习题课 正弦定理和余弦定理
高中数学平面向量及其应用6.4.3第3课时习题课_余弦定理和正弦定理的综合应用课件

解:在△ABC 中,AB=5,AC=9,∠BCA=30°.
由正弦定理,得∠ = ∠,
·∠
sin∠ABC=
=
×°
=
.
因为 AD∥BC,所以∠BAD=180°-∠ABC.
于是 sin∠BAD=sin∠ABC= .
则∠BAC=(
)
A.60°
B.30°
C.60°或 120° D.30°或 150°
解析:由已知得 = ||×||sin∠BAC=×2×3sin∠BAC,
∴sin∠BAC=.
∴∠BAC=30°或 150°.
答案:D
随 堂 练 习
1.在△ABC 中,a=1,b=2,C=,则 S△ABC 的值为(
求出AC,然后可利用余弦定理求AB,也可以利用三角形的性
质求AB.
(1)解法一: ∵A=30°,C=45°,
∴B=105°,
由正弦定理得
·
b=
=
=
°
°
,
=4sin 105°
=4(sin 60°cos 45°+cos 60°sin 45°)
,
(2)由题设及(1)得 cos Bcos C-sin Bsin C=- ,
∴cos(B+C)=-,
∵0<B+C<π,∴B+C= .
又 A+B+C=π,∴A=.
又bcsin A=,且 a=3,∴bc=8.
(完整版)正弦定理与余弦定理练习题

正弦定理与余弦定理1.已知△ABC 中,a=4,ο30,34==A b ,则B 等于( )A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30°3.已知ABC ∆中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A .6πB .3πC .32π D .65π 4.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若sin sin CA=2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( )A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ∆中,756,8,cos 96BC AC C ===,则ABC ∆的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A .2π B .3π C .4π D .6π 8.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 9.在ABC ∆中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A.14 B.23 C.23- D.14- 10.在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰或直角三角形 11.在△ABC 中,cos2=,则△ABC 为( )三角形.A .正B .直角C .等腰直角D .等腰 12.在△ABC 中,A=60°,a=4,b=4,则B 等于( )A .B=45°或135°B .B=135°C .B=45°D .以上答案都不对13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=( )A.6πB.3πC.23πD.56π14.设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 15.已知在ABC ∆中,2cos 22A b cc+=,则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .正三角形 D .等腰直角三角 16.已知ABC ∆内角,,A B C 的对边分别是,,a b c ,若1cos ,2,sin 2sin 4B bC A ===,则ABC ∆的面积为( ) A.156 B. 154 C. 152D. 15 17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =3π,a =3,b =1,则c =( ) A . 3-1 B .3 C. 2 D. 1 评卷人 得分一、解答题(题型注释)18.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c .已知4A π=,22212b ac -=. (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.19.在△ABC 的内角A ,B ,C 对应的边分别是a ,b ,c ,已知,(1)求B ;(2)若b=2,△ABC 的周长为2+2,求△ABC 的面积.ABC C B A ,,c b a ,,B c C b a sin cos +=B2=b ABC21.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知()222332b c a bc +=+ (1)求sinA ; (2)若32a =,△ABC 的面积S =22,且b>c ,求b ,c .22.已知ABC △的内角A B C ,,的对边分别为a b c ,,,且满足sin(2)22cos()sin A B A B A+=++.(Ⅰ)求ba的值; (Ⅱ)若17a c ==,,求ABC △的面积.23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2a =,5c =, (1)求b 的值; (2)求sin C 的值.二、填空题 24.已知在中,,,,则___.25.△ABC 中,若222a b c bc =+-,则A = .26.在中,角,,A B C 所对边长分别为,,a b c ,若,则b=___________.27.在C ∆AB 中,已知,C 4A =,30∠B =o ,则C ∆AB 的面积是 . 28.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,,则C 的大小为___________. 29.在∆ABC ,则这个三角形的形状是参考答案1.D 【解析】试题分析:B b A a sin sin =,2342134430sin 34sin sin 0=⋅=⋅==a A b B ;b a <Θ,030=>∴A B , 060=∴B 或0120=B ,选D.考点:正弦定理、解三角形2.B 【解析】试题分析:33sin 4321sin 21=⋅⋅=⋅⋅=∆C C BC AC S ABC ,则23sin =C ,所以060=C ,选B.考点:三角形面积公式3.C 【解析】试题分析:由已知和正弦定理得(2sin sin )cos sin cos 0,A C B B C ++=展开化简得2sin cos sin 0A B A +=,由于A 为三角形内角,所以0,sin 0A A ≠≠,所以1cos 2B =-,23B π=,选C. 考点:1.正弦定理;2.两角和的正弦公式;3.已知三角函数值求角.4.C 【解析】试题分析:由正弦定理可得,sin 22sin C c c a A a==⇒=,又222237b a ac b a -=⇒=,由余弦定理可得,2222221cos 242a cb a B ac a +--===-,又()0,B π∈,所以120B ︒∠=. 