中考综合训练数学试卷(五)及答案

合集下载

2010年山东省菏泽市中考数学模拟试卷(5)及答案

2010年山东省菏泽市中考数学模拟试卷(5)及答案

2010年山东菏泽中考全真模拟数学精品试卷(5)(满分120分,时间120分钟)一、填空题:(共12个小题,24分)1、(原创)多项式322288x x y xy -+分解因式的结果是____________;2、(原创)如图,直线322y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO B '',则点B '的坐标是________;3.(改编)如图,60ABC ∠=,AD 垂直平分线段BC 于点D ABC ∠,的平分线BE 交AD 于点E ,连结EC ,则AEC ∠的度数是 . 4、(原创)二次函数2y ax bx c =++的图象如图所示,且P 164a b c =+++4a b +,Q a b c a b c =-++++, 则P 、Q 的大小关系为 .5、(原创)如图,是一个某一高速公路单心圆曲隧道的截面,若路面AB 宽为12米,净高CD 为8米,则此隧道单心圆的半径OA 是____________;6、(原创) 已知代数式2342007x x --+的值为0,则243313x x ++的值为_____; 7、(原创)如图, AM 是⊙D 的切线,⊙D 与x 轴交于点,A B ,⊙D 的半径是5,6AB =,求出圆心点D 的坐标为_____________;8、(改编)如图,是某座抛物线型桥的示意图,已知抛物线的函数表达式为211036y x =-+,为保护桥的安全,在该抛物线上距水面AB 高为8.5米的点E 、F 处要安装两盏警示灯,第3题图(第5题)yO(第8题图) 则这两盏灯的水平距离EF 是 米(结果保留根号). 9、(原创)符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)1,(2)3,(3)5,(4)7,f f f f ====(2)11112,4,6,8,2345f f f f ⎛⎫⎛⎫⎛⎫⎛⎫====⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭利用以上规律计算:()12009______________2009f f ⎛⎫-= ⎪⎝⎭;10. “上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个别两位数,是“上升数”的概率是( )A 、21 B 、52 C 、53 D 、187;11、(原创)将二次函数2610y x x =++的图象向右平移4个单位,再向上平移3个单位后,所得图象的函数表达式是A.2(7)5y x =-+ B.2(1)4y x =-+C.2(7)2y x =-- D.2(1)2y x =--; 12、如图是由火柴棒搭成的几何图案,则第n 个图案中有__________________根火柴棒.(用含n 的代数式表示)备用题:13、将点A(0)绕着原点顺时针方向旋转135°角得到点B ,则点B 的坐标是 .14、如图,在△ABC 中,3AB =,5AC =,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 .15、(改编)如图,菱形111AB C D 的边长为1,130B ∠=°,作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使230B ∠=°;作322A D BC ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使330B ∠=°; 依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 .4根 12 n =1 n =2n =3 (第12题图) (第14题)16、(原创)把三角形ABC ∆的三边分别向外延长一倍,称为三角形扩展一次,得到三角形111A B C ∆,那么111A B C ∆的面积是ABC ∆的_______倍;把三角形ABC ∆的三边分别向外延长2倍,得到222A B C ∆,那么222A B C ∆的面积是是ABC ∆的_______倍;把三角形ABC ∆的三边分别向外延长3倍,得到333A B C ∆,那么333A B C ∆的面积是ABC ∆的_______倍;如果把三角形ABC ∆的三边分别向外延长n 倍,(其中n 是正整数),那么n n n A B C ∆的面积是是ABC ∆的_______倍;二、选择题(单选题,共8个小题,24分)1、(原创)32-的绝对值是 ( )A . ±8B . 8 C. - 8 D. 6; 2、(原创)已知一个等腰三角形的两个内角的比值是2:5,则这个等腰三角形的顶角 的度数是( )A 、30°;B 、75°;C 、30°或者75°;D 、30°或者100°; 3.函数y =x 的取值范围是( ) A . 32x <B . 32x >C .32x ≤ D . 32x ≥; 4、(原创)下列运算中,正确的是( )A.326a a a ⋅=,B.33(3)9a a -=-,3a =;D.= 5.(原创)如图,在菱形ABCD 中,P 、Q 分别是AD 、AC 的中点,如果PQ 1=,那么菱形ABCD 的周长是( )A . 4B .6C .8D .166. (原创)两个完全相同的长方体的长、宽、高分别为3、2、1,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积最小值为( )1D B 3第15题图 AC 2 B 2C 3D 3B 1D 2 C 1第16题图 3A BA C 2B 2C 3 2A B 1C 1 C B 1A (第5题图)A .42B . 38C .20D .327. (原创)⊙O 1和⊙O 2的半径分别为方程:27100x x -+=的两个根,O 1O 2=,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切8、(原创)如图,点A 的坐标为(),点B 在直线y x =-上运动, 当线段AB 最短时,点B 的坐标为( ) A .(0),0B .⎝⎭C . ()1,1 D.备用题:9、(改编)某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是( )10、(原创)如果a ∠是直角三角形的一个锐角,则sin α的值是方程2102x -+=的一个根,那么三角形的另一个锐角的度数是( )A.30° B.45° C.60°D.30°或者60°;11、(原创)下列说法中,正确的说法有( )①对角线互相垂直、平分且相等的四边形是正方形;②一元二次方程260x x --=的根是13x =-,22x =-; ③依次连接任意一个四边形各边中点所得的四边形是平行四边形; ④一元一次不等式2511x +<的非负整数解有3个;⑤在数据1,3,3,0,2,4,1;中,平均数是2,中位数是2. A .1个 B .2个 C .3个 D .4个12、(原创)反比例函数223k k y x++=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限D.第三、四象限俯视图 A . B . C . D .第8题图三、解答题:(共8道题,满分72分)1、(原创)(本小题满分6分)先化简:2(21)(2)(2)4(1)x x x x x +++--+,再求值,其中2x =;2、(原创)(本小题满分6分)解不等式组: 3(1)7251.3x x x x --⎧⎪⎨--<⎪⎩≤,① ②3、(改编)(本小题满分8分)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD 的边长为2,E 是AD 的中点,按CE 将菱形ABCD剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)判断所拼成的三种图形的面积(s )、周长(l )的大小关系(用“=”、“>”或“<”连接):(直角三角形)(等腰梯形) (矩形)面积关系是;周长关系是.(注:4题:换成有关概率统计方面的大题):☆:补加的、同时删去了原来的第4道大题:4. (本小题满分8分)小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小敏,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)哥哥设计的游戏规则公平吗? 