,л)C 、[-л/4,л/4]D 、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有( )A 、f(x)=x+1B 、f(x)=x-1C 、f(x)=x 2-1D 、f(x)=5x 4-4x+160设y=(cos)sinx ,则y’|x=0=( )A 、-1B 、0C 、1D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( ) 2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( ) 3、求极限2lim →x x-2/(x+2)1/2=( ) 4、求极限∞→x lim [x/(x+1)]x=( ) 5、求极限0lim →x (1-x)1/x= ( ) 6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( )8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( )10、函数y=x 2-2x+3的极值是y(1)=( )11、函数y=2x 3极小值与极大值分别是( )12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=() c=( ) 16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( )18、若∫f(x)dx =x 2e 2x +c ,则f(x)= ( )19、d/dx ∫a barctantdt =( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x 在点x=0连续,则a=( )21、∫02(x 2+1/x 4)dx =( )22、∫49 x 1/2(1+x 1/2)dx=( )23、∫031/2a dx/(a 2+x 2)=( )24、∫01 dx/(4-x 2)1/2=( )25、∫л/3лsin (л/3+x)dx=( )26、∫49x 1/2(1+x 1/2)dx=( )27、∫49 x 1/2(1+x 1/2)dx=( )28、∫49x 1/2(1+x 1/2)dx=( )29、∫49 x 1/2(1+x 1/2)dx=( )30、∫49x 1/2(1+x 1/2)dx=( )31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()x→∞47函数y=x2-2x+3的极值是y(1)=()9 x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。

(整理)高等数学试题(含答案)

(整理)高等数学试题(含答案)

《高等数学》试题库一、选择题 (一)函数1、下列集合中( )是空集。

{}{}4,3,02,1,0. a {}{}7,6,53,2,1. b (){}x y x y y x c 2,.==且 {}01.≥〈x x x d 且2、下列各组函数中是相同的函数有( )。

()()()2,.x x g x x f a == ()()2,.x x g x x f b ==()()x x x g x f c 22cos sin ,1.+== ()()23,.x x g xx x f d ==3、函数()5lg 1-=x x f 的定义域是( )。

()()+∞∞-,55,. a ()()+∞∞-,66,. b()()+∞∞-,44,. c ()()()()+∞∞-,66,55,44,. d4、设函数()⎪⎩⎪⎨⎧-+2222x x x〈+∞≤〈≤〈∞〈-x x x 2200 则下列等式中,不成立的是( )。

()()10.f f a = ()()10.-=f f b ()()22.f f c =- ()()31.f f d =-5、下列函数中,( )是奇函数。

x xa . x xb sin .211.+-x x a a c 21010.x x d -- 6、下列函数中,有界的是( )。

arctgx y a =. t g xy b =. xy c 1.= xy d 2.= 7、若()()11-=-x x x f ,则()=x f ( )。

()1.+x x a ()()21.--x x b ()1.-x x c .d 不存在8、函数x y sin =的周期是( )。

π4.a π2.b π.c 2.πd9、下列函数不是复合函数的有( )。

xy a ⎪⎭⎫ ⎝⎛=21. ()21.x y b --= x y c s i nlg .= xe y d s i n 1.+=10、下列函数是初等函数的有( )。

