医用用高分子材料
医用高分子材料

医用高分子材料摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。
功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。
医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。
对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。
关键词:高分子材料药用用途功能分类正文:一、医用高分子材料的定义及分类医用高分子材料有两种定义。
一种是广义医用高分子材料,涵盖所有在医疗活动中使用的高分子材料;另一种定义是符合特殊医用材料要求,在医学领域上应用到人体上,以医疗为目的,具有特殊要求的功能型高分子材料。
按照不同的标准,医用高分子材料有不同的分类。
按用途划分包括:治疗用高分子材料、药用高分子材料、人造器官用高分子材料等;按原材料的来源划分包括:天然高分子医用材料、合成高分子药用材料、含高分子的复合医用材料等;按材料自身的功能和特点可以分为:生物相容性高分子材料、生物降解性高分子材料、生物功能高分子材料等。
二、医用高分子材料的特殊要求由于由于高分子材料直接用于医疗目的,有些需要长期接触或者植入活体内部,因此对材料的要求比较高。
对于医用高分子材料的要求基本可以分为三方面:1、材料学方面的要求,要求材料能满足医疗过程中其对机械、物理和化学方面的要求,如机械强度、稳定性,外观效果等。
2、医学方面的要求,如药物的控制释放、人造血液的黏度、渗透压、人造皮肤的促进愈合作用等。
3、生物学方面的要求,要能和生物活体和平共处,就必须不影响活体正常的生物活动和适应活体的生理方面的要求,并且耐受生理环境。
另外,生物活体对医用高分子材料也有一定的要求:1、血液相容性。
医用高分子材料

医用高分子材料医用高分子材料在现代医学和医疗领域中起着至关重要的作用。
这些材料具有出色的生物相容性、可加工性和可控释放性能,被广泛用于医疗器械、药物传递系统和组织工程等领域。
本文将介绍医用高分子材料的应用、特点和近期研究进展。
一、医用高分子材料的应用1. 医疗器械医用高分子材料在医疗器械中扮演着重要的角色。
例如,聚乙烯醇(PVA)被广泛用于制作医用手套、输液软管和注射器等。
其柔软性和耐腐蚀性使其成为理想的选择。
此外,聚氨酯(PU)也被用于制作心脏起搏器和人工血管。
其优异的机械性能和生物相容性使其成为这些医疗器械的理想材料。
2. 药物传递系统医用高分子材料在药物传递系统中起着重要的作用。
例如,聚乳酸-羟基乙酸共聚物(PLGA)被广泛用于制造微球、纳米粒子和针剂等。
这些材料具有良好的生物降解性和可控释放性能,可以通过改变材料的组成和制备方法来调控药物的释放速率和持续时间。
3. 组织工程医用高分子材料在组织工程领域中具有巨大潜力。
例如,聚己内酯(PCL)和胶原蛋白被广泛用于制造支架和人工皮肤。
这些材料能够提供细胞附着和生长的支持,并具有良好的生物相容性和生物降解性,有助于再生损伤组织。
二、医用高分子材料的特点1. 生物相容性医用高分子材料具有良好的生物相容性,能够与人体组织兼容,并且不会引发明显的免疫反应。
这一特点使得它们适用于体内应用,可以减少术后并发症的发生。
2. 可加工性医用高分子材料可以通过不同的加工方法制备成不同形状和尺寸的产品。
例如,熔融挤出、溶液旋转薄膜法和三维打印等方法可以制备出具有复杂结构和良好性能的材料。
3. 可控释放性能医用高分子材料可以通过改变材料的组成和结构来调控药物的释放速率和持续时间。
这使得药物能够在目标区域长时间释放,提高疗效并减少副作用。
三、医用高分子材料的研究进展1. 新型材料的合成与应用近年来,研究人员致力于开发新型医用高分子材料,以满足不同临床需求。
例如,阴离子聚合物、生物可降解聚合物和纳米复合材料等新型材料被广泛应用于医疗器械和药物传递系统,为临床诊疗提供了更多选择。
医用高分子材料

医用高分子材料首先,医用高分子材料具有良好的生物相容性。