若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.5、(改编)(本小题满分10分)(原创)甲、乙两地相距12千米,某人骑车从甲地到乙地,由于出发时间比预定时间晚6分钟,实际行驶时,速度提高到原来的1.2倍,结果恰好在预定的时间到达乙地,求原来预定的行驶速度是每小时多少千米?6、(改编)(本小题满分10分)小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:⑵补全条形统计图;⑶若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.7、(改编)(本题满分12分)如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在 CD 上,且EC BE =(1)求证:CEB ∆∽CBD ∆;(2)若9CE =,15CB =,求DE 的长. (3)求⊙O 的直径;8、(改编)(本小题满分12分)如图,在平面直角坐标系中,直角梯形ABCO 的边OC 落在x 轴的正半轴上,且AB ∥OC ,BC OC ⊥,2AB =,3BC =,4OC =.正方形ODEF 的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO 面积.将正方形ODEF 沿x 轴的正半轴平行移动,设它与直角梯形ABCO 的重叠部分面积为S .(1)分析与计算:求正方形ODEF 的边长; (2)操作与求解:①正方形ODEF 平行移动过程中,通过操作、观察,试判断S (S >0)的变化情况是 ; A .逐渐增大 B .逐渐减少 C .先增大后减少 D .先减少后增大 ②当正方形ODEF 顶点O 移动到点C 时,求S 的值;(3)探究与归纳:设正方形ODEF 的顶点O 向右移动的距离为x ,求重叠部分面积S 与x 的函数关系式.备用题:(第7题图)(备用图)1、(9分)如图1,点C 将线段AB 分成两.部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线. (1)研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线. 请你说明理由.(4)如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD的黄金分割线.请你画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点.AC B 图1 D 图2 C D 图3 C F 图42、(本题满分12分)如图,点A B C D ,,,在O 上,AB AC =,AD 与BC 相交于点E ,12AE ED =,延长DB 到点F ,使12FB BD =,连结AF . (1)证明BDE FDA △∽△;(2)试判断直线AF 与O 的位置关系,并给出证明.3、(12分)在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠两角和的度数.备用题2图Fx4、(12分). 两个直角边为6的全等的等腰直角三角形Rt AOB △和Rt CED △,按如图一所示的位置放置,点O 与E 重合.(1)Rt AOB △固定不动,Rt CED △沿x 轴以每秒2个单位长度的速度向右运动,当点E 运动到与点B 重合时停止,设运动x 秒后,Rt AOB △和Rt CED △的重叠部分面积为y ,求y 与x 之间的函数关系式;(2)当Rt CED △以(1)中的速度和方向运动,运动时间2x =秒时, Rt CED △运动到如图二所示的位置,若抛物线214y x bx c =++过点A G ,,求抛物线的解析式; (3)现有一动点P 在(2)中的抛物线上运动,试问点P 在运动过程中是否存在点P 到x轴或y 轴的距离为2的情况,若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案及评分标准:一、填空题:☆:补加的填空题:答案:15个;1、22(2)x x y -;2、104,33⎛⎫⎪⎝⎭;3.120° .4、 P <Q ;5、254;6、1000;7、(5,4);8、; 9、1; 10、25; 11、2(1)4y x =-+. 12、2(1)n n +;备用题:13、(2,2)-;14、4;15、112n -⎛⎫⎪⎝⎭;16、答案:7、19、37、[3(11n n ++)]或者是(2331n n ++); 详细解答过程:☆:补加的填空题:15个; 【提示及解答过程】详细解答过程:解:设:口袋里球的总数量是:x ,由于:任意摸出一个黄球的概率为14,所以:914x =,则有:36x =,所以:口袋里绿球的个数是: 3612915--=,口袋里绿球的个数是15个;1、22(2)x x y -;【提示及解答过程】解:322288x x y xy -+2222(44)2(2)x x xy y x x y =-+=-; 2、104,33⎛⎫⎪⎝⎭;【提示及解答过程】解:直线322y x =-+与x 轴、y 轴分别交于A 、B 两点,求出点4,03A ⎛⎫⎪⎝⎭,()0,2B ; 把△AOB 绕点A 顺时针旋转90°后得到△AO B '',所以点B '的横坐标是:410233OA OB +=+=,点B '的纵坐标是:43OA =,则有:由于点B '在第一象限,所以横坐标、纵坐标都是正号,则有:点B '的坐标是104,33⎛⎫⎪⎝⎭; 3、120°【提示及解答过程】解:AD 垂直平分线段BC 于点D ,点E 在线段AD 上,所以点E 到BC 两端的距离相等,则有: BE CE =,所以:C EBC ∠=∠,BE 是ABC ∠的平分线,1302ABE EBD ABC ∠=∠=∠=°, AD 垂直平分线段BC ,则有90ADB ∠=°,30C EBD ∠∠==°,90DEC ∠=°60C -∠=°, AEC ∠=180°DEC ∠-120=°;4、P Q <【提示及解答过程】解:二次函数2yax bx c =++的图象过原点,所以:0c =又因为:对称轴是直线:2,4,2bx b a a=-==-则有:40a b +=; 当4x =时,0y =,所以:1640a b c ++=,当1x =时,函数的图像在x 轴的上方,所以:y >0,即:a b c ++>0;当1x =-时,函数的图像在x 轴的下方,所以:0y <,即:0a b c -+<,综合以上的分析:P 164a b c =+++4a b +=0; Q a b c a b c =-++++>0,所以:P Q <5、254;【提示及解答过程】解:根据垂径定理:CD 平分AB ,则有: 162AD AB ==,设圆的半径是x ,在Rt AOD ∆中,所以:222,OA AD OD =+即:2226(8)x x =+-,解得:254x =,所以圆的半径长是254,选择C.6、1000;【提示及解答过程】 2342007x x --+0=,所以:2342007x x --=-,则有:246693x x +=,所以: 243313x x ++6693311000=+=;7、(5,4);【提示及解答过程】作DN AB ⊥于N ,连接AD ,3AN =,4DN ==,5ON MD ==,所以点D(5,4);8、【提示及解答过程】解:点E 、F 距离AB 高为8.5米,所以:点E 、F 的纵坐标都是8.5,把y =8.5代入函数表达式得出:218.51036x =-+,21108.536x =-,2 1.53654x =⨯=, x ==±EF 大于0,根据抛物线关于对称轴的轴对称性质,则有:EF 2x ==9、1;【提示及解答过程】解:从题目中的信息可以看出:括号例是整数时,结果是序号的2倍减去1,括号里面是分数时,结果是序号减去1所得的差乘以2的值,即:1()21,2(1)f n n f n n ⎛⎫=-=- ⎪⎝⎭; 所以:()2009220091f =⨯-、12(20091)2200922009f ⎛⎫=⨯-=⨯-⎪⎝⎭,所以:()120092009f f ⎛⎫-= ⎪⎝⎭220091⨯-(220092)-⨯-121=-+=; 10、25;【提示及解答过程】解: 点拨:从10到99共有9910190-+=个数,所以:除去:11、22、33、…99共9个数,余下的数字还有81个数,减去数字10、20、30、…90的9个数,只剩下72个数,所以上升数占36个,因此是上升数的频率是:362905=; 画出表格可以直观的得出答案来: 10 11 20 22 30 33 40 44 50 55 60 66 70 77 80 88 909911、2(1)4y x =-+.