考点:1.正弦定理;2.余弦定理.5.D 【解析】解:=, ∴sinC=•sinA=×=,∵0<C <π,∴∠C=45°或135°, ∴B=105°或15°, 故选D .【点评】本题主要考查了正弦定理的应用.解题的过程中一定注意有两个解,不要漏解. 6.D 【解析】试题分析:由余弦定理得22275682682596AB =+-⨯⨯⨯=,所以最大角为B 角,因为226258cos 0265B +-=<⨯⨯,所以B 角为钝角,选D.考点:余弦定理【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 7.A 【解析】试题分析:由正弦定理得()2sin cos 2sin cos sin sin B C C A B C -==+sin cos cos sin B C B C =+,2sin cos 3sin cos ,sin 2cos 3sin cos 2B C C B C C C C ==,()2222cos 3cos sin C C C =-,213tan ,tan 33C C ==,2,B C C =∴Q 为锐角,所以,,632C B A πππ===,故选A.考点:1、正弦定理两角和的正弦公式;2、三角形内角和定理.8.C 【解析】试题分析:由题可根据正弦定理,得a 2+b 2<c 2,∴cos C =2222a b c ab+-<0,则角C 为钝角考点:运用正弦和余弦定理解三角形. 9.D 【解析】试题分析:sin :sin :sin 3:2:4,::3:2:4A B C a b c =∴=2221cos 24a b c C ab +-∴==- 考点:正余弦定理解三角形10.C 【解析】试题分析:在给定的边与角的关系式中,可以用余弦定理,得22222a b c a b ab+-=g ,那么化简可知所以 2222=a a b c +-,即 22=b c ,=b c ,所以三角形ABC 是等腰三角形.故选C .考点:余弦定理判断三角形的形状. 11.B 【解析】试题分析:根据二倍角的余弦公式变形、余弦定理化简已知的等式,化简后即可判断出△ABC 的形状. 解:∵cos2=,∴(1+cosB )=,在△ABC 中,由余弦定理得,=,化简得,2ac+a 2+c 2﹣b 2=2a (a+c ),则c 2=a 2+b 2,∴△ABC 为直角三角形, 故选:B . 12.C 【解析】试题分析:由A 的度数求出sinA 的值,再由a 与b 的值,利用正弦定理求出sinB 的值,由b 小于a ,得到B 小于A ,利用特殊角的三角函数值即可求出B 的度数. 解:∵A=60°,a=4,b=4, ∴由正弦定理=得:sinB===,∵b <a ,∴B <A , 则B=45°. 故选C 13.A 【解析】试题分析:利用正弦定理化简得:sinAsinBcosC+sinCsinBcosA=12sinB , ∵sinB ≠0,∴sinAcosC+cosAsinC=sin (A+C )=sinB=12, ∵a >b ,∴∠A >∠B ,∴∠B=6π 考点: 14.B 【解析】试题分析:()22cos cos sin sin cos cos sin sin sin sin b C c B a A B C B C A B C A +=∴+=∴+=sin 12A A π∴=∴=,三角形为直角三角形考点:三角函数基本公式 15.A【解析】试题分析:22cos 2cos 11cos 1cos 222A b c A b c b b b A A c c c c c++=⇒==+⇒+=+⇒= ()sin sin cos sin cos 0cos 0,sin sin 2A CB A AC C C C C π+==⇒=∴==,选A考点:正弦定理,二倍角的余弦,两角和的正弦16.B【解析】试题分析:2222214sin 2sin 2cos 242a c b a c C A c a B ac ac +-+-=∴==∴=Q Q 1,2a c ∴==111515sin 122244S ac B ∴==⨯⨯⨯= 考点:正余弦定理解三角形17.C 【解析】试题分析:由余弦定理可得2222113cos 2222b c a c A c bc c+-+-=∴=∴= 考点:余弦定理解三角形 18.(1)2;(2)3.【解析】试题分析:(1)先运用余弦定理求得b c 322=,进而求得b a 35=,再运用正弦定理求C sin 的值即可获解;(2)利用三角形的面积公式建立关于b 方程求解. 试题解析:(1)由余弦定理可得222222⨯-+=bc c b a , 即bc c a b 2222=+-,将22212b a c -=代入可得b c 322=,再代入22212b ac -=可得b a 35=, 所以522sin sin ==a c A C ,即52sin =C ,则51cos =C ,所以2tan =C ; (2)因3sin 21=A bc ,故322322212=⨯⨯b ,即3=b . 考点:正弦定理余弦定理等有关知识的综合运用. 19.(1)B=(2)【解析】解:(1)由正弦定理可得:=,∴tanB=,∵0<B <π, ∴B=;(2)由余弦定理可得b 2=a 2+c 2﹣2accosB ,即a 2+c 2﹣ac=4,又b=2,△ABC 的周长为2+2, ∴a+c+b=2+2, 即a+c=2, ∴ac=,∴S △ABC =acsinB=××=.【点评】本题考查了正弦定理、余弦定理、三角形周长、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 20.(1)B=.4π(2)21+ 【解析】试题分析:(1)由题为求角,可利用题中的条件B c C b a sin cos +=,可运用正弦定理化边为角, 再联系两角和差公式,可求出角B 。
习题课:正弦定理和余弦定理(A3)

鸡西市第十九中学学案
(2)数列:1,12,13,14,1
5
,…
n
1
2 3 4 a n 1 12
13
14
①用公式法表示:a n = . ②用列表法表示:
③用图象法表示为(在下面坐标系中绘出):
探究点三 数列的通项公式
问题 什么叫做数列的通项公式?谈谈你对数列通项公式的理解?答 如果数列{a n }的第n 项a n 与序号数列{a n }的通项公式.和函数不一定有解析式一样,并不是所有的数列都有通项公式.一个数列
的通项公式不唯一,可以有不同的表现形式,=⎩
⎪⎨⎪⎧
1(n 为奇数),-1(n 为偶数). 探究 根据所给数列的前几项求其通项公式时,需仔细观察数列的特征,并进行联想、转化、归纳,同时要熟悉一些常见数列的通项公式.下表中的一些基本数列,你能准确快速地写出它们的通项公式吗?。
正弦定理、余弦定理习题及答案

正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1 C.2 D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 15.B 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1. 2(-1) 2 3. 45° 4. 8 5.等腰三角形 6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3(2)C=45°,B=15°。
