用导数判断函数的单调性

合集下载

单调性与导数教案:教你如何用导数判断函数单调区间

单调性与导数教案:教你如何用导数判断函数单调区间

单调性与导数教案:教你如何用导数判断函数单调区间教你如何用导数判断函数单调区间一、知识回顾在学习函数的单调性时,我们已经了解到什么是单调函数了。

如果一个函数f(x)的导数在其定义域上始终保持正数,那么这个函数在定义域内呈现出递增的趋势;如果导数在定义域上始终保持负数,那么这个函数在定义域内呈现出递减的趋势。

因此,我们可以用函数的导数来判断函数在哪些区间是单调的。

二、基本要点在使用导数来判断函数的单调性时,我们需要注意以下几个基本要点:1.导数为正数时,函数单调递增;导数为负数时,函数单调递减。

2.导数为0时,函数可能存在极值点。

当函数在极值点左侧单调递增,在右侧单调递减。

3.导数在某一点处不存在时,这一点可能是函数的间断点。

4.如果函数在某个区间上单调递增(或单调递减),那么函数在该区间上是连续的。

三、案例分析我们接下来通过几个案例来说明如何使用导数来判断函数的单调性:1.已知函数f(x) = x³ - 3x + 2,在[0,2]上判断f(x)的单调性。

根据一元二次函数的求导公式,我们可以求出f(x)的一阶导数为f'(x) = 3x² - 3。

由于f'(x)在[0,2]上恒大于0,因此f(x)在[0,2]上是单调递增的。

2.已知函数f(x) = x³ - 3x + 2,在[-1,1]上判断f(x)的单调性。

同样地,我们可以求出f(x)在[-1,1]上的一阶导数f'(x) = 3x² - 3。

将f'(x) = 0,解得x = ±1,因此f(x)在x = ±1处可能存在极值点。

将[-1,1]分为两个区间[-1,1)和(1,1],我们可以验证得出在[-1,1)上f(x)单调递减,在(1,1]上f(x)单调递增。

3.已知函数f(x) = 1/x,在(0,∞)上判断f(x)的单调性。

在(0,∞)上,我们可以求出f(x)的一阶导数f'(x) = -1/x²。

利用导数判断函数的单调性

利用导数判断函数的单调性

课前探究学习
课堂讲练互动
练习
求证: 函数 f
(x) 2 x 6 x 7
3 2
在 ( 0 , 2 ) 内是减函数.
解: f ( x ) 2 x 3 6 x 2 7
f ( x ) 6 x 2 1 2 x .
( x ) 0 , 解得 0 x 2 , 所以函数 f ( x ) 的递减区间是 ( 0 , 2 ) , 即函数 f ( x ) 在 ( 0 , 2 ) 内是减
' ' ' 2). f x g x f x g x f x g x; 3).
g x 0.
' ' f x f x g x f x g x 2 g x g x '
课堂讲练互动
【变式 2】 求函数 y=x2-ln x2 的单调区间. 解 ∵函数 y=f(x)=x2-ln x2 的定义域为(-∞,0)∪(0,+
2 2x2-1 2x-1x+1 ∞),又 f′(x)=2x-x = = , x x ∴f′(x),f(x)的取值变化情况如下表:
x
f′(x) f ( x)
附近几乎没有升降
试画出函数 f ( x ) 图象的大致形状。
y f ( x)
变化,切线平行x轴
y f ( x)
y A B
y A B
o
2
3 x
o
2
3 x
练习2:
函数 y f 的大致形状
( x ) 的图象如图所示, 试画出导函数 f ( x )图象
y
y f x
O
a
b