【提示及解答过程】2610y x x =++变为:2(3)1y x =++,向右平移4个单位得到的函数的解析式为:2(34)1,y x =+-+即:2(1)1y x =-+,再向上平移3个单位后,所得图象的函数的解析式为:2(1)13,y x =-++即:2(1)4y x =-+; 12、2(1)n n +;【提示及解答过程】第1个图形中有4根火柴棒、第2个图形中有12根火柴棒,即:22(21)12⨯⨯+=、第3个图形中有24根火柴棒,即:32(31)24⨯⨯+=、第4个图形中有火柴棒的根数是:40,即:4241)40⨯⨯+=(;……,即则第n 个图案中有火柴棒的根数应当是:2(1)2(1)n n n n ⨯⨯+=+ 备用题:13、(2,2)-,【提示及解答过程】解:将点A(0)绕着原点顺时针方向旋转135°角,所到达的点在第三象限,所以得到点B 的到 原点的距离仍是B 在第三象限 的平分线上,所以 到两个坐标轴 的距离相等,所以BM BN OM ==,22228OM BM OB +===,所以:2OM BM ==,则有点B 的坐标是:(2,2)-;14、【提示及解答过程】解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此11422FC FN NC AB AC =+=+=.15、112n -⎛⎫⎪⎝⎭;【提示及解答过程】解:菱形111AB C D 的边长为1,130B ∠=°,作211AD B C ⊥于点2D ,所以由30°的锐角所对的直角边等于斜边的一半,得出:211122AD AB ==,以2AD 为一边,做第二个菱形222AB C D ,使230B ∠=°;同理:作322AD B C ⊥于点3D ,可以求出3AD 的长来:23221111122222AD AB AD ⎛⎫===⨯= ⎪⎝⎭;以3AD 为一边做第三个菱形333AB C D ,使330B ∠=°; 依此类推,这样做的第4个菱形的边长为:3412AD ⎛⎫= ⎪⎝⎭;这样做的第n 个菱形n n n AB C D 的边n AD 的长是112n -⎛⎫⎪⎝⎭,或者写成:112n -;16、答案:7、19、37、[3(11n n ++)]或者是 (2331n n ++);【提示及解答过程】解;(1) 把三角形ABC ∆的三边分别向外延长一倍,得到三角形111A B C ∆,那么111A B C ∆的面积是ABC ∆的倍数为:31(11)17⨯⨯++=(倍), (2)把三角形ABC ∆的三边分别向外延长2倍,得到222A B C ∆,那么222A B C ∆的面积是ABC ∆的倍数为:32(21)119⨯⨯++=(倍);(3)把三角形ABC ∆的三边分别向外延长3倍,得到333A B C ∆,那么333A B C ∆的面积是第14题ABC ∆的倍数为:33(31)137⨯⨯++=(倍);(4)把三角形ABC ∆的三边分别向外延长n 倍,(其中n 是正整数),那么n n n A B C ∆的面积是ABC ∆的倍数为:23(1)1331n n n n ++=++(倍);二、选择题1、B . 2、D ;3、D ;4、D ; 5、C ;6、B .7、C. 8、D . 备用题:9、A ;10、B.11、D .12、C. 详细解答过程: 1、B .【提示及解答过程】解:328,88-=--=,所以选择B . 2、D ;【提示及解答过程】解:(1)当顶角较小时,顶角度数是:2180255⨯++°=30°,(2)当顶角较大时,顶角度数为:5180100225⨯=++°,所以:选择:;D 、30°或者100°;或者列方程解答:(1)设顶角的度数是2x °,则有:255180,x x x ++=解得:15,x =所以顶角度数是:230x =;(2)设顶角的度数是5x °,则有:522180,x x x ++=解得:20x =,则有:顶角度数是:5100,x =综上所述,故顶角的度数是30°或者100°;3、D ;023x -≥,所以32x ≥;选择:D ;4、D ;【提示及解答过程】解:(1)根据同底数幂的乘积得出:32235a a a a +⋅==,所以A是错误的;(2)根据积的乘方得出:333(3)27a a -⋅=-,所以:B 是错误的;(3+≠≠3a ≠所以:C 是错误的;(4)1222a ⎛=-=-= ⎝, 所以D 是正确的,所以选择D ;5、C ;【提示及解答过程】解:P 、Q 分别是AD 、AC 的中点,所以PQ 是ADC ∆的中位线,根据中位线的性质,所以:1,22PQ DC DC PQ ==2=, 根据菱形的性质,所以菱形的周长4428DC ==⨯=,所以选择C ;6、B .【提示及解答过程】长方体的长、宽、高分别为3、2、1,则有:长和宽组成的面的面积最大,这个最大面积是:32⨯,两个相同的长方体的表面积之和是:2(322131)⨯⨯+⨯+⨯,两个相同的最大的面叠在一起,减少了一个面,所以:在这些新长方体中,表面积最小值为:两个长方体的表面积之和减去一个由长与宽组成的最大的面的面积;由于长是3,宽是2、高是1,所以由 长与宽组成的面面积是最大的,所以把两个长与宽组成的面叠合,所得到的新的长方体的表面积最小,最小值是:2(322131)23238⨯⨯+⨯+⨯⨯-⨯=;因此选择:B ;7、C. 【提示及解答过程】求出方程的两个实数根是:2、5,所以:两圆的半径之差是3、两圆的半径之和是7;而3>>,=<37<,因此⊙O 1和⊙O 2的位置关系是相交;选择C ;8、D .【提示及解答过程】解:根据点到一条直线的上的各点连接的所有线段中,垂线段最短,所以,从点A 向直线y x =-作垂线,由于直线y x =-是二、四象限的夹角平分线,所以直线y x =-到两条坐标轴的垂线段的长相等,因此作:AM y x ⊥=-直线 交y 轴于点C ,垂足是点M ,根据直线y x =-是二、四象限的夹角平分线, 所以:AOC ∆是等腰三角形,OM所以:OM 是底边AC 的中线,由 直角三角形的 中线的性质,则有:12OM AC AM MC ===,所以:M 点的横坐标是:1122OA =⨯=M 点的纵坐标是:()M B 的坐标是时,线段AB 最短,因此选择:D .备用题:9、A .【提示及解答过程】解:俯视图是矩形,水平的是较长的边、竖直 的是较短的边,所以工件的左视图水平的应当是俯视图的举行的较短的宽边,所以C 、D 都不符合题意,又因为:中间是圆孔是看不到的,所以应当化成虚线,因此B 是错误的,综合以上论述,应当选择A ; 10、B.【提示及解答过程】解方程:2102x -+=,得出:20x ⎛-= ⎝⎭,则有:122x x ==,即sin α2=, 所以锐角a ∠45=°,那么直角三角形的另一个锐角的度数是:90°45-°=45°;因此选择B ;11、D .【提示及解答过程】解:①对角线互相垂直、平分且相等的四边形是正方形是正确的;②解方程:260x x --=,(2)(3)0x x +-=,所以:20x +=或者30x -=;则有:122,3x x =-=,所以一元二次方程260x x --=的根是13x =-,22x =-;是错误的;③依次连接任意一个四边形各边中点所得的四边形是平行四边形;是正确的; ④2511x +<的解集是:3x <,所以不等式的非负整数解是0,1,2,有三个,所以一元一次不等式2511x +<的非负整数解有3个;是正确的; ⑤数据1,3,3,0,2,4,1;的平均数是:()1133024127⨯++++++=,把7个数按照由小到大的顺序排列则有:0,1,1,2,3,3,4; 所以中位数是2;所以:数据1,3,3,0,2,4,1;中,平均数是2,中位数是2.是正确的;综合以上的分析:所以:①、③、④、⑤有4 个正确,因此选择:D .12、C.【提示及解答过程】解:2223(1)2k k k ++=++>0,2(23)0k k -++<,根据反比例函数的图像的性质,所以:223k k y x ++=-即:2(23)k k y x-++=,则有:函数的图像在二、四象限,所以答案是:C.三、解答题:1、【提示及解答过程】解:原式22224414443x x x x x x =+++---=-,………………4分因为x =所以:原式2271533244⎛=-=-= ⎝⎭;………6分 2、【提示及解答过程】解:解不等式①得出:2x -≥;………………2分解不等式②得出:12x <-;………………4分所以原不等式组的解集是:122x -<-≤;………………5分注意:2x -≥包括;2-这一点。