正弦定理和余弦定理知识点讲解+例题讲解(含解析)

导数的概念及运算一、知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:4.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.5.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边, A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( ) 解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)×2.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6B.π3C.2π3D.5π6解析 在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,由A ∈(0,π),得A =2π3,即∠BAC =23π. 答案 C3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.(2018·烟台质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( ) A.2B.1C. 3D.2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsin π4,∴112=b22,∴b = 2.答案 D5.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A.4 2B.30C.29D.25解析 由题意得cos C =2cos 2 C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.答案 A6.(2019·荆州一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =22,cos A =34,sin B =2sin C ,则△ABC 的面积是________. 解析 由sin B =2sin C ,cos A =34,A 为△ABC 一内角, 可得b =2c ,sin A =1-cos 2A =74, ∴由a 2=b 2+c 2-2bc cos A , 可得8=4c 2+c 2-3c 2, 解得c =2(舍负),则b =4.∴S △ABC =12bc sin A =12×2×4×74=7. 答案 7考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)(2019·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4. 答案 (1)75° (2)B (3)C【训练1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12B.π6C.π4D.π3(2)(2019·北京海淀区二模)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若2cos 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D.6(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个 B.2个 C.0个 D.无法确定解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝ ⎛⎭⎪⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理a sin A =c sin C ,得2sin 3π4=2sin C ,则sin C =12,又C ∈(0,π),得C =π6.(2)由2cos 2A +B 2-cos 2C =1,可得2cos 2A +B 2-1-cos 2C =0,则有cos 2C +cos C =0,即2cos 2C +cos C -1=0,解得cos C =12或cos C =-1(舍),由4sin B =3sin A ,得4b =3a ,① 又a -b =1,②联立①,②得a =4,b =3, 所以c 2=a 2+b 2-2ab cos C =16+9-12=13,则c =13.(3)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个. 答案 (1)B (2)A (3)B 考点二 判断三角形的形状【例2】 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( ) A.钝角三角形 B.直角三角形 C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.答案(1)A(2)B【训练2】若将本例(2)中条件变为“c-a cos B=(2a-b)cos A”,判断△ABC的形状.解∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0或sin B=sin A,∴A=π2或B=A或B=π-A(舍去),∴△ABC为等腰或直角三角形.考点三 和三角形面积、周长有关的问题 角度1 与三角形面积有关的问题【例3-1】 (2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π,所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD=1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3. 角度2 与三角形周长有关的问题【例3-2】 (2018·上海嘉定区模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 解析 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),∴△ABC周长=a+b+c=4+b+c≤12,即最大值为12.答案12【训练3】(2019·潍坊一模)△ABC的内角A,B,C的对边分别为a,b,c,已知(a+2c)cos B+b cos A=0.(1)求B;(2)若b=3,△ABC的周长为3+23,求△ABC的面积.解(1)由已知及正弦定理得(sin A+2sin C)cos B+sin B cos A=0,(sin A cos B+sin B cos A)+2sin C cos B=0,sin(A+B)+2sin C cos B=0,又sin(A+B)=sin C,且C∈(0,π),sin C≠0,∴cos B=-12,∵0<B<π,∴B=23π.(2)由余弦定理,得9=a2+c2-2ac cos B.∴a2+c2+ac=9,则(a+c)2-ac=9.∵a+b+c=3+23,b=3,∴a+c=23,∴ac=3,∴S△ABC =12a a c sin B=12×3×32=334.三、课后练习1.