判断函数单调性的方法

判断函数单调性的方法

判断函数单调性的方法判断函数的单调性是数学中常见的问题,对于函数的单调性,我们需要通过一定的方法进行判断,以便更好地理解和应用函数的性质。

下面,我们将介绍几种常用的方法来判断函数的单调性。

一、导数法。

判断函数的单调性最常用的方法之一就是利用导数。

对于函数f(x),如果在定义域内f'(x)≥0,那么函数f(x)在该区间上是单调不减的;如果在定义域内f'(x)≤0,那么函数f(x)在该区间上是单调不增的。

如果在定义域内f'(x)恒大于0(或恒小于0),那么函数f(x)在该区间上是严格单调不减的(或严格单调不增的)。

二、一阶导数和二阶导数法。

除了利用导数的正负来判断函数的单调性外,我们还可以通过一阶导数和二阶导数的关系来判断函数的单调性。

如果在定义域内f'(x)≥0且f''(x)≥0,那么函数f(x)在该区间上是单调不减的;如果在定义域内f'(x)≤0且f''(x)≥0,那么函数f(x)在该区间上是单调不增的。

三、零点法。

利用函数的零点也可以帮助我们判断函数的单调性。

对于函数f(x),如果在定义域内f'(x)在某一点x=a处为零,那么可以通过判断f'(x)在x=a点的左右性质来确定函数f(x)在该区间上的单调性。

四、拐点法。

函数的拐点也可以帮助我们判断函数的单调性。

如果在定义域内f''(x)在某一点x=a处为零,那么可以通过判断f''(x)在x=a点的左右性质来确定函数f(x)在该区间上的单调性。

五、特殊点法。

对于一些特殊的函数,我们也可以通过一些特殊点来判断函数的单调性。

比如对于一些周期函数,我们可以通过周期点来判断函数的单调性。

六、综合运用。

在实际应用中,我们往往需要综合运用以上方法来判断函数的单调性。

通过分析函数的导数、零点、拐点、特殊点等信息,结合函数图像,可以更准确地判断函数的单调性。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

利用导数判断函数的单调性

利用导数判断函数的单调性

3.函数y=xlnx在区间(0,1)上是( C )
(A)单调增函数
(B)单调减函数
(C) 在(0, 1 )上是减函数,在( 1 , 1)上
e
e
是增函数
(D) 在( 1
e
1
, 1)上是减函数,在(0, e
)上
是增函数
4.函数y=x2(x+3)的减区间是 (-2,0) , 增区间是 (-∞,-2)和(0,+∞) .
练习:找出函数f(x)=x3-4x2+x-1的单调 区间。
解:f '(x)=3x2-8x+1,
令3x2-8x+1>0,解此不等式得
x 4 13 或 x 4 13
3
3
因此,区间 (,
4 13 )和( 4 13 ,
3
3
)
为f(x)的单调增区间;
令3x2-8x+1<0,解此不等式得
直向上的瞬时速度大于0,即在区间(a,t0),
lim h h '(t) 0 t0 t
我们知道在此区间内,函数h=h(t)是增函数.
再考察沙袋在区间(t0,b)的运动情况:
在这个区间内,沙袋向下运
动,其竖直向上的瞬时速度 h
小于0,即在区间(t0,b),
A
h lim h '(t) 0 t0 t
4 13 x 4 13
3
3
因此,区间(4 13 , 4 13 ) 为f(x)的单调
3
3
减区间。
这节课学到了什么?
(1)函数的单调性与导数的关系;
在区间(a,b)内,f '(x)>0,则f(x)在此区间是增函数, f ' (x)<0,则f(x)在此区间是减函数 (2)求解函数y=f(x)单调区间的步骤: ①确定函数y=f(x)的定义域(养成研究函数的性质从 定义域出发的习惯); ②求导数f´(x); ③ 得 结 论 : f´(x)>0 且 在 定 义 域 内 的 为 增 区 间 ; f´(x)<0且在定义域内的为减区间.