2019-2020学年抚顺市新抚区中考数学模拟试卷试题(五)(有标准答案)

2019-2020学年抚顺市新抚区中考数学模拟试卷试题(五)(有标准答案)

辽宁省抚顺市新抚区中考数学模拟试卷(五)一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.16.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>28.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,529.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.9610.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为.12.计算: = .13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= .16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)扇形图中∠α的度数是,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有人;该市九年级学生体育平均成绩约为分.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B处测得着火点C 的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.八、(本题14分)26.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0)、B(2,0)两点,与y轴的交点为C,连接AC、BC,D为线段AB上的动点,DE∥BC交AC于E,A关于DE的对称点为F,连接DF、EF.(1)求抛物线的解析式;(2)EF与抛物线交于点G,且EG:FG=3:2,求点D的坐标;(3)设△DEF与△AOC重叠部分的面积为S,BD=t,直接写出S与t的函数关系式.辽宁省抚顺市新抚区中考数学模拟试卷(五)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣【分析】根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案.【解答】解:﹣3的倒数是﹣.故选D.【点评】此题考查了倒数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选:A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°【分析】直接利用随机事件的定义以及确定事件的定义分析得出答案.【解答】解:A、买一张电影票,座位号是奇数,是随机事件,故此选项错误;B、射击运动员射击一次,命中10环,是随机事件,故此选项错误;C、明天会下雨,是随机事件,故此选项错误;D、度量三角形的内角和,结果是360°,是不可能事件,故是确定事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件的定义以及确定事件的定义,正确把握相关定义是解题关键.4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°【分析】先根据平行线的性质求出∠EFB,再根据三角形外角性质求出∠A=∠EFB﹣∠E,代入求出即可.【解答】解:∵AB∥CD,∠C=45°,∴∠EFB=∠C=45°,∵∠E=20°,∴∠A=∠EFB﹣∠E=25°,故选B.【点评】本题考查了三角形的外角性质,平行线的性质的应用,解此题的关键是求出∠EFB的度数,注意:两直线平行,同位角相等.5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.1【分析】先在图中找出∠ABC所在的直角三角形,再根据三角函数的定义即可求出tan∠ABC的值.【解答】解:如图,在直角△ABD中,AD=3,BD=4,则tan∠ABC==.故选B.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.6.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根【分析】求出b2﹣4ac的值,再进行判断即可.【解答】解:x2﹣3x﹣5=0,△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,所以方程有两个不相等的实数根,故选A.【点评】本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>2【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52【分析】找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.【解答】解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选:D.【点评】此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.9.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.96【分析】由S△BDE=4,S△CDE=16,得到S△BDE:S△CDE=1:4,根据等高的三角形的面积的比等于底边的比求出=,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【解答】解:∵S△BDE=4,S△CDE=16,∴S△BDE:S△CDE=1:4,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=80.故选C.【点评】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为 3.4×10﹣10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算: = 4 .【分析】根据负整数指数幂等于正整数指数幂的倒数进行解答即可.【解答】解: ==4.故答案为:4.【点评】本题考查的是负整数指数幂的运算,熟知其运算性质是解答此题的关键,即负整数指数幂:a﹣p=(a≠0,p为正整数).13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的二位数能被3整除的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,组成的二位数能被3整除的有4种情况,∴组成的二位数能被3整除的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.【分析】利用列表的方法列举出所有等可能的结果,再找出小海所摸球上的数字比小明所摸球上的数字大的情况数目,两者的比值即为发生得概率.【解答】解:列举摸球的所有可能结果:小海小明4 5 63(3,4) (3,5) (3,6) 4(4,4) (4,5) (4,6) 5 (5,4) (5,5) (5,6) 从上表可知,一共有九种可能,其中小海所摸球上的数字比小明所摸球上数字大有6种,因此小海所摸球上的数字比小明所摸球上数字大的概率=,故答案为:.【点评】此题考查了利用画树状图及列表格的方法求事件发生的概率,利用了数形结合的思想.通过画树状图或列表法将复杂的概率问题化繁为简,化难为易,因为这种方法可以直观的把所有可能的结果一一罗列出来,方便于计算.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= 110°.【分析】设围成的小三角形为△ABC ,分别用∠1、∠2、∠3表示出△ABC 的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC 中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠1=40°,∴∠2+∠3=150°﹣40°=110°.故答案为:110°.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是2.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得,BE==2,设AC=AE=x,由勾股定理得,x2+62=(x+2)2,解得,x=2,故答案为:2.【点评】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为 4 .【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,分别表示出点C、点D 的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:如图,过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,∵Rt△OCE为等腰直角三角形,∴∠COE=45°,∴OE=CE=OC=x,∴则点C坐标为(x, x),同理在等腰Rt△BDF中,BD=x,∴BF=DF=BD=x,∴OF=OB﹣BF=5﹣x则点D的坐标为(5﹣x, x),将点C的坐标代入反比例函数解析式可得:k=2x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,∴2x2=x﹣x2,解得:x1=,x2=0(舍去),∴k=2x2=4,故答案为:4.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .【分析】计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.【解答】解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第5个五边形数是22+13=35,第6个五边形数是35+16=51.故答案为:51.【点评】本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先把括号内通分,再把除法运算化为乘法运算后约分得到=,接着解不等式组得到整数解,然后根据分式有意义的条件得到x的值,最后把x的值代入计算即可.要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【解答】解:原式=•=•=,解不等式组得﹣2≤x≤1,它的整数解为﹣2,﹣1,0,1,要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是400 ;(2)扇形图中∠α的度数是108°,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有900 人;该市九年级学生体育平均成绩约为75.5 分.【分析】(1)根据B级的人数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数,根据各等级人数之和等于总人数求出C等级人数,补全条形图;(3)根据样本中D等级所占比例乘以总人数9000可得,运用加权平均数的求法即可求出九年级学生体育平均成绩.【解答】解:(1)本次抽样测试的学生人数是:160÷40%=400,故答案为:400;(2)扇形图中∠α的度数是:×360°=108°,C等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:故答案为:108°;(3)测试等级为D的约有×9000=900(人),学生体育平均成绩约为:90×+75×+65×+55×=75.5(分),故答案为:900,75.5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据利润4000元和3500元列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【解答】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.【分析】(1)首先作OH⊥CD,垂足为H,由BC、AD是⊙O的切线,易证得△BOC≌△AOE(ASA),继而可得OD是CE的垂直平分线,则可判定DC=DE,即可得OD平分∠CDE,则可得OH=OA,证得CD是⊙O的切线;(2)首先证得△AOE∽△ADO,然后由相似三角形的对应边成比例,求得OA的长,然后利用三角函数的性质,求得∠DOA的度数,继而求得答案.【解答】(1)证明:作OH⊥CD,垂足为H,∵BC、AD是⊙O的切线,∴∠CBO=∠OAE=90°,在△BOC和△AOE中,,∴△BOC≌△AOE(ASA),∴OC=OE,又∵EC⊥OD,∴DE=DC,∴∠ODC=∠ODE,∴OH=OA,∴CD是⊙O的切线;(2)∵∠E+∠AOE=90°,∠DOA+∠AOE=90°,∴∠E=∠DOA,又∵∠OAE=∠ODA=90°,∴△AOE∽△ADO,∴=,∴OA2=EA•AD=1×3=3,∵OA>0,∴OA=,∴tanE==,∴∠DOA=∠E=60°,∵DA=DH,∠OAD=∠OHD=90°,∴∠DOH=∠DOA=60°,∴S阴影部分=×3×+×3×﹣=3﹣π.【点评】此题考查了切线的判定与性质、全等三角形的判定与性质、线段垂直平分线的性质、角平分线的性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B处测得着火点C 的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)【分析】在RT△ABD中求出AD,再在RT△ADC中求出AC即可解决问题.【解答】解:作AD⊥BC垂足为D,AB=40×25=1000,∵BE∥AC,∴∠C=∠EBC=30°,∠ABD=90°﹣30°﹣15°=45°,在Rt△ABD中,sin∠ABD=,AD=ABsin∠ABD=1000×sin45°=1000×=500,AC=2AD=1000,答:热气球升空点A与着火点C的距离是1000米.【点评】本题考查解直角三角形的应用、俯角俯角、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.【点评】此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.【分析】(1)先根据△ABC与△DEC均为等腰直角三角形,以及旋转的性质,得出AD=BF,AD∥BF,进而得到四边形ADBF为平行四边形;(2)先延长BE交AD于G,交AC于O,根据△ABC与△DEC均为等腰直角三角形,判定△ACD≌△BCE(SAS),得出AD=BE,∠CAD=∠CBE,再根据“8字形”得出∠AGE=90°,判定AD∥BF,即可得出四边形ADBF为平行四边形;(3)分两种情况讨论:当旋转角∠BCE=135°时,当旋转角为315°时,分别判定△ACD≌△BCD,得到AD=BD,再根据四边形ADBF为平行四边形,得出四边形ADBF为菱形.【解答】解:(1)如图1,∵△ABC与△DEC均为等腰直角三角形,∴AC﹣DC=BC﹣EC,∴AD=BE,∵将BE绕点B顺时针旋转90°得BF,∴BE=BF,∴AD=BF,又∵∠ACB=90°,∠CBF=90°,∴∠C+∠CBF=180°,。

2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析

2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析
∵白球有5个,
∴红球有9×5=45(个),
故选:A.
【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
8.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为( )
A.7.5B.10C.15D.20
【考点】相似三角形的判定与性质.
9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )
A. B. C. D.
【考点】动点问题的函数图象.
【专题】压轴题.
【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.
A. B. C. D.
10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是( )
A.4B.5C.6D.8
二、填空题:每小题3分,共24分.
11.不等式组 的整数解是.
12.计算:2×( ﹣1)0﹣12015+ 的值为.
13.函数 的自变量x的取值范围是.
【分析】根据主视图的定义,找到从正面看所得到的图形即可.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:
辽宁省抚顺市中考数学模拟试卷(五)
一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.