△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,b cos A+a cosB=2,则△ABC的外接圆面积为()A.4πB.8πC.9πD.36π解析由题意及正弦定理得2R sin B cos A+2R sin A cos B=2R sin(A+B)=2(R为△ABC的外接圆半径).即2R sin C=2.又cos C=223及C∈(0,π),知sin C=13.∴2R=2sin C=6,R=3.故△ABC 外接圆面积S =πR 2=9π. 答案 C2.(2019·武汉模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( ) A.6sin ⎝ ⎛⎭⎪⎫A +π3+3 B.6sin ⎝ ⎛⎭⎪⎫A +π6+3 C.23sin ⎝ ⎛⎭⎪⎫A +π3+3D.23sin ⎝ ⎛⎭⎪⎫A +π6+3解析 设△ABC 的外接圆半径为R ,则2R =3sin 2π3=23,于是BC =2R sin A =23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A .于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝ ⎛⎭⎪⎫A +π3+3. 答案 C3.(2019·长春一模)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________. 解析 因为⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C , 所以12b cos A -sin C cos A =sin A cosC ,所以12b cos A =sin(A +C ),所以12b cos A =sin B , 所以cos A 2=sin Bb , 又sin B b =sin A a ,a =23, 所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3, 由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12(当且仅当b =c =23时取等号), 从而△ABC 面积的最大值为12×12×32=3 3. 答案 334.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理a sin A =bsin B , 得b sin A =a sin B , 又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6, 得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝ ⎛⎭⎪⎫B -π6,可得tan B = 3. 又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37. 因为a <c ,故cos A =27. 因此sin 2A =2sin A cos A =437, cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.5.我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为________. 解析 根据正弦定理及a 2sin C =4sin A ,可得ac =4, 由(a +c )2=12+b 2,可得a 2+c 2-b 2=4, 所以S △ABC =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222=14×(16-4)= 3. 答案3。
高中数学必修二课件:余弦定理、正弦定理习题课

A.135°
B.45°
C.60°
D.120°
2.(2016·天津)在△ABC中,若AB=
(A ) A.1
B.2
C.3
D.4
13 ,BC=3,∠C=120°,则AC=
解析 设△ABC中,角A,B,C的对边分别为a,b,c,则a=3,c= 13 , ∠C=120°,由余弦定理得13=9+b2+3b,解得b=1,即AC=1.
C,2cos Csin(A+B)=sin C,故2sin Ccos C=sin C. 因为C∈(0,π),所以sin C≠0,所以cos C=12,所以C=π3 .
(2)由已知,得12absin
C=3
2
3 .
π 又C= 3 ,所以ab=6.
由已知及余弦定理,得c2=a2+b2-2abcos C=7.
(1)求△ABC的面积;
(2)若b+c=6,求a的值.
解析 (1)因为cos A=35,A∈(0,π),所以sin A=45. 又由A→B·A→C=3,得bccos A=3,所以bc=5. 因此S△ABC=12bcsin A=2. (2)由(1)知,bc=5,又b+c=6, 所以b=5,c=1或b=1,c=5. 由余弦定理,得a2=b2+c2-2bccos A=20,所以a=2 5.
3.在△ABC中,sin A∶sin B∶sin C=3∶2∶4,则cos C的值为( A )
A.-14
1 B.4
C.-23
=ac,c=2a,则cos B=____4____.
5.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos
A=
3 5
,
A→B·A→C=3.
方法二:因为A+B+C=π,所以sin C=sin(A+B)=sin Acos B+cos Asin B
课时作业21:习题课 正弦定理和余弦定理

习题课 正弦定理和余弦定理基础过关1.在△ABC 中,若a =7,b =8,cos C =1314,则最大角的余弦值是( ) A.-15 B.-16 C.-17D.-18解析 c 2=a 2+b 2-2ab cos C =9,c =3,B 为最大角,cos B =a 2+c 2-b 22ac =49+9-642×7×3=-17.答案 C2.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能( )A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形解析 假设能作出△ABC ,不妨设高113,111,15对应的边分别为a =26S ,b =22S ,c =10S ,cos A =b 2+c 2-a 22bc =(22S )2+(10S )2-(26S )22×22S ×10S =-23110<0,∴A 为钝角. 答案 D3.已知△ABC 的三边长分别为AB =7,BC =5,AC =6.则AB →·BC →的值为( )A.19B.14C.-18D.-19解析 由余弦定理的推论知:cos B =AB 2+BC 2-AC 22AB ·BC =1935.所以AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×⎝ ⎛⎭⎪⎫-1935=-19,故选D.答案 D4.在△ABC 中,B =60°,a =1,S △ABC =32,则csin C =________.解析 S △ABC =12ac sin B =12×1×c ×32=32, ∴c =2,∴b 2=a 2+c 2-2ac cos B =1+4-2×1×2×⎝ ⎛⎭⎪⎫12=3,∴b =3,∴c sin C =b sin B =332=2.答案 25.