判断函数单调性的常用方法

判断函数单调性的常用方法

判断函数单调性的常用方法判断函数的单调性是数学中常见的一个问题。

在解决这个问题时,有一些常用的方法和技巧可以帮助我们确定函数的单调性。

下面将就这些方法和技巧进行详细介绍。

1.用导数判断函数的单调性:常数函数:常数函数不会随自变量的变化而变化,因此常数函数在定义域上是单调的。

一次函数:一次函数的导数为常数,若导数大于零,则函数单调递增;若导数小于零,则函数单调递减。

幂函数:幂函数的导数根据指数、底数的不同具有不同的形式,通过求导后的符号进行判断函数的单调性。

指数函数:指数函数的导数为指数函数本身的常数倍,若底数大于1且指数函数变量在定义域上递增时,函数单调递增;若底数小于1且指数函数变量在定义域上递减时,函数单调递增。

对数函数:对数函数的导数为自变量在底数为e的自然对数函数中的导数,根据求导后的符号进行判断函数的单调性。

2.利用函数的一阶和二阶导数进行判断:函数的一阶导数描述了函数图像的斜率,可以通过判断一阶导数的符号确定函数的单调性。

若一阶导数始终大于零,则函数单调递增;若一阶导数始终小于零,则函数单调递减。

函数的二阶导数描述了函数图像的曲率,若二阶导数始终大于零,则函数图像为凹函数,函数单调递增;若二阶导数始终小于零,则函数图像为凸函数,函数单调递减。

3.利用函数的性质进行判断:常用的函数性质包括函数的奇偶性、周期性、对称性等。

若函数具有奇函数的性质,则在定义域的相对称点上具有相反的函数值,可以通过判断奇函数在其中一区间内的正负性得出函数在该区间的单调性。

若函数具有周期性,则可以通过观察一个周期内的变化趋势来判断函数的单调性。

4.利用图像进行判断:通过观察函数图像可以直观地判断函数的单调性。

若函数图像始终上升,则函数单调递增;若函数图像始终下降,则函数单调递减。

这些是常用的判断函数单调性的方法和技巧。

在实际问题中,有时候需要结合多个方法和技巧来确定函数的单调性。

同时,还可以利用函数的单调性来解决一些实际问题,例如在优化问题中,我们可以通过判断目标函数的单调性来确定最优解的存在性和位置。

利用导数判断函数单调性

利用导数判断函数单调性

利用导数判断函数单调性函数的单调性是数学中一个重要的概念,它描述了函数在指定区间上是递增还是递减的特性。

通过判断函数的导数的正负性,我们可以确定函数在不同区间上的单调性。

本文将介绍通过导数判断函数单调性的方法,并提供一些实例来帮助读者更好地理解。

导数的定义在介绍如何利用导数判断函数单调性之前,让我们先复习一下导数的定义。

给定函数y = f(x),如果在某个点x处导数存在,那么该导数表示函数在该点的变化率。

导数可以通过以下公式表示:f'(x) = lim({f(x + h) - f(x)}/{h}) as h approaches 0其中,f’(x)表示函数f(x)的导数。

可以看出,导数的定义是通过求函数在某个点附近的斜率来描述函数的变化率。

利用导数判断函数单调性的方法函数在某个区间上的单调性可以通过导数的正负来判断。

具体而言,如果在区间[a, b]上,函数的导数大于0,则函数在该区间上是递增的;如果导数小于0,则函数在该区间上是递减的。

这可以用以下定理来描述:定理 1:如果函数f(x)在一个区间(a, b)上连续,并且在该区间上处处可导,则有:1.如果f’(x) > 0在(a, b)上成立,则f(x)在(a, b)上递增。