11.2--=x x y a ⎩⎨⎧+=21.xx y b 00≤〉x xx y c c o s 2.--=()()2121lg 1sin .⎪⎪⎭⎫ ⎝⎛+-=x e y d x11、区间[,)a +∞, 表示不等式( ).(A )a x <<+∞ (B )+∞<≤x a (C )a x < (D )a x ≥12、若ϕ3()1t t =+,则 ϕ3(1)t +=( ).(A )31t + (B )61t + (C )62t + (D )963332t t t +++13、函数log (a yx =+ 是( ).(A )偶函数 (B )奇函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 14、函数()yf x =与其反函数1()y f x -=的图形对称于直线( ). (A )0y = (B )0x = (C )y x = (D )y x =-15、函数1102x y-=-的反函数是( ).(A )1xlg22y x =- (B )log 2x y = (C )21log yx= (D )1lg(2)y x =++ 16、函数sin cos y x x =+是周期函数,它的最小正周期是( ).(A )2π (B )π (C )2π (D )4π 17、设1)(+=x x f ,则)1)((+x f f =( ). A . x B .x + 1 C .x + 2 D .x + 3 18、下列函数中,( )不是基本初等函数.A . xy )e1(= B . 2ln x y = C . xxy cos sin =D . 35x y = 19、若函数f(e x)=x+1,则f(x)=( )A. e x+1 B. x+1 C. ln(x+1) D. lnx+120、若函数f(x+1)=x 2,则f(x)=( )A.x 2B.(x+1) 2C. (x-1) 2D. x 2-1 21、若函数f(x)=lnx ,g(x)=x+1,则函数f(g(x))的定义域是( ) A.x>0 B.x ≥0 C.x ≥1 D. x>-1 22、若函数f(x)的定义域为(0,1)则函数f(lnx+1)的定义域是( )A.(0,1)B.(-1,0)C.(e -1,1) D. (e -1,e) 23、函数f(x)=|x-1|是( )A.偶函数B.有界函数C.单调函数D.连续函数 24、下列函数中为奇函数的是( )A.y=cos(1-x)B.⎪⎭⎫ ⎝⎛++=21ln x x y C.e x D.sinx 2 25、若函数f(x)是定义在(-∞,+∞)内的任意函数,则下列函数中( )是偶函数。

高等数学试题库及答案doc

高等数学试题库及答案doc

高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。

答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。

答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。

解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。

解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。

证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。

由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。

因此,函数 f(x) 是严格单调递增的。

五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。

求物体在前 3 秒内的位移。

解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。

六、论述题1. 论述微积分在物理学中的应用。

答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。

微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。

高等数学试题及答案解析

高等数学试题及答案解析

高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。

计算f(2) = 2^2 - 4*2 + 3 = -1。

接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。

因此,最大值为f(5) = 9。

2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。

因此,f'(x) = cos(x) - sin(x)。

二、填空题1. 求不定积分∫(2x + 1)dx = __________。

答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。

将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。

2. 若y = ln(x),则dy/dx = __________。

答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。

三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。

答案:极值点为x = 3。

解析:首先求导f'(x) = 3x^2 - 12x + 9。

令f'(x) = 0,解得x = 1 和 x = 3。

计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。

(完整word版)高等数学试题及答案

(完整word版)高等数学试题及答案

高学试题及答案选择题(本大题共40小题,每小题2。

5分,共100分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( B )....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( A )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( A ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( C )A 。

不连续 B.连续但左、右导数不存在 C.连续但不可导 D 。

可导 5.设C +⎰2-x xf(x)dx=e,则f(x)=( D )2222-x -x -x -x A.xe B.-xe C.2e D.-2e6. 设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B )。

(A )40220a rdr a d aπθπ=⎰⎰(B )4022021a rdr r d aπθπ=⋅⎰⎰(C)3022032a dr r d aπθπ=⎰⎰(D ) 402202a adr a d aπθπ=⋅⎰⎰7。

若L 是上半椭圆⎩⎨⎧==,sin ,cos t b y t a x 取顺时针方向,则⎰-Lxdy ydx 的值为( C ).(A )0 (B )ab 2π(C )ab π (D )ab π8。

设a 为非零常数,则当( B )时,级数∑∞=1n n r a收敛 . (A) ||||a r > (B) ||||a r > (C ) 1||≤r (D )1||>r9. 0lim =∞→n n u 是级数∑∞=1n nu收敛的( D )条件。