这意味着它们与人体组织和生物体具有良好的相容性,不会引起排斥反应或过敏反应。
这使得它们可以用于制造各种植入式医疗器械,如人工关节、心脏起搏器和血管支架等。
常用的医用高分子材料包括聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯和聚乳酸等。
其次,医用高分子材料具有良好的耐用性和可塑性。
它们可以根据需要进行设计和加工,制成各种形状和结构的医疗器械和用品。
同时,它们具有较高的耐用性,能够承受人体内外的各种环境和应力,保持稳定的性能和形状。
这使得医用高分子材料在医疗器械和用品的制造中具有广泛的应用前景。
医用高分子材料在医疗行业中的应用非常广泛。
它们被用于制造各种医疗器械,如手术器械、诊断设备、植入式医疗器械和医疗用品等。
比如,聚乳酸材料被用于制造可降解的缝线和骨修复材料;聚碳酸酯材料被用于制造人工眼角膜和牙科修复材料;聚乙烯材料被用于制造输液管和输液袋等。
这些医疗器械和用品在临床上发挥着重要的作用,帮助医生诊断疾病、进行手术治疗和康复护理。
随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也在不断拓展和创新。
未来,医用高分子材料有望在生物医学工程、组织工程和再生医学等领域发挥更大的作用。
同时,人们也在不断研发新型的医用高分子材料,以满足不同医疗器械和用品的需求。
总之,医用高分子材料在医疗行业中具有重要的地位和应用前景。
它们具有良好的生物相容性、耐用性和可塑性,适用于各种医疗器械和用品的制造。
随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也将不断拓展和创新,为人类健康事业做出更大的贡献。
医用高分子材料概述及分类

Drug controlled release
Tissue engineering
Gene therapy
医用高分子材料概述和分类
此后,一大批人工器官在50年代试用于临床。 如人工尿道(1950年)、人工血管(1951年)、 人工食道(1951年)、人工心脏瓣膜(1952)、 人工心肺(1953年)、人工关节(1954年)、人 工肝(1958年)等。进入60年代,医用高分子材 料开始进入一个崭新的发展时期。
医用高分子材料概述和分类
❖ 1960s 可生物降解聚合物,如: Polylactide(PLA)
❖ 1970-80s 隐形眼镜(Contact lens),药物 控制释放(drug controlled release)
❖ 1990s- 聚合物在生物医用材料中的占有率 超过一半
医用高分子材料概述和分类
医用高分子材料概述和分类
4. 医用高分子材料的要求
(Requirements for biomedical polymers)
❖ Basic requirements ❖ 安全性Biocompatibility/Biostability / Biodegradability ❖ 灭菌性Sterilizability
医用高分子材料概述和分类
聚四氟乙烯
医用高分子材料概述和分类
人工关节
例如: 德国产品 UHMWPE材料
•ISO5834-2
•ASTM F648
•可用为人工关节、 人工骨骼植入人体
•极低的能耗
•……
医用高分子材料概述和分类
人工心脏瓣膜
医用高分子材料概述和分类
组织工程人工骨缺损修复示意图
医用高分子材料概述和分类
医用功能高分子材料

医用功能高分子材料医用功能高分子材料是一种应用于医疗领域的高科技材料,具有多种优异的性能和功能。
它们被广泛应用于生物医学领域,包括医疗器械、药物控释系统、组织工程和药物传递等方面。
这些材料不仅可以提高医疗器械的功能,还可以改善治疗的效果,减少患者的痛苦,提高患者的生活质量。
一种常见的医用功能高分子材料是生物可降解聚合物。
这些材料通常由可降解聚酯或聚胺酯等构成,它们可以在体内渐渐分解,最终被代谢掉。
这种材料可以用于制备可降解缝合线、骨修复材料和组织工程支架等。
因为可降解性,这些材料不需要二次手术去除,减少了病人的痛苦和康复时间。