2.如果f’(x) < 0在(a, b)上成立,则f(x)在(a, b)上递减。

基于这一定理,我们可以通过以下步骤来判断函数在指定区间上的单调性:1.求出函数的导数f’(x)。

2.找出导数f’(x)的所有零点,这些点被称为函数f(x)的临界点。

3.根据临界点将区间分为一系列子区间。

4.检查每个子区间内的导数的正负性。

5.根据导数的正负性判断函数在每个子区间内的单调性。

值得注意的是,我们还需要考虑函数在临界点和区间的端点上的单调性。

对于区间端点,我们可以采用类似的方式判断端点处的单调性。

接下来,我们将通过一些实例来帮助读者理解如何利用导数判断函数单调性。

实例 1考虑函数f(x) = x^2 - 2x + 1在区间(-∞, +∞)上的单调性。

判断函数单调性的常见方法

判断函数单调性的常见方法

判断函数单调性的常见方法函数的单调性是指函数在自变量的取值范围内是否呈现增加或减少的趋势。

判断函数单调性的常见方法包括函数的导数和函数的凹凸性等。

一、函数的导数判断单调性:当函数在其中一区间内可导时,可以通过判断函数的导数的符号来确定函数在该区间内的单调性。

1.若函数f'(x)>0,即导数大于0,则函数在该区间内是严格递增的。

2.若函数f'(x)<0,即导数小于0,则函数在该区间内是严格递减的。

3.若函数f'(x)=0,即导数等于0,则函数在该点可能有极值点。

4.若函数f'(x)>=0,即导数大于等于0,则函数在该区间内是递增的。

5.若函数f'(x)<=0,即导数小于等于0,则函数在该区间内是递减的。

需要注意的是,一个函数在一些区间上的单调性还需要满足函数在该区间上是连续的,即函数存在于该区间上。

二、函数的凹凸性判断单调性:函数的凹凸性也可以用来判断函数的单调性。

凹凸性表示函数的曲线是向上凸起还是向下凸起。

1.若函数f''(x)>0,即二阶导数大于0,则函数在该区间内是向上凸起的,且在该区间内是递增的。

2.若函数f''(x)<0,即二阶导数小于0,则函数在该区间内是向下凸起的,且在该区间内是递减的。

3.若函数f''(x)=0,即二阶导数等于0,则函数在该点可能存在拐点。

需要注意的是,函数的凹凸性需要函数存在二阶导数,因此这种方法只适用于可导的函数。

综合判断法:有时候,通过综合判断函数在不同区间上的单调性,可以更准确地判断函数的单调性。

这可以通过以下步骤进行:1.确定函数定义的区间,即函数存在的区间。

2.判断函数在每个区间上的导数的符号,根据导数和函数的关系来判断函数的单调性。

3.判断函数在每个区间上的凹凸性,根据凹凸性和函数的关系来判断函数的单调性。

4.将导数和凹凸性的结果综合起来,判断函数在整个定义区间上的单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用导数判断函数的单调性
2003年高考(新课程卷·理)第19题对函数的单调性进行了考察,题目如下: 【题目】设0>a ,求函数)ln()(a x x x f +-=)),0((+∞∈x 的单调区间。

解:a
x x
x f +-
=
'1
21)((0>x ) 当0>a ,0>x 时,
0)(>'x f ⇔0)42(22>+-+a x a x , 0)(<'x f ⇔0)42(22<+-+a x a x ,
(i )当1>a 时,对所有0>x ,恒有0)42(2
2
>+-+a x a x ,即0)(>'x f ,此时)(x f 在),0(+∞单调递增;
(ii )当1=a 时,对1≠x ,恒有0)42(2
2
>+-+a x a x ,即0)(>'x f ,此时)(x f 在)1,0(单调递增,在),1(+∞单调递增,
又知函数)(x f 在1=x 处连续,因此)(x f 在),0(+∞单调递增;
(iii )当10<<a 时,令0)(>'x f ,即0)42(2
2>+-+a x a x ,
解得a a x ---<122或a a x -+->122,因此,函数)(x f 在)122,0(a a ---单调递增,在),122(+∞-+-a a 单调递增,
令0)(<'x f ,即0)42(2
2<+-+a x a x ,
解得a a x a a -+-<<---122122,
因此,函数)(x f 在)122,122(a a a a -+----上单调递减。

本题用传统作差比较法无法划分函数的单调区间,只有用导数才行,这是教材新增的内容。

其理论依据如下(人教版试验本第三册P148):
设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数。

如果0)(='x f ,则)(x f 为常数。

要用导数判断好函数的单调性除掌握以上依据外还须把握好以下两点: 一.导数与函数的单调性的三个关系
我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。

以下以增函数为例作简单的分析,前提条件都是函数)(x f y =在某个区间内可导。

1.0)(>'x f 与)(x f 为增函数的关系。

由前知,0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3
)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