2023年陕西省西安市雁塔区高新一中中考数学五模试卷及答案解析

2023年陕西省西安市雁塔区高新一中中考数学五模试卷及答案解析

2023年陕西省西安市雁塔区高新一中中考数学五模试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)化简的结果是()A.±4B.4C.2D.±22.(3分)如图是把一个正方体切割掉一部分后得到的几何体,则它的左视图是()A.B.C.D.3.(3分)下列运算正确的是()A.(﹣3pq)2=﹣6p2q2B.2a2﹣a2=2C.2a2•a=2a3D.(a﹣2)2=a2﹣44.(3分)如图,在△ABC中,∠B=45°,AD平分∠BAC交BC于点D,若BD=4,则点D到AC的距离为()A.2B.C.D.45.(3分)在平面直角坐标系中,O为坐标原点,若直线y=2x+6分别与x轴、直线y=﹣4x交于点A、B,则△AOB的面积为()A.3B.6C.9D.126.(3分)如图,在菱形ABCD中,点E是对角线AC上一点,连接BE.若BE⊥AB,且BE=2,,则AC的长为()A.3B.C.6D.7.(3分)如图,△BCD内接于⊙O,点B是的中点,CD是⊙O的直径.若∠ABC=30°,AC=4,则BC的长为()A.5B.C.D.8.(3分)抛物线y=ax2+bx+c(a,b,c为常数)开口向上,且过点A(1,0),B(m,0)(﹣1<m<0),下列结论:①abc>0;②若点P1(﹣1,y1),P2(1,y2)都在抛物线上,则y1<y2;③2a+c<0;④若方程a(x﹣m)(x﹣1)+2=0没有实数根,则b2﹣4ac <8a,其中正确结论的序号为()A.①③B.②③④C.①④D.①③④二、填空题(共5小题,每小题3分,共15分)9.(3分)在,0,,,2.02301001中,有理数有个.10.(3分)“动感数学”社团教室重新装修,如图是用边长相等的正方形和正n边形两种地砖铺满地面后的部分示意图,则n的值为.11.(3分)如图,已知矩形ABCO与矩形ODEF是位似图形,M是位似中心,若点B的坐标为(4,3),点E的坐标为,则图中点M的坐标为.12.(3分)如图,在平面直角坐标系中,点A在反比例函数的图象上,点B、C是x轴负半轴上的两点,且AB=AC,BC=OC,若△ABC的面积为6,则k的值为.13.(3分)如图,点E是正方形ABCD的边AB上一点,点F是线段DE上一点,过点A作AF的垂线交DE延长线于点G,且AG=AF,连接BF、BG,若,,则tan∠GAB的值为.三、解答题.(共13小题,共81分.解答应写出过程)14.(5分)计算:.15.(5分)化简:.16.(5分)解不等式组.17.(5分)尺规作图:已知,在Rt△ABC中,∠C=90°,P为AB边中点,在AC边上找一点Q,使得.(不写作法,保留作图痕迹)18.(5分)如图,在正方形网格中,每个小正方形的边长为1,格点△ABC的顶点A、C的坐标分别为(﹣4,3)、(﹣1,1).(1)请在图中正确画出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′,点A,B,C的对应点分别是A′,B′,C′;(3)点B′的坐标为.19.(5分)如图,在▱ABCD中,E,F为对角线AC所在直线上的两个点,且AE=CF,连接BE,DF.求证:BE=DF.20.(5分)数学活动让数学学习更加有趣,在一次数学课上老师设计了一个“配紫色”游戏,如图所示的是两个可以自由转动的转盘,A盘被分成面积相等的几个扇形,B盘中蓝色扇形区域所占的圆心角是120°,同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么转出的两种颜色就可以配成紫色.(若指针指向扇形的分界线,则需要重新转动)(1)若转动一次B盘,则转出红色的概率是.(2)若同时转动A盘和B盘,请通过列表或画树状图的方法,求出配成紫色的概率.21.(6分)航空航天技术是一个国家综合国力的反映.我国载人航天空间站工程已进入空间站建造阶段,将完成问天实验舱、梦天实验舱、神舟载人飞船和天舟货运飞船等6次重大任务,为了庆祝我国航天事业的莲勃发展,某校举办名为“弘扬航天精神•拥抱星辰大海”的书画展览,并给书画展上的作品打分(满分10分),评分结果有6分,7分,8分,9分,10分五种.每位同学只能上交一份作品,现从中随机抽取部分作品,对其份数及成绩进行整理,制成如图所示两幅不完整的统计图,根据以上信息,解答下列问题:(1)补全条形统计图;(2)所抽取作品成绩的众数为,中位数为,扇形统计图中6分所对应的扇形的圆心角为°;(3)已知该校收到书画作品共1500份,请估计得分为8分(及8分以上)的书画作品大约有多少份?22.(7分)为了缓解城市“停车难”问题,我市通过打造“智慧停车平台”,为市民提供便捷的停车服务.某停车场收费标准如下:(不足1小时,按1小时计)停车时长费用(元/小时)不超过30分钟0超过30分钟不超过1小时a超过1小时的部分a﹣1(1)若张先生某次在该停车场停车2小时10分钟,共交费7元,则a=;(2)若停车时长为x小时(x取整数且x≥1),求该停车场停车费y(元)关于停车计时x(小时)的函数解析式;若李先生也在该停车场停车,并支付了11元停车费,则该停车场是按几个小时计时收费的?23.(7分)4月16日,第37届陕西省青少年科技创新大赛在我校隆重开幕,举办青少年科技创新大赛有利于激发青少年的好奇心和探求欲,有利于培养青少年的创新精神和实践能力.开幕式会场观众席呈阶梯状,每一级台阶的水平宽度都为1m,垂直高度都为0.3m.在C点处测得点A的仰角∠ACE=42°,在D点处测得点A的仰角∠ADF=35°,请你根据以上信息求出前方屏幕AB的高度.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.7,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)24.(8分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O切线;(2)若直径AD=5,,求FD的长.25.(8分)如图,在平面直角坐标系中,抛物线M:y=x2+bx+c过点(1,﹣4)和(﹣2,5)与x轴交于点A,C两点(A在C左侧),与y轴交于点B.(1)求抛物线M的解析式及A,C两点的坐标;(2)将抛物线M平移后得到抛物线M1,已知抛物线M1的对称轴为直线x=5,直线x =5交x轴于点N,点P为抛物线M1的顶点,在x轴下方是否存在点P,使得△PNC与△AOB相似?若存在,请求出抛物线M1的表达式;若不存在,说明理由.26.(10分)问题探究:(1)如图①,在Rt△ABC中,∠ACB=90°,AC=BC=8,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是;(2)如图②,菱形ABCD中,AB=8,∠B=60°,点M在AD上,点N在BC上,若MN平分菱形ABCD的面积,且线段MN的长度最短,请你画出符合要求的线段MN,并求出此时MN的长度.问题解决:(3)合理开发利用土地资源能为人类持续创造更多财富,如图③,现有一块四边形空地ABCD计划改造利用,经测量AB=60m,AD=80m,AB∥CD,∠ABC=∠C=90°,∠D=60°,P是BC边上的一个移动观测点,过AB边上一点E修一条垂直于AP的笔直小路EF(小路宽度不计),交CD边于点F,在垂足M处建一凉亭,在凉亭M和顶点B之间修一条绿化带(宽度不计),请问是否存在EF平分四边形土地ABCD的面积?若存在,求出在EF平分四边形土地ABCD的面积时绿化带BM长度的最小值;若不存在,请说明理由.2023年陕西省西安市雁塔区高新一中中考数学五模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据平方运算,可得算术平方根.【解答】解:化简的结果是4,故选:B.【点评】本题考查了算术平方根,平方运算是求算术平方根的关键.2.【分析】找到从正面看所得到的图形即可,注意看得见的部分为实线,看不见的部分为虚线.【解答】解:从左面看,是一个长方形,且中间有一条虚线,故选:C.【点评】本题考查简单几何体的三视图,理解从不同方向看立体图形是解题的关键,另外要注意虚线和实线的使用区别.3.【分析】根据积的乘方的运算方法,整式加减乘除的运算方法,逐项判断即可,计算(a ﹣2)2时,可以应用完全平方公式.【解答】解:∵(﹣3pq)2=9p2q2,∴选项A不符合题意;∵2a2﹣a2=a2,∴选项B不符合题意;∵2a2•a=2a3,∴选项C符合题意;∵(a﹣2)2=a2﹣4a+4,∴选项D不符合题意.故选:C.【点评】此题主要考查了积的乘方的运算方法,整式加减乘除的运算方法,注意运算顺序,注意“整体”思想在整式运算中的应用.4.【分析】作DM⊥AB于M,DN⊥AC于N,由角平分线的性质得到DM=DN,由等腰直角三角形的性质求出DM的长,即可解决问题.【解答】解:作DM⊥AB于M,DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∵∠B=45°,∴△MBD是等腰直角三角形,∴MD=BD=×4=2,∴DN=2,∴点D到AC的距离为2.