同时,这些材料的表面可以进行改性,以提高其生物相容性和降低感染风险。
另一类医用功能高分子材料是生物活性高分子材料。
这些材料可以释放具有生物活性的物质,如药物、生长因子和细胞,以促进组织修复和再生。
例如,可以制备一种具有药物控释功能的材料,将药物包裹在材料中,并通过缓慢释放来治疗疾病。
这种材料可以用于制备药物输送系统、药物控释片和药物填充剂等。
此外,也可以将细胞或生长因子植入材料中,以促进组织生长和修复。
这些材料可以用于制备生物活性支架、人工器官和组织工程补丁等。
还有一类医用功能高分子材料是智能响应性高分子材料。
这些材料具有对外界刺激(如温度、光、pH值等)响应的能力,并根据刺激的变化产生相应的物理或化学变化。
这种材料可以用于制备智能响应性医疗器械和药物控释系统。
例如,可以制备一种具有温度敏感性的材料,当温度超过一定阈值时,材料会自动释放药物,以达到治疗的目的。
这种材料可以用于制备热敏性药物控释系统、温度感应型植入器件等。
此外,也可以制备具有光敏性或pH值敏感性的材料,以实现更精确的药物控释和治疗效果。
总之,医用功能高分子材料在医疗领域具有广泛的应用前景。
它们通过改进医疗器械和药物输送系统的性能,提高医疗效果和治疗效率。
随着材料科学和生物医学技术的不断发展,相信医用功能高分子材料将会在未来的医疗领域发挥更重要的作用。
医用高分子材料

医用高分子材料的种类
1 生物可降解材料
2 人工器官材料
3 生物材料表面改性
这类材料在人体内可以自然 降解,减少对人体的刺激, 并且不需要二次手术取出。
这类材料可以用于制造人工 心脏瓣膜、人工血管等,帮 助患有心脏病和其他器官疾 病的患者。
通过改变材料表面的特性, 可以提高材料的生物相容性, 减少对人体的排异反应。
医用高分子材料的特点
生物相容性
医用高分子材料具有良好的生物 相容性,与人体组织相容性高, 不会引起排异反应。
可调控性
医用高分子材料具有可调控性, 可以根据具体需求进行调整,用 于不同的医学应用。
可塑性
医用高分子材料具有良好的可塑 性,易于加工成各种形状,适用 于复杂的医学器械制造。
创新研究
科学家们正在不断进行医用高分子材料的创新研究,开发出更先进的材料。
临床应用
医用高分子材料已经在临床上得到广泛应用,并取得了显著的效果。
合作交流
不同国家的科学家们正在进行医用高分子材料的合作交流,推动其发展。
未来医用高分子材料的发展趋势
生物仿生技术
未来医用高分子材料将更加注重 生物仿生技术,模拟自然生物系 统,实现更好的医疗效果。
医用高分子材料的应用
1
人工关节
医用高分子材料可以用于制造人工关节,帮助患有关节炎等疾病的患者恢复正常 生活。
2
可吸收缝合线
医用高分子材料制成的可吸收缝合线可以用于手术缝合,减少了术后的痛苦和并 发症。
3
人工眼角膜
医用高分子材料可以用于制造人工眼角膜,帮助视力受损的患者恢复视力。
医用高分子材料的发展现状
纳米技术应用
纳米技术将被广泛应用于医用高 分子材料,提高其性能并为医学 研究提供更多可能。
医用高分子材料

医用高分子材料是 用以制造人体内脏、 体外器官、药物剂型及医疗器械的聚合物 材料。20年来,用于这方面的高分子材料 有聚氯乙烯、天然橡胶、聚乙烯、聚酰胺、 聚丙烯、聚苯乙烯、硅橡胶、聚酯、聚四 氟乙烯、聚甲基丙烯酸甲酯和聚氨酯等。
医用高分子 材料
医用高分子材料的 基本要求
医用高分子材料的 基本特征
医用高分子材料的 发展趋势
一、医用高分子材料的基本要求
1、物理机械性能好、能够满足生理功能和使 用环境的要求 2、能耐受灭菌过程儿不致影响生物学性能 3、成型加工性能好,一家工程各种复杂形状 的 制品 4、同血液接触时,材料要有较好的抗凝血性,不引 起溶血,不造成血中蛋白质变性,不破坏血液的 有形成分
相同点外,还有因连接于大分子上而带来的各种高分 子效应和特性
三、生物医用材料的未来发展趋势
1、研究新的降解材料。今后研究发展的趋势是设计、 制作具有特殊功能的材料,如低模量、高柔顺性、 高强度材料 2、研究具有全面生理功能的人工器官和组织材料。 材料不仅是惰性植入体而且要具有生物活性。它 能引导和诱导组织、器官的修复和再生,在完成 上述任务后能自动降解排出体外,为此需要研究 新型降解材料