2.0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。

若将0)(='x f 的根作为分届点,因为规定0)(≠'x f ,即抠去了分界点,此时)(x f 为增函数,就一定有0)(>'x f 。

∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。

3.0)(≥'x f 与)(x f 为增函数的关系。

由前分析,)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。

当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。

∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。

函数的电脑掉性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。

因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。

但在实际应用中还会遇到端点的讨论问题,特别是研究以下问题时。

二.函数单调区间的合并
函数单调区间的合并主要依据是函数)(x f 在),(b a 单调递增,在),(c b 单调递增,又知函
数在b x f =)(处连续,因此)(x f 在),(c a 单调递增。

同理减区间的合并也是如此,即相邻区间的单调性相同,且在公共点处函数连续,则二区间就可以合并为以个区间。

【例】用导数划分函数3
)(x x f =(R x ∈)的单调区间。

解:(用第一种关系及单调区间的合并)2
3)(x x f =', 当032
>x ,即0<x 或0>x 时,0)(>'x f , ∴)(x f 在)0,(-∞,),0(+∞上为增函数,
又∵3
)(x x f =在0=x 处连续,且相邻区间的单调性又相同, ∴)(x f 在),(+∞-∞上为增函数。

旧教材很少提到函数单调区间的合并,原因在于教师很难讲,学生很难把握,但是新教材引进函数的连续性和导数之后就很容易说明,也很容易理解了。

综之,用导数证明划分函数的单调性是导数最常用、也是最基本的应用,其它重要性如极值、最值等都必须用到单调性。

它比用单调性的定义证明要简单许多,划分也容易理解得多。

讨论可导函数得单调性可按如下步骤进行:
1)确定)(x f 的定义域;2)求)(x f ',令0)(='x f ,解方程求分界点;3)用分届点将定义域分成若干个开区间;4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性。

以下是前几年高考用导数证明、划分单调性的题目,摘录如下,以飨读者:
【题目1】设0>a ,x x e
a
a e x f +=
)(是R 上的偶函数。

(I )求a 的值;
(II )证明)(x f 在),0(+∞上是增函数。

(2001年天津卷)
解:(I )依题意,对一切R x ∈有)()(x f x f =-,即x x x x ae ae
e a a e +=+--1
, ∴0)1
)(1(=--
x x e
e a a 对一切R x ∈成立,
由此得到01
=-
a
a ,12=a , 又∵0>a ,∴1=a 。

(II )证明:由x
x
e e x
f -+=)(,得x
x e
e x
f --=')()1(2-=-x x e e ,
当),0(+∞∈x 时,有0)1(2>--x x e e
,此时0)(>'x f 。

∴)(x f 在),0(+∞上是增函数。

【题目2】设函数ax x x f -+=1)(2,其中0>a 。

(I )解不等式1)(≤x f ;
(II )证明:当1≥a 时,函数)(x f 在区间),0[+∞上是单调函数。

(2000年全国、天津卷) 解1:(I )分类讨论解无理不等式(略)。

(II )作差比较(略)。

解2:a x x x f -+=
'1
)(2
(i )当1≥a 时,有
a x x
≤<+11
2
,此时0)(<'x f ,函数)(x f 在区间),(+∞-∞上是
单调递减函数。

但1)0(=f ,因此,当且仅当0≥x 时,1)(≤x f 。

(ii )当10<<a 时,解不等式0)(<'x f ,得2
1a
a x -<,)(x f 在区间]
1,
(2
a
a --∞上是单调递减函数。

解方程1)(=x f ,得0=x 或2
12a
a x -=

∵2
2
1210a
a a
a -<
-<

∴当且仅当2
120a
a x -≤
≤时,1)(≤x f ,
综上,(I )当10<<a 时,所给不等式的解集为:⎭
⎬⎫

⎨⎧-≤
≤2120|a a
x x ; 当1≥a 时,所给不等式的解集为:{}0|≥x x 。

(II )当且仅当1≥a 时,函数)(x f 在区间),0[+∞上时单调函数。

相关文档
最新文档