在△ABC 中,若a cos A =b cos B =ccos C ,则△ABC 是________三角形. 解析 ∵a cos A =b cos B, ∴sin A cos B -sin B cos A =0,∴sin(A -B )=0, ∵A ,B ∈(0,π),∴A -B ∈(-π,π), ∴A -B =0,∴A =B . 同理B =C ,∴A =B =C , ∴△ABC 为等边三角形. 答案 等边6.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A -π4.解 (1)在△ABC 中,根据正弦定理AB sin C =BCsin A , 于是AB =sin Csin A ·BC =2BC =2 5. (2)在△ABC 中,根据余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC=255,于是sin A =55,由倍角公式得sin 2A =2sin A cos A =45,cos 2A =2cos 2A -1=35,所以sin ⎝ ⎛⎭⎪⎫2A -π4=sin 2A cos π4-cos 2A sin π4=210.7.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.解 (1)由2a sin B =3b 及正弦定理a sin A =bsin B , 得sin A =32. 因为A 是锐角,所以A =π3. (2)因为a =6,cos A =12,所以由余弦定理a 2=b 2+c 2-2bc cos A , 得b 2+c 2-bc =36.又因为b +c =8,所以bc =283. 由三角形面积公式S =12bc sin A , 得△ABC 的面积为12×283×32=733.能力提升8.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆半径为( ) A.922 B.924 C.928D.229解析 不妨设c =2,b =3,则cos A =13,sin A =223. ∵a 2=b 2+c 2-2bc cos A ,∴a 2=32+22-2×3×2×13=9,∴a =3.∵a sin A =2R ,∴R =a sin A =32×223=928. 答案 C9.已知△ABC 中,三边与面积的关系为S △ABC =a 2+b 2-c 243,则cos C 的值为( )A.12B.22C.32D.0解析 S △ABC =12ab sin C =a 2+b 2-c 243=2ab cos C 43,∴tan C =33,C ∈(0,π),∴C =π6,∴cos C =32. 答案 C10.在△ABC 中,若a 2-b 2=3bc ,sin C =23sin B ,则A =________. 解析 由sin C =23sin B ,根据正弦定理,得c =23b , 代入a 2-b 2=3bc ,得a 2-b 2=6b 2,即a 2=7b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b =6b 243b 2=32.又∵0°<A <180°,∴A =30°. 答案 30°11.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =12a ,2sin B =3sin C ,则cos A 的值为________.解析 由2sin B =3sin C 及正弦定理可得:2b =3c ,由b -c =12a 可得:a =c ,b =32c ,由余弦定理可得cos A =b 2+c 2-a 22bc =34.答案 3412.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b 2=ac ,且cos B=34.(1)求1tan A +1tan C 的值; (2)设BA →·BC →=32,求a +c 的值. 解 (1)由cos B =34及0<B <π,得sin B =1-(34)2=74,由b 2=ac 及正弦定理,得sin 2 B =sin A sin C ,于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B=sin B sin 2B =1sin B =477.(2)由BA →·BC→=32得ca cos B =32, 由cos B =34,可得ca =2,即b 2=2. 由余弦定理得a 2+c 2=b 2+2ac cos B =5, ∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.13.(选做题)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0. (1)求角A ;(2)若a =2,△ABC 的面积为3,求b ,c .解 (1)△ABC 中,∵a cos C +3a sin C -b -c =0,利用正弦定理可得sin A cos C +3sin A sin C =sin B +sin C =sin(A +C )+sin C , 化简可得3sin A -cos A =1, ∴sin(A -30°)=12, ∴A -30°=30°,∴A =60°.(2)若a =2,△ABC 的面积为12bc ·sin A =34bc =3,∴bc =4 ①.再利用余弦定理可得a 2=4=b 2+c 2-2bc ·cos A =(b +c )2-2bc -bc =(b +c )2-3·4,∴b +c =4 ②.结合①②求得b =c =2.。
正弦定理和余弦定理_知识点及典型例题

正弦定理和余弦定理要点梳理1.正弦定理其中R 是 三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c=sin A ∶s in B ∶sin C ; (2)a=2Rsi n A ,b=2Rsin B ,c=2Rsi n C ;(3)sin A =错误!,sin B=错误!,sin C=错误!等形式,以解决不同的三角形问题.2.三角形面积公式S△AB C=错误!a bsin C=错误!b csin A=错误!acsin B=错误!=错误!(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r.3.余弦定理:222222222a b c 2bccos A b a c 2accos B c a b 2abcos C =+-,=+-,=+-.ﻩ余弦定理可以变形为:c os A =222b c a 2bc+-,cos B =222a c b 2ac +-,cos C=222a b c 2ab +-. 4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角; (2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题; (2)已知三边问题.基础自测1.在△AB C中,若b=1,c =错误!,C=错误!,则a= .2.已知△ABC 的内角A,B,C的对边分别为a ,b,c ,若c=2,b =6,B=120°,则a=________. 3.在△ABC 中,若AB=5,A C=5,且cos C=错误!,则BC=________ .4.