故选:C.【点评】本题考查角平分线的性质,等腰直角三角形的性质,关键是作DM⊥AB于M,DN⊥AC于N,由角平分线的性质得到DM=DN.5.【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,4),根据三角形的面积公式即可得到结论.【解答】解:在y=2x+6中,令y=0,得x=﹣3,解得,∴A(﹣3,0),B(﹣1,4),∴△AOB的面积=×3×4=6,故选:B.【点评】本题考查了两直线相交问题,其中涉及了一次函数的性质,三角形的面积的计算,正确地理解题意是解题的关键.6.【分析】连接BD交AC于O,由勾股定理求出AE的长,由三角形面积公式求出OB的长,由勾股定理求出OA的长,由菱形的性质即可求出AC的长.【解答】解:连接BD交AC于O,∵BE⊥AB,∴∠ABE=90°,∵BE=2,,∴AE==4,∵四边形ABCD是菱形,∴BO⊥AE,AO=OC,∴△ABE的面积=AE•OB=AB•BE,∴4OB=2×2,∴OB=,∴AO==3,∴AC=2AO=6.故选:C.【点评】本题考查菱形的性质,勾股定理,三角形的面积公式,关键是连接BD,由菱形的性质,勾股定理,三角形面积公式,求出OA的长.7.【分析】连接OA,先根据圆周角定理可得∠AOC=2∠ABC=60°,从而可得△AOC是等边三角形,根据等边三角形的性质可得AC=OC=4,从而可得DC=2OC=8,然后根据直径所对的圆周角是直角可得∠CBD=90°,再根据已知可得=,从而可得CB =BD,最后根据等腰直角三角形的性质进行计算即可解答.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC=4,∴DC=2OC=8,∵CD是⊙O的直径,∴∠CBD=90°,∵点B是的中点,∴=,∴CB=BD,∴BC==4,故选:B.【点评】本题考查了三角形的外接圆与外心,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.8.【分析】根据题意得出x=﹣1时函数值的符号和x=1时函数的值,以及顶点的纵坐标即可得出答案.【解答】解:∵抛物线开口向上,∴a>0,∵过点A(1,0),B(m,0)(﹣1<m<0),∴﹣>0,c<0,∴b<0,∴abc>0,故①正确;∵抛物线过点A(1,0),B(m,0)(﹣1<m<0),∴y1>0,y2=0,∴y1>y2,故②错误•;根据题意得a+b+c=0,∴b=﹣a﹣c,当x=﹣2时,有4a﹣2b+c>0,∴4a﹣2(﹣a﹣c)+c>0,∴2a+c>0,故③错误;若方程a(x﹣m)(x﹣1)+2=0没有实数根,即抛物线与直线y=﹣2没有交点,∴顶点的纵坐标>﹣2,∵a>0,∴4ac﹣b2>﹣8a,∴b2﹣4ac<8a,故④正确,故选:C.【点评】本题主要考查二次函数的图象与性质,关键在理解系数对图象的影响,a决定抛物线的开口方向和大小,b联同a决定对称轴的位置,c决定图象与y轴的交点位置,还有x轴上方的点对应的y>0,下方的点对应的y<0.二、填空题(共5小题,每小题3分,共15分)9.【分析】根据有理数的定义(整数和分数统称为有理数)解决此题.【解答】解:∵是有理数,0是有理数,是无理数,是无理数,2.02301001是有理数,∴有理数有,0,2.02301001,共3个.故答案为:3.【点评】本题主要考查有理数,熟练掌握有理数的定义是解决本题的关键.10.【分析】根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°﹣90°)÷2=135°,则135°n=(n﹣2)•180°,解得n=8.故答案为:8.【点评】本题考查了平面镶嵌,体现了学数学用数学的思想,同时考查了多边形的内角和公式.11.【分析】利用点B和点E的坐标得到DE=2,BC=4,则可得到矩形ABCO与矩形ODEF 的相似比为1:2,所以矩形ABCO与矩形ODEF的位似比为1:2,即MO:MA=1:2,然后求出OM的长,从而得到M点的坐标.【解答】解:∵点B的坐标为(4,3),点E的坐标为,∴DE=2,BC=4,∴矩形ABCO与矩形ODEF的相似比为2:4=1:2,∴矩形ABCO与矩形ODEF的位似比为1:2,∴MO:MA=1:2,即MO:(MO+4)=1:2,解得MO=4,∴点M(﹣4,0).故答案为:(﹣4,0).【点评】本题考查了位似变换:两个位似图形必须是相似形,对应点的连线都经过同一点,位似比等于相似比.也考查了坐标与图形性质.12.【分析】过点A作AD⊥BC于点D,连接OA,根据BC=OC可知S△ABC=S△AOC=6,=S△ABC=3,进而可得出△AOD的面积,再由AB=AC可知BD=CD,故可得出S△ADC根据反比例函数系数k的几何意义即可得出结论.【解答】解:过点A作AD⊥BC于点D,连接OA,∵BC=OC,△ABC的面积为6,=S△AOC=6.∴S∵AB=AC,∴BD=CD,=S△ABC=×6=3,∴S△ADC=S△ADC+S△AOC=3+6=9,∴S△AOD∵点A在反比例函数的图象上,=9,∴|k|=S△AOD∴k=﹣18.故答案为:﹣18.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.13.【分析】过点B作BP⊥AG延长线于点G,根据题意可得△AFG是等腰直角三角形,根据正方形的性质证明△ABG≌△ADF(SAS),可以证明∠BGE=90°,然后利用勾股定理得BG,再证明△BPG是等腰直角三角形,利用锐角三角函数即可解决问题.【解答】解:如图,过点B作BP⊥AG延长线于点G,∵AF⊥AG,AG=AF=,∴△AFG是等腰直角三角形,∴∠AGF=∠AFG=45°,FG=AF=2,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAG=90°﹣∠EAF=∠DAF,∴△ABG≌△ADF(SAS),∴∠ABG=∠ADF,∵∠ADF+∠AED=90°,∠AED=∠BEG,∴∠ABG+∠BEG=90°,∴∠BGE=90°,∵GF=2,,∴BG==1,∵∠BGP=180°﹣∠AGF﹣∠BGF=180°﹣45°﹣90°=45°,∴△BPG是等腰直角三角形,∴BP=GP=BG=,∴AP=AG+GP=+=,∴tan∠GAB==×=.故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,解决本题的关键是准确作出辅助线构造等腰直角三角形.三、解答题.(共13小题,共81分.解答应写出过程)14.【分析】先化简各式,然后再进行计算即可解答.【解答】解:=﹣3+5﹣2×+9=﹣3+5﹣+9=6+4.【点评】本题考查了实数的运算,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.15.【分析】先通分,再根据分式加法法则计算,再分解因式,最后约分.【解答】解:原式=()÷=×=.【点评】本题主要考查分式的混合运算,把分式化到最简是解答的关键.16.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①,得x>﹣1,解不等式②,得x≥﹣3,故原不等式组的解集为x>﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.【分析】作PQ⊥AC于点Q即可.【解答】解:如图,线段PQ即为所求.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.18.【分析】(1)根据点A、C的坐标作出直角坐标系;(2)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(3)根据(2)写出B′的坐标即可.【解答】解:(1)如图,直角坐标系即为所求作:(2)如图,△A′B′C′即为所求作;(3)点B′的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】本题考查了作图—轴对称变换,掌握轴对称的性质是解题的关键.19.【分析】由平行四边形的性质得出AB=CD,∠BAC=∠DCA,由SAS证明△ABE≌△CDF,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAC=∠DCA.∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等和平行四边形是解决问题的关键.20.【分析】(1)直接由概率公式求解即可;(2)根据题意列表,共有9种等可能的结果,其中配成紫色的的情况有3种,再由概率公式求解即可.【解答】解:(1)转动一次B盘,则转出红色的概率是,故答案为:;(2)根据题意列表如下:红红蓝红(红,红)(红,红)(红,蓝)黄(黄,红)(黄,红)(黄,蓝)蓝(蓝,红)(蓝,红)(蓝,蓝)由表可知,共有9种等可能的结果,其中配成紫色的的情况有3种,∴配成紫色的概率是.