途径。制备生物梯度功能材料是医用材料表面改性、 提高膜和基结合力的方向
特殊性质
药物剂型性
药物的助剂:高分子材料本身是惰性的,不 参与药的作用,只起增稠、表面活性、崩 解、粘合、赋形、润滑和包装等作用,或 在人体内起“药库”作用,使药物缓慢放 出而延长药物作用时间。
聚合物药物:将低分子药物,以惰性水溶性 聚合物作分子载体,把具有药性的低分子 化合物,通过共价键或离子键与载体的侧 基连接,制成聚合物药物。
聚合物存在多重结构,即一次性结构、二次性结构 和三次性结构 3、高分子化合物的性质不仅与平均相对分子质量有 关,还与组分的不同相对分子质量的分布有关 4、高分子化合物的主链和侧链基上含有多种可以反 应的活性基团,如羧基、羟基、酯基、酰基键和 双键等。这些基团在化学反应活性上除了和小分 子化合物中的基团有
医用高分子材料

:如吸引器、缝线、咽头镜、血管注射用具等;③检
查及检查室用具:如采血管、采血瓶、心电图用的
电极、试验管、培养皿等。
医疗
①药物的助剂:高分子材料本身是 惰性的,不参与药的作用,只起增
人造 脏器
器械
稠、外表活性、崩解、粘合、赋形 、润滑和包装等作用,或使药物缓 慢放出而延长药物作用时间。;②
聚合物药物:将具有药性的低分子
1969年世界第一颗人造心脏于临床应用,跳动3天
医用高分子材料的应用
考尔夫最大的成就是创造了最初的肾透析仪和首个人工心脏, 因为卓越的医学奉献,他于2002年获得了拉斯克医学奖。
全植入式人工心脏
2001-07-04 世界首个完整人工心脏移植手术成功 这具人工心脏是由钛金属和塑胶制造 。 是首个不需要通过管线与外部电源连 接的人工心脏。人工心脏可以将病人 的生命延长60天至5年。这种新的人工 心脏同以往在80年代研发的人工心脏 比较,优点是它降低了感染的危险性。 不过,目前这种人工心脏只批准在“末 期〞的心脏病病人身上使用,这些病 人一般上只剩下30天的寿命。
药物 剂型
人造脏器(Artificial organ)、医疗器械和 药物剂型。
医用高分子材料的应用
药物
制剂
诊断
控制
应用领域
人工心脏
医用粘合剂
1〕药物制剂
目的:药物控制释放
定位释放 时间控制 恒速释放
药物制剂
部位控制 反馈控制 脉冲释放
☺
2〕诊断控制
应用目的:临床检测新技术
应用实例:快速响应、高灵敏度、高精确度的检测试剂与工具, 包括试剂盒、生物传感器等
变形 ;
06
具有良好的血液 相容性 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医用用高分子材料
医用用高分子材料
壳聚糖
1 甲壳质和壳聚糖的性质
2 甲壳质和壳聚糖的制备
3 甲壳质和壳聚糖的应用
3.1 医用纤维和膜材料
3.2 药物载体
3.3 凝血作用
3.4 抗肿瘤作用
3.5 增强免疫力
3.6 降低脂肪和胆固醇
3.7 其他方面
4 甲壳素、壳聚糖的化学改性及应用4.1 酰化改性及应用
4.2 烷基化改性及应用
4.3 醚化改性及应用
4.4 酯化改性及应用
4.5 Shiff碱反应及应用
4.6 壳聚相季铵盐
4.7 接枝反应及应用
4.8 交联及应用
4.9 其它反应和应用
5 壳聚糖与再狭窄
聚乳酸
1 聚乳酸的基本性质
1.1 物理机械性能
1.2 生物降解性
2 PLA的制备
2.1 直接缩聚法
2.2 丙交酯开环聚合法
3 PLA在医药及医用制品中的应用
3.1 药物控释载体
3.2 医用缝合线
3.3 外科生物植片
4 在预防在狭窄方面的应用
4.1 聚乳酸作为支架涂层
4.2 聚乳酸作为生物可降解性支架
4.3 制备纳米微球用于再狭窄的防治
4.3.1 纳米粒子
4.3.2 纳米粒子在治疗血管再狭窄中的应用
聚羟基乙酸及其共聚物
1 简介
2 聚羟基乙酸的性质
3 聚羟基乙酸的制备
4 羟基乙酸的共聚物
4.1 乙交酯与丙交酯的共聚物(PGA-co-PLA,PLGA)
PLGA的制备和性质