已知圆的半径为4,a、b 、c 为该圆的内接三角形的三边,若ab c=16错误!,则三角形的面积为( ) A.2 2 B .8错误! C.错误! D.错误!题型分类 深度剖析题型一 利用正弦定理求解三角形例1 在△A BC 中,a =3,b =错误!,B =45°.求角A 、C 和边c .变式训练1 已知a ,b,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则A = 2sin sin sin a b c R A B C ===题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b、c 分别是角A 、B 、C 的对边,且错误!=b 2a c-+. (1)求角B 的大小; (2)若b =\r(13),a+c =4,求△ABC 的面积.变式训练2已知A、B 、C 为△A BC 的三个内角,其所对的边分别为a 、b、c ,且2A 2cos +cos A=02. (1)求角A 的值; (2)若a =23,b +c =4,求△ABC 的面积.题型三 正、余弦定理的综合应用例3. 在△ABC 中,a 、b 、c 分别是角A、B 、C 的对边22sin )()sin ,A C a b B -=-已知△ABC 外接圆半径为(1)求角C的大小; (2)求△A BC 面积的最大值.变式训练3在△ABC 中,内角A ,B,C 所对的边长分别是a ,b ,c.(1)若c =2,C=\f(π,3),且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=si n 2A ,试判断△A BC的形状.例4设△ABC 的内角A 、B、C所对的边分别为a、b 、c,且a cos C +\f(1,2)c =b .(1)求角A 的大小; (2)若a =1,求△ABC 的周长l的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课 正弦定理和余弦定理学习目标 1.学会利用三角形中的隐含条件.2.学会根据条件特点选择正弦定理、余弦定理解决一些和三角函数、向量有关的综合问题.知识点一 有关三角形的隐含条件“三角形”这一条件隐含着丰富的信息,利用这些信息可以得到富有三角形特色的变形和结论:(1)由A +B +C =180°可得sin(A +B )=sin C ,cos(A +B )=-cos C , tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C2.(2)由三角形的几何性质可得a cos C +c cos A =b ,b cos C +c cos B =a , a cos B +b cos A =c .(3)由大边对大角可得sin A >sin B ⇔A >B .(4)由锐角△ABC 可得任意两内角之和大于π2,进而可得sin A >cos B .知识点二 正弦定理、余弦定理常见形式 1.正弦定理的呈现形式(1)a sin A =b sin B =c sin C =2R (其中R 是△ABC 外接圆的半径); (2)a =b sin A sin B =c sin A sin C =2R sin A ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R .2.余弦定理的呈现形式 (1)a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C ;(2)cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.特别提醒:解题的关键是根据题目特点,选择恰当的定理及变形,进行边角互化,转化为代数问题或者三角恒等式,再利用三角恒等变形解决问题,中间往往会用到一些三角形的隐含条件,如内角和等.1.在△ABC 中,若sin A =sin B ,则A =B .(√) 2.在△ABC 中,若sin 2A =sin 2B ,则A =B .(×) 3.在△ABC 中,若cos A =cos B ,则A =B .(√)类型一 利用正弦、余弦定理转化边角关系例1 在△ABC 中,若c ·cos B =b ·cos C ,cos A =23,求sin B 的值.考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合 解 由c ·cos B =b ·cos C ,结合正弦定理,得 sin C cos B =sin B cos C ,故sin(B -C )=0,∵0<B <π,0<C <π, ∴-π<B -C <π,∴B -C =0,B =C ,故b =c . ∵cos A =23,∴由余弦定理,得3a 2=2b 2,再由余弦定理,得cos B =66, 故sin B =306. 引申探究1.对于本例中的条件,c ·cos B =b ·cos C ,能否使用余弦定理?解 由余弦定理,得c ·a 2+c 2-b 22ac =b ·a 2+b 2-c 22ab .化简得a 2+c 2-b 2=a 2+b 2-c 2, ∴c 2=b 2,从而c =b .2.本例中的条件c ·cos B =b ·cos C 的几何意义是什么? 解 如图,作AD ⊥BC ,垂足为D . 则c ·cos B =BD ,b ·cos C =CD .∴c cos B =b cos C 的几何意义为边AB ,AC 在BC 边上的射影相等. 反思与感悟 (1)边、角互化是处理三角形边、角混合条件的常用手段. (2)解题时要画出三角形,将题目条件直观化,根据题目条件,灵活选择公式. 跟踪训练1 在△ABC 中,已知b 2=ac ,a 2-c 2=ac -bc . (1)求A 的大小; (2)求b sin Bc的值.考点 正弦、余弦定理解三角形综合 题点 正弦、余弦定理解三角形综合 解 (1)由题意知,cos A =b 2+c 2-a 22bc =ac +bc -ac 2bc =12,∵A ∈(0,π),∴A =π3.(2)由b 2=ac ,得b c =ab ,∴b sin Bc =sin B ·a b =sin B ·sin A sin B =sin A =32. 类型二 涉及三角形面积的条件转化例2 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sin B =2sin A ,且△ABC 的面积为a 2sin B ,则cos B = .考点 用余弦定理解三角形题点 逆用面积公式、余弦定理解三角形 答案 14解析 由sin B =2sin A 及正弦定理,得b =2a ,由△ABC 的面积为a 2sin B ,得12ac sin B =a 2sinB ,即c =2a ,∴cos B =a 2+c 2-b 22ac =a 24a 2=14.反思与感悟 表示三角形面积,即使确定用两边及其夹角,还要进一步选择好用哪两边夹角. 跟踪训练2 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积S =14(a 2+b 2-c 2),则角C 为( )A .135°B .45°C .60°D .120° 考点 用余弦定理解三角形题点 逆用面积公式、余弦定理解三角形 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理c 2=a 2+b 2-2ab cos C ,得sin C =cos C . 