【点评】本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)根据9分的份数和所占的百分比,求出抽取的总作品数,再用总数减去其它份数,求出8分的作品数,从而补全统计图;(2)根据众数、众数的计算公式分别进行计算,扇形统计图中6分所对应的扇形的圆心角为360°乘以6分所占总份数的比值;(3)用该校的总作品数乘以得分为8分(及8分以上)的书画作品所占的百分比即可.【解答】解:(1)随机抽取的总作品数是:36÷30%=120(份),8分的作品数是:120﹣8﹣24﹣36﹣12=40(份),补全统计图如下:(2)∵所抽取作品成绩出现次数最多的是8分,∴所抽取作品成绩的众数是8;把这些数从小到大排列,中位数是第60、61个数的平均数,则中位数是=8,扇形统计图中6分所对应的扇形的圆心角为:360°×=24°,故答案为:8,8,24;(3)1500×()=1100(份),估计得分为8分(及8分以上)的书画作品大约有1100份.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.【分析】(1)根据张先生某次在该停车场停车2小时10分钟,共交费7元,列出方程即可求解.(2)根据题意得出:停车费y(元)关于停车计时x(小时)的函数解析式,令y=11,求出x的值即可.【解答】解:(1)∵张先生某次在该停车场停车2小时10分钟,共交费7元,∴a+(3﹣1)•(a﹣1)=7,∴a=3,故答案为:3.(2)停车费y(元)关于停车计时x(小时)的函数解析式为:y=3+2(x﹣1),即y=2x+1,令y=11,有2x+1=11,∴x=5,答:该停车场是按5个小时计时收费的.【点评】本题考查了一次函数的实际应用,解决本题的关键是理解停车场收费标准分为规定时间的费用+超过规定时间的费用.23.【分析】延长CE交AB于点G,延长DF交AB于点H,根据题意可得:CG⊥AB,DH ⊥AB,BG=0.6m,BH=0.9m,BN=GC,然后设BM=xm,则CG=(x+1)m,DH=(x+2)m,在Rt△ACG中,利用锐角三角函数的定义求出AG的长,从而求出AB的长,再在Rt△ADH中,利用锐角三角函数的定义求出AH的长,从而求出AB的长,最后列出关于x的方程,进行计算即可解答.【解答】解:如图:延长CE交AB于点G,延长DF交AB于点H,由题意得:CG⊥AB,DH⊥AB,BG=2×0.3=0.6(m),BH=3×0.3=0.9(m),BN=GC,设BM=xm,则CG=BN=BM+MN=(x+1)m,DH=BN+1=(x+2)m,在Rt△ACG中,∠ACG=42°,∴AG=CG•tan42°≈0.9(x+1)m,∴AB=AG+BG=0.9(x+1)+0.6=(0.9x+1.5)m,在Rt△ADH中,∠ADH=35°,∴AH=DH•tan35°≈0.7(x+2)m,∴AB=AH+BH=0.7(x+2)+0.9=(0.7x+2.3)m,∴0.7x+2.3=0.9x+1.5,解得:x=4,∴AB=0.7x+2.3=5.1(m),∴前方屏幕AB的高度约为5.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.【分析】(1)根据切线的判定,连接OC,证明出OC⊥FC即可,利用直径所得的圆周角为直角,三角形的内角和以及等腰三角形的性质可得答案;(2)由cos B=,根据锐角三角函数的意义和勾股定理可得CD:AC:AD=3:4:5,再根据相似三角形的性质可求出答案.【解答】(1)证明:连接OC,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC+∠CAD=90°,又∵OC=OD,∴∠ADC=∠OCD,又∵∠DCF=∠CAD.∴∠DCF+∠OCD=90°,即OC⊥FC,∴FC是⊙O的切线;(2)解:∵∠B=∠ADC,cos B=,∴cos∠ADC=,在Rt△ACD中,∵cos∠ADC==,AD=5,∴CD=AD•cos∠ADC=5×=3,∴AC==4,∴=,∵∠FCD=∠FAC,∠F=∠F,∴△FCD∽△FAC,∴===,设FD=3x,则FC=4x,AF=3x+5,又∵FC2=FD•FA,即(4x)2=3x(3x+5),解得x=(取正值),∴FD=3x=.【点评】本题考查切线的判定和性质,圆周角定理,直角三角形的边角关系以及相似三角形,掌握切线的判定方法,直角三角形的边角关系以及相似三角形的性质是正确解答的前提.25.【分析】(1)用待定系数法可得y=x2﹣2x﹣3,令y=0即可得A(﹣1,0),C(3,0);(2)由y=x2﹣2x﹣3得B(0,﹣3),根据将抛物线M:y=x2﹣2x﹣3=(x﹣1)2﹣4平移后得到抛物线M1,抛物线M1的对称轴为直线x=5,直线x=5交x轴于点N,可得N(5,0),CN=5﹣3=2,设抛物线M1的解析式为y=(x﹣5)2+m,则P(5,m),分两种情况:①当△AOB∽△CNP时,可得=,解方程可求得抛物线M1的解析式为y=(x﹣5)2﹣6=x2﹣10x+19;②当△AOB∽△PNC时,同理可得抛物线M1的解析式为y=(x﹣5)2﹣=x2﹣10x+.【解答】解:(1)把(1,﹣4)和(﹣2,5)代入y=x2+bx+c得:,解得,∴y=x2﹣2x﹣3,在y=x2﹣2x﹣3中,令y=0得:0=x2﹣2x﹣3,解得x=3或x=﹣1,∴A(﹣1,0),C(3,0);∴抛物线M的解析式为y=x2﹣2x﹣3,A的坐标为(﹣1,0),C的坐标为(3,0);(2)在x轴下方存在点P,使得△PNC与△AOB相似,理由如下:在y=x2﹣2x﹣3中,令x=0得y=﹣3,∴B(0,﹣3),∵将抛物线M:y=x2﹣2x﹣3=(x﹣1)2﹣4平移后得到抛物线M1,抛物线M1的对称轴为直线x=5,直线x=5交x轴于点N,∴N(5,0),∴CN=5﹣3=2,设抛物线M1的解析式为y=(x﹣5)2+m,则P(5,m),①当△AOB∽△CNP时,如图:∴=,即=,∴m=﹣6,∴抛物线M1的解析式为y=(x﹣5)2﹣6=x2﹣10x+19;②当△AOB∽△PNC时,如图:∴=,即=,∴m=﹣,∴抛物线M1的解析式为y=(x﹣5)2﹣=x2﹣10x+;综上所述,抛物线M1的解析式为y=x2﹣10x+19或y=x2﹣10x+.【点评】本题考查二次函数的综合应用,涉及待定系数法,相似三角形性质及应用,解题的关键是分类讨论思想的应用.26.【分析】(1)设一BC为直径的半圆的圆心为O,连接OA交于点P,根据勾股定理求出OA的值即可;(2)连接AC,BD交于点O,过点O作MN⊥BC于N,交AD于M,过点A作AE⊥BC 于E,根据菱形的性质得到直线平分菱形的面积,当MN⊥BC时,MN有最小值,根据等边三角形的判定定理得到△ABC是等边三角形,求出AE,于是得到结论;(3)取AD的中点G,过G作HK⊥CD于K,交BA的延长线于H,连接HC,取HC 的中点O,连接GO并延长交BC于N,过A作AQ⊥GN于Q,交CD于T,取AO的中点R,过R作RS⊥AB于S,作以AD为直径的⊙R,根据矩形的判定定理得到四边形HBCK 是矩形,根据矩形的性质得到直线EF平分矩形HBCK的面积,证得△HGA≌△KGD,可知EF平分平行四边形ABCD的面积,再证点M在以AO为直径的圆上,解直角三角形分别取出AQ,OQ,AR,SR,和BR的长,当B,M,R三点共线时,BM有最小值,求出即可.【解答】解:(1)如图①,设以BC为直径的半圆的圆心为O,连接OA交于点P,此时AP有最小值,则OC=BC,∵AC=BC=8,∴OC=4,∵∠ACB=90°,∴OA==4,∴AP=OA﹣OP=4﹣4,故答案为:4﹣4;(2)连接AC,BD交于O,过O作NM⊥BC于N,交AD于M,过点A作AE⊥BC于E,∵四边形ABCD是菱形,点O在线段MN上,∴线段MN平分菱形的ABCD的面积,∵MN⊥BC,∴线段MN有最小值,∵AB=8,∠B=60°,∴△ABC是等边三角形,∵AE⊥BC,∴BE=BC=AB=4,∴AE==4,∴MN=AE=4;(3)取AD的中点G,过G作HK⊥CD于K,交BA的延长线于H,连接HC,取HC 的中点O,连接GO并延长交BC于N,过A作AQ⊥GN于Q,交CD于T,取AO的中点R,过R作RS⊥AB于S,作以AD为直径的⊙R,∵HK⊥CD,∠ABC=∠C=90°,∴AB∥CD,∴四边形HBCK是矩形,∵AB=60m.∴AB=TC,∵点O是线段CH的中点,EF平分矩形KBCK的面积,∴EF过HC的中点O,∵G为AD的中点,AD=80m,∴,∴AB∥OG∥CD,∴GN⊥BC,AT⊥CD,∴∠HGA=∠DGK,∠HAG=∠D,AG=GD,∴△HGA≌△KGD(AAS),∴EF平分平行四边形ABCCD的面积,∵∠D=60°,∴DT=AD•cos60°=40m,∠AGN=∠D=60°,∵AQ⊥GN,∴,∴KT=GQ=20m,∴KC=KT+DT=80m,∴,∴OQ=OG﹣GQ=20m,∴,∴△AOG为等边三角形,∠OAT=30°,∵EF⊥AP,∴点M在以AO为直径的圆上,∵点R是以AO为直径的圆的圆心,AR=OA=20m,∴当B,M,R三点共线时,BM有最小值,∴RM=AR=20m,∵RS⊥AB,∴∠BAO=60°,∴,∴BS=AB﹣AS=50(m),∴BR==20(m),∴BM的最小值=BR﹣RM=(20﹣20)m.【点评】本题是圆是综合题,考查了圆的性质,平行四边形的判定和性质,矩形、菱形的判定和性质,勾股定理,解直角三角形,正确地作出辅助线是解题的关键。