高等数学练习题库及答案

高等数学练习题库及答案

一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 23.下列数列为单调递增数列的有( )A . ,,,B .23,32,45,54 C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n n n n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ) .0 C 27.设=+∞→x x xk )1(lim e 6 则k=( ) .2 C 68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )2 B. x 3-1 C.(x-1)2 (x-1)(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、 B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx ,则y (10)=( )A 、sinxB 、cosxC 、-sinxD 、-cosx29、已知y=x ㏑x ,则y (10)=( )A 、-1/x 9B 、1/ x 9C 、x 9D 、 x 930、若函数f(x)=xsin|x|,则( )A 、f``(0)不存在B 、f``(0)=0C 、f``(0) =∞D 、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A 、-1B 、0C 、л/2D 、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1x x x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( )A 、00型B 、0/0型C 、1∞型D 、∞0型38、极限 x x x x sin 1sinlim 20 =( )A 、0B 、1C 、2D 、不存在39、xx 0时,n 阶泰勒公式的余项Rn(x)是较xx 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( )A 、0B 、1/2C 、1D 、243、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe -xdx =( D )A 、xe -x -e -x +CB 、-xe -x +e -x +CC 、xe -x +e -x +CD 、-xe -x -e -x +C46、设P (X )为多项式,为自然数,则∫P(x)(x-1)-n dx ( )A 、不含有对数函数B 、含有反三角函数C 、一定是初等函数D 、一定是有理函数47、∫-10|3x+1|dx=( )A 、5/6B 、1/2C 、-1/2D 、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛(x)在点x=x0处有定义是f(x)在x=x处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л] B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有( )A 、f(x)=x+1B 、f(x)=x-1C 、f(x)=x 2-1D 、f(x)=5x 4-4x+160设y=(cos)sinx ,则y’|x=0=( )A 、-1B 、0C 、1D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x=( )5、求极限0lim →x (1-x)1/x= ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( )8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( )10、函数y=x 2-2x+3的极值是y(1)=( )11、函数y=2x 3极小值与极大值分别是( )12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( )c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( )18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( )19、d/dx ∫a barctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x 在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( )22、∫49 x 1/2(1+x 1/2)dx=( )23、∫031/2a dx/(a 2+x 2)=( )24、∫01 dx/(4-x 2)1/2=( )25、∫л/3лsin(л/3+x)dx=( )26、∫49 x 1/2(1+x 1/2)dx=( )27、∫49 x 1/2(1+x 1/2)dx=( )28、∫49 x 1/2(1+x 1/2)dx=( )29、∫49 x 1/2(1+x 1/2)dx=( )30、∫49 x 1/2(1+x 1/2)dx=( )31、∫49 x 1/2(1+x 1/2)dx=( )32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( )34、设f(x) = [x] +1,则f (л+10)=( )35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( )37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cos θ)的全长为 ( )39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为 ( )40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是 ( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()x∞→47函数y=x2-2x+3的极值是y(1)=()9 x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。

高等数学试题及答案大全

高等数学试题及答案大全

高等数学试题及答案大全一、选择题1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2在区间[-5, 2]上的最大值是()。

A. 0B. 3C. 4D. 5二、填空题1. 若函数f(x) = 2x - 3在x = 1处的导数为5,则原函数在x = 1处的值为______。

2. 曲线y = x^3 - 2x^2 + x在x = 2处的切线斜率为______。

三、解答题1. 求函数f(x) = ln(x) + 1的导数,并说明其在x = e处的导数值。

2. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其极值点。

四、证明题1. 证明函数f(x) = x^3在R上的单调性。

2. 证明等差数列的前n项和公式S_n = n(a_1 + a_n)/2。

五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 3x + 200,销售价格为P(x) = 50 - 0.05x,其中x表示产品数量。

求该工厂的盈利函数,并求出其盈利最大时的产品数量。

2. 一个圆的半径为r,求其面积与周长的比值。

答案:一、选择题1. C解析:函数y = e^x不是周期函数,其他选项都是周期函数。

2. D解析:函数f(x) = x^2 + 3x - 2的导数为f'(x) = 2x + 3,令其等于0,解得x = -3/2,但x = -3/2不在区间[-5, 2]内。

检查区间端点,f(-5) = -8,f(2) = 5,因此最大值为5。

二、填空题1. -1解析:由f'(x) = 2,且f'(1) = 5,可得f(1) = f'(1) * (1 - 0) + f(0) = 5 + f(0),又因为f(0) = -3,所以f(1) = 5 - 3 = 2。