又C ∈(0°,180°), ∴C =45°.类型三 正弦、余弦定理与三角变形的综合应用例3 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,4sin 2 B +C 2-cos 2A =72. (1)求A 的度数;(2)若a =3,b +c =3,求b 和c 的值. 考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合 解 (1)由4sin 2B +C 2-cos 2A =72及A +B +C =180°, 得2[1-cos(B +C )]-2cos 2A +1=72,4(1+cos A )-4cos 2A =5,即4cos 2A -4cos A +1=0, ∴(2cos A -1)2=0,解得cos A =12.∵0°<A <180°,∴A =60°.(2)由余弦定理,得cos A =b 2+c 2-a 22bc .∵cos A =12,∴b 2+c 2-a 22bc =12,化简并整理,得(b +c )2-a 2=3bc , 将a =3,b +c =3代入上式,得bc =2.则由⎩⎪⎨⎪⎧ b +c =3,bc =2,解得⎩⎪⎨⎪⎧ b =1,c =2或⎩⎪⎨⎪⎧b =2,c =1.反思与感悟 (1)解三角形的实质是解方程,利用正弦、余弦定理,通过边、角互化,建立未知量的代数方程或三角方程.(2)三角形内角和定理在判断角的范围、转化三角函数、检验所求角是否符合题意等问题中有着重要的作用.(3)三角恒等变形公式是否熟练,对顺利化简非常重要.跟踪训练3 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,a 2+c 2-b 2=65ac .求2sin 2A +C 2+sin 2B 的值.考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合 解 由已知得a 2+c 2-b 22ac =35,所以cos B =35,sin B =1-cos 2B =45,所以2sin 2A +C 2+sin 2B =2cos 2B2+sin 2B=1+cos B +2sin B cos B=1+35+2×45×35=6425.1.在锐角△ABC 中,角A ,B 所对的边分别为a ,b ,若2a sin B =3b ,则角A 等于( ) A.π12 B.π6 C.π4 D.π3 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 D解析 在△ABC 中,利用正弦定理,得 2sin A sin B =3sin B ,∵B ∈⎝⎛⎭⎫0,π2,sin B ≠0, ∴sin A =32.又∵A 为锐角,∴A =π3. 2.在△ABC 中,若c =2a cos B ,则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形考点 判断三角形形状题点 利用正弦、余弦定理、三角变形判断三角形形状 答案 C解析 ∵c =2a cos B ,由正弦定理得, 2cos B sin A =sin C =sin(A +B ),∴sin A cos B -cos A sin B =0,即sin(A -B )=0, 又∵-π<A -B <π,∴A -B =0,∴A =B , ∴△ABC 是等腰三角形.3.在△ABC 中,若满足sin 2A =sin 2B +3sin B ·sin C +sin 2C ,则A 等于( ) A .30° B .60° C .120° D .150° 考点 正弦、余弦定理解三角形综合 题点 正弦、余弦定理解三角形综合 答案 D解析 设内角A ,B ,C 的对边分别为a ,b ,c ,∵sin 2A =sin 2B +3sin B ·sin C +sin 2C , ∴由正弦定理得a 2=b 2+c 2+3bc , ∴cos A =b 2+c 2-a 22bc =-32,又∵0°<A <180°,∴A =150°.4.在△ABC 中,AB =3,AC =2,BC =10,则BA →·AC →= . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 -32解析 由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =9+4-1012=14.∴AB →·AC →=|AB →|·|AC →|·cos A =3×2×14=32,∴BA →·AC →=-AB →·AC →=-32.1.对于给出的条件是边角关系混合在一起的问题,一般运用正弦定理和余弦定理,把它统一为边的关系或把它统一为角的关系.再利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法等进行转化、化简,从而得出结论.2.解决正弦定理与余弦定理的综合应用问题,应注意根据具体情况选择恰当的定理或定理的变形来解决问题;平面向量与解三角形的交汇问题,应注意准确运用向量知识转化为解三角形问题,再利用正弦、余弦定理求解.一、选择题1.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( ) A .(1,3) B .(2,3) C .(5,3) D .(22,3) 考点 判断三角形形状题点 已知三角形形状求边的取值范围解析 由cos C =a 2+b 2-c 22ab <0,得c 2>a 2+b 2=5.∴c >5,又c <a +b =3,∴5<c <3.2.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A.⎝⎛⎦⎤0,π6 B.⎣⎡⎦⎤π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 C解析 设内角A ,B ,C 所对的边分别为a ,b ,c ,则由已知及正弦定理得a 2≤b 2+c 2-bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,则cos A ≥12.∵0<A <π,∴0<A ≤π3.故选C.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定 考点 判断三角形形状题点 利用正弦、余弦定理、三角变形判断三角形形状 答案 B解析 由b cos C +c cos B =a sin A , 得sin B cos C +sin C cos B =sin 2A , 即sin(B +C )=sin A =sin 2A ,因为0<A <π,所以sin A =1,所以A =π2,所以△ABC 为直角三角形.4.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12 D .4考点 用正弦定理解三角形 题点 已知面积求边或角解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1, ∵S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.5.