4.2 乙交酯与ε-己内酯(ε-CL)的共聚物(PGA-co-PCL)
4.3 乙交酯/丙交酯/己内酯三元共聚物(PGLC)
4.4 聚(羟基乙酸-co-氨基乙酸)和聚酯酰胺(PEA)
4.5 乙交酯与2-氢-2-氧1,3,2-二氧磷杂环己烷的开环共聚物(聚磷酸酯/乙交酯
4.6 其它
5 羟基乙酸均聚物及其共聚物的应用
(1)生物体吸收缝合线
(2)缝合补强材料
(3)骨折固定材料
(4)药物控制释放系统
(5)组织工程
6 PLGA载体的制备方法
6.1 微球
(l)溶剂挥发法
(2)复乳法
(3)相分离法
(4)喷雾干燥法
(5)超临界流体新技术
6.2 纳米球
6.3 植入剂
脂质体
1 脂质体发展
2 脂质体的基本性质
2.1 脂质体结构及性质
2.2 脂质体的作用特点
(1)脂质体的靶向作用
(2)脂质体提高被包封药物的稳定性(3)脂质体降低药物毒性
(4)脂质体的长效作用
3 脂质体的制备
3.1 薄膜分散法
3.2 注入法
3.3 超声波分散法
3.4 冷冻干燥法
3.5 冻融法
3.6 逆相蒸发法
3.7 复乳法
3.8 熔融法
3.9 表面活性剂处理法
3.10 离心法
4 脂质体在医药领域中的应用
4.1 作为抗肿瘤药的载体
4.2 作为抗寄生虫药物载体
4.3 作为抗菌药物和抗病毒药物的载体
4.4 作为解毒剂的载体
4.5 作为生物活性物质载体
聚氰基丙烯酸酯
1 氰基丙烯酸酯纳米微球的合成方法
1.1 乳化聚合法
1.2 界面缩聚法
2 药物释放机制
聚原酸酯
1 简介
2 分类及特点
2.1 二元醇与原酸酯或原碳酸酯经酯交换反应
合成的FOE。
2.2 双烯酮与多元醇反应制备的POE
2.3 由烷基原酸酯与三原醇聚合成的POE
3 半固态聚原酸酯
3.1 半固态聚原酸酯作为药物载体的特点3.2 半固态聚原酸酯的制备
3.3 半固态聚原酸酯的理化性能
3.4 半固态聚原酸酯作为药物载体的应用
(1) 释放小分子药物
(2) 释放蛋白质大分子
海藻酸钠
1 简介
2 海藻酸钠的制备
3 基本性质:
4 应用
4.1 缓释作用
4.2 包裹和包膜作用
4.3 其他作用
4.4 片剂缓释作用的影响因素
胶原
1 简介
2 胶原的特点
3 胶原的制备技术
3.1 可溶性及酶水解性胶原的制备
3.2 人胶原制备
4 胶原的应用
4.1 药物胶原释放系统
(1)胶原罩(collagen shields)(2)胶原膜
(3)胶原海绵
(4)胶原微粒和微柱
4.2 胶原作为骨修复材料的应用(1)胶原促进骨形成的机制
(2)引导性骨再生材料
(3)骨组织工程的基质材料
(4)骨生长因子的载体材料
(5)可吸收骨折内固定材料
(6)HA的粘接材料
环糊精
1 环糊精分子结构与物理性质
2 环糊精化学性质
3 环糊精的改性
3.1 改性环糊精的性质变化
3.2 改性环糊精的种类
3.3 环糊精改性的方法及特性
(1)羟烷基化环糊精的制备方法及特性(2)羧甲基糊精的制备方法及特性(3)甲基化环糊精的制备方法及特性(4)乙基化环糊精
4 环糊精在药物方面的应用
4.1 环糊精(CD)药物包合物
4.2 提高药物溶解度
4.3 增加药物的稳定性
聚磷腈
1 简介
2 性能
3 聚磷腈高分子的合成方法
3.1 先聚合后取代
(1)开环热聚合
(2)溶液聚合
(3)缩合聚合
3.2 先取代再聚合的路线
(1)开环聚合
(2)缩合聚合
3.3 共聚
4 在生物医学方面的应用
氨基酸类聚合物
1 氨基酸类聚合物的特点
2 氨基酸类聚合物的降解与生物相容性
3 氨基酸类聚合物材料及其应用
3.1 聚氨基酸
3.1.1 均聚氨基酸材料
聚谷氨酸
聚天冬氨酸
聚-L-赖氨酸
3.1.2 氨基酸共聚材料
3.2 假性聚氨基酸
3.3 氨基酸与非氨基酸共聚物
4 展望
其他类型降解材料
1 淀粉纳米微球
1.1 合成方法
1.2 载药途径
2 透明质酸
2.1 简介
2.2 HA的物理化学特性
2.3 透明质酸在医学上的应用
2.4 透明质酸的药物缓释作用
2.4.1 HA 缓释药物的功能
2.4.2 HA 促进药物透皮能力的功能2.4.3 生物涂层。