2. -4解析:由y' = 3x^2 - 4x + 1,代入x = 2,得y' = 3 * 2^2 - 4 * 2 + 1 = 12 - 8 + 1 = 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学试题库 第二章 导数和微分
一.判断题
2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim
lim ()()∆∆∆∆∆∆t t s
t s t t s t t
→→=+-0000与 ∆t 有关. ( )
2-1-2 连续函数在连续点都有切线. ( )
2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切
线与x 轴垂直. ( )
2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( )
2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224
3
21
'=-=- ( )
2-1-11 已知y= 3x 3
+3x 2
+x+1,求x=2时的二阶导数: y '=9x 2
+6x+1 , y '|x=2=49
所以 y"=(y ')'=(49)'=0. ( )
二.填空题
2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ∆x=_______,函数增量 ∆y=________. 2-2-2 设物体运动方程为s(t)=at 2
+bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________.
2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________.
2-2-5 若 lim
()()
x a
f x f a x a
→-- 存在,则lim ()x a f x →=______________.
2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有
__________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线.
2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________.
2-2-8 函数
f x x x x x (),,
ln ,,
=-+≤>⎧⎨⎩2111
在其定义域上不可导点是____________.
2-2-9 若y=3e x
+e -x
,则在y '=0时,x=_________.
2-2-10 抛物线y=x 2
及y=2-x 2
在两个交点处的夹角是___________. 2-2-11 (x 2
sinx 2
)' =__________=2xsinx 2
+2 x 3
cosx
2
2-2-12 当f(x)= (2x+6)6
时,在f '(x)中x 3
的系数是__________.
三.选择题
2-3-1 若函数f(x)在x 处可导,则f '(x)等于 ( )
A f x x f x x
C f x x f x x B f x x f x x
D f x x f x x x x x x x .
lim
()().lim
()()
.
lim ()().
lim ()()∆∆∆∆∆∆∆∆∆∆∆∆∆→→→→-------+--00002
2-3-2 在平均变化率∆y/∆x 取极限lim
∆∆∆x y
x
→0 的过程中,x 与∆x 的状态分别是
( )
A. x 与∆x 都是常量. C. x 是变量而∆x 是常量.
B. x 与∆x 都是变量. D. x 是常量而∆x 是变量.
2-3-3 在抛物线y= x 2
上切线与OX 轴构成45度角的交点是( ) A. (-1/2,1/4) B. (1/4,1/2) C. (-1/2,-1/4) D. (1/2,1/4)
2-3-4 设函数y=f(x)在点x 0 处可导, 且f '(x 0)>0,则曲线y=f(x)在点(x 0,f(x 0))
处的切线与x 轴正向( )
A. 平行
B. 垂直
C. 成钝角
D. 成锐角 2-3-5 双曲线xy=1在点(1,1)处的切线与法线方程分别为( ) A. x+y-2=0,x-y=0 B. y-x-2=0,x+y=0 C. x-y-2=0,x-y=0 D. x+y-2=0,x+y=0 2-3-6 下列导函数错误的是( )
A x x
B x x
C x x x
D x x x
.(sin )'sec .(cos )'csc .(
sin cos )'cos .
(cos sin )'sin =
=-
=-=-11
1
122
2-3-7 若偶函数f(x)在x=0处的导数存在,则f '(0)的值( )
A. 等于0
B. 大于0
C. 小于0
D. 不能确定. 2-3-8 若直线y=3x+b 为曲线 y=x 2
+5x+4的切线,则 ( ) A. b=3 B. b=-3 C. b=-4 D. b=4. 2-3-9 已知f(x)=sin(ax 2
),则f '(a)等于( )
A. cosax 2
B. 2a 2
cosa 3
C. x 2
cosax 2
D. a 2
cosa 2
2-3-10 设f(x)= x 2/3
,则f '(0)=( )
A. 0
B. +∞
C. -∞
D. 不存在 2-3-11 设y=arctg((x+1)/(x-1)),y '=( )
A x
B x
C x
D x x ...
.
-
++--
++111
111
112222
2-3-12 设y=12+ln x ,则y '=( )
A x x
B x x x
C x x x
D x x x
.
ln ln .ln ln .
ln ln .
ln ln 2121121222
2+-+++
2-3-13 已知y=xe x
,则y (n)
= ( ) A. xe nx C. x(e x
-n) B. ne x
D. e x
(x+n)
四.综合计算题
2-4-1 求y=e at
sin ωt 的二阶导数, (a, ω为常数) 2-4-2 求y=sin(x+y)的微分.
2-4-3 如果y=x 是曲线y=x 3
-3x 2
+ax 的切线,求常数a.。

相关文档
最新文档