在△ABC 中,cos 2B 2=a +c2c ,则△ABC 是( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合 答案 B解析 ∵cos 2B2=a +c 2c ,∴cos B +12=a +c2c,∴cos B =ac ,∴a 2+c 2-b 22ac =a c ,∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2, ∴△ABC 为直角三角形.6.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b 且a >b ,则B 的值为( ) A.π6 B.π3 C.2π3 D.5π6考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合 答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,由正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b 且B ∈(0,π),因此B =π6.7.已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若c -b c -a =sin Asin C +sin B ,则B等于( )A.π6B.π4C.π3D.3π4考点 正弦、余弦定理解三角形综合 题点 正弦、余弦定理解三角形综合 答案 C解析 由正弦定理可得c -b c -a =a c +b ,即c 2-b 2=ac -a 2,故cos B =12,又0<B <π,故B =π3.8.在△ABC 中,已知a 4+b 4+c 4=2c 2(a 2+b 2),则角C 等于( ) A .30° B .60° C .45°或135°D .120°考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 C解析 由a 4+b 4+c 4=2c 2(a 2+b 2),得(a 2+b 2-c 2)2=2a 2b 2,cos C =a 2+b 2-c 22ab =±22,又∵0°<C <180°, ∴C =45°或135°. 二、填空题9.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b = .考点 用正弦定理解三角形 题点 已知面积求边或角 答案 2 3解析 ∵cos C =13,C ∈⎝⎛⎭⎫0,π2,∴sin C =1-cos 2C =223,∵12ab sin C =43,a =32,∴b =2 3.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A = .考点 正弦、余弦定理解三角形综合 题点 正弦、余弦定理解三角形综合 答案 30°解析 ∵b =2a ,∴由正弦定理得sin B =2sin A ,又∵B =A +60°,∴sin(A +60°)=2sin A ,即sin A cos 60°+cos A sin 60°=2sin A ,化简得sin A =33cos A ,∴tan A =33, 又∵0°<A <180°,∴A =30°.11.已知在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C = . 考点 正弦、余弦定理解三角形综合题点 正弦、余弦定理解三角形综合答案 14∶11∶(-4)解析 由sin A ∶sin B ∶sin C =2∶3∶4及正弦定理,得a ∶b ∶c =2∶3∶4,故可设a =2x ,b =3x ,c =4x ,其中x >0,则cos A =b 2+c 2-a 22bc =78. 同理cos B =1116,cos C =-14,所以cos A ∶cos B ∶cos C =78∶1116∶⎝⎛⎭⎫-14=14∶11∶(-4). 12.已知三角形的三边分别为a ,b ,c ,面积S =a 2-(b -c )2,则cos A = . 考点 用正弦定理解三角形题点 已知面积求边或角答案 1517解析 S =a 2-(b -c )2=a 2-b 2-c 2+2bc =-2bc cos A +2bc ,∵S =12bc sin A ,∴12bc sin A =2bc -2bc cos A . 即4-4cos A =sin A .平方得17cos 2A -32cos A +15=0.即(17cos A -15)(cos A -1)=0,得cos A =1(舍)或cos A =1517. 三、解答题13.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且sin A a =3cos C c. (1)求C 的大小;(2)如果a +b =6,CA →·CB →=4,求c 的值.题点 正弦、余弦定理与平面向量的综合解 (1)由正弦定理可知,sin A a =3cos C c 可化为sin A 2R sin A =3cos C 2R sin C,即tan C = 3. 又∵C ∈(0,π),∴C =π3. (2)CA →·CB →=|C A →||CB →|cos C =ab cos C =4, 且cos C =cos π3=12,∴ab =8. 由余弦定理,得c 2=a 2+b 2-2ab cos C=(a +b )2-2ab -2ab cos π3=(a +b )2-3ab =62-3×8=12,∴c =2 3.四、探究与拓展14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C =p sin B (p ∈R )且ac =14b 2.若角B 为锐角,则p 的取值范围是 . 考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与三角函数的综合答案 ⎝⎛⎭⎫62,2 解析 由余弦定理及正弦定理,得b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac cos B =p 2b 2-12b 2-12b 2cos B , 即p 2=32+12cos B . 因为0<cos B <1,所以p 2∈⎝⎛⎭⎫32,2, 由题设知p >0,所以62<p < 2. 15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b 2=ac 且cos B =34. (1)求1tan A +1tan C的值; (2)设BA →·BC →=32,求a +c 的值.题点 正弦、余弦定理与平面向量的综合解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74.由b 2=ac 及正弦定理,得sin 2B =sin A sin C . 于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B =sin B sin 2B =1sin B =477. (2)由BA →·BC →=32,得ca ·cos B =32, 由cos B =34,可得ca =2,即b 2=2. 由余弦定理b 2=a 2+c 2-2ac ·cos B ,得a 2+c 2=b 2+2ac ·cos B =5, ∴(a +c )2=a 2+c 2+2ac =5+4=9,又a >0,c >0,∴a +c =3.。