2022年广西桂林中考数学复习训练:阶段综合检测(5)四边形(含答案)

2022年广西桂林中考数学复习训练:阶段综合检测(5)四边形(含答案)

阶段综合检测(五)(四边形)一、选择题(本大题共8小题,满分24分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.一个正多边形的外角与其相邻的内角之比为1∶3,那么这个多边形的边数为()A.8B.9C.10D.122.矩形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等3.已知▱ABCD的三个顶点坐标分别为A (0,0),B (3,-2),C (6,0),点D在x轴上方,则点D的坐标A.(2,3) B.(3,3) C.(2,5) D.(3,2)4.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()4题6题7题8题A.4个B.6个C.8个D.10个5.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形6.(2021·福州闽侯县期中)如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是()A.3 B.22C.10D.47.(2021·贵港覃塘区期中)如图,在平行四边形ABCD中,AD=2AB,作CE⊥AB于点E,点F是AD的中点,连接CF,EF.有下列四个结论:①∠BCF=∠DCF;②∠FEC=∠FCE;③∠AEF=∠CFD;④S△CEF=S△BCE.则所有正确结论的序号是()A.①②③④B.①②③C.②③④D.③④8.(2021·武汉青山区期末)如图,在菱形ABCD中,AB=5 cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1 cm/s,点F的速度为2 cm/s,经过t秒△DEF为等边三角形,则t的值为()A.34B.43C.32D.53二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)9.(2021·贺州八步区模拟)如图是某个正多边形的一部分,则这个正多边形是__ __边形.9题11题12题13题10.如图,在平行四边形ABCD中,∠A=110°,则∠1=__ __.11.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=__ __.12.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是__ _.13.(2021·北海模拟)如图,在Rt△ABC中,∠BAC=90°,∠ACB=45°,AB=22,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为__ __.14.如图,正方形ABCD的边长为10,点M在AD上,AM=8,过点M作MN∥AB,分别交AC,BC于H,N两点,若E,F分别为CH,BM的中点,则EF的长为__ ______.三、解答题(本大题共5小题,满分52分.解答应写出必要的文字说明、证明过程或推演步骤)15.(10分)已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数.16.(10分)如图,在△ABC中,AB>AC,点D在边AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC=5,点D是AC的中点,求DE的长.17.(10分)(2021·百色模拟)已知:如图,平行四边形ABCD中,M,N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=BC=5,AB=6,求四边形AMCN的面积.18.(10分)如图,在△ABC中,点D,E分别是AB,AC的中点,连接ED并延长至点F,使DF=DE,连接AF,BF,BE.(1)求证:△ADE≌△BDF.(2)若∠ABE=∠CBE,求证:四边形AFBE是矩形.。

2022学年陕西省咸阳市秦都区中考数学五模试卷(含答案解析)

2022学年陕西省咸阳市秦都区中考数学五模试卷(含答案解析)

2022学年陕西省咸阳市秦都区中考数学五模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣3B.π+3C.π+23D.2π﹣232.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×1063.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm4.已知m=12n=12-223+-的值为()m n mnA.±3 B.3 C.5 D.95.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥36.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=257.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山8.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°9.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45B.60C.120D.13510.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA=23②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是()A.①②B.①②③C.①③④D.①②④二、填空题(本大题共6个小题,每小题3分,共18分)11.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.12.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).13.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60 70 80 90 100人数 4 8 12 11 5则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分14.若23ab=,则a bb+=_____.15.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.16.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.三、解答题(共8题,共72分)17.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.18.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.19.(8分)今年 3 月12 日植树节期间,学校预购进A、B 两种树苗,若购进A种树苗 3 棵,B 种树苗 5 棵,需2100 元,若购进A 种树苗 4 棵,B 种树苗10棵,需3800 元.(1)求购进A、B 两种树苗的单价;(2)若该单位准备用不多于8000 元的钱购进这两种树苗共30 棵,求A 种树苗至少需购进多少棵?20.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?21.(8分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°+12;(2)先化简,再求值:221aa a--÷(2+21aa+),其中a=2.23.(12分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.24.“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、D【答案解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴BC2242-3∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=323 22ππ+-223π=-.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.2、C【答案解析】423公里=423 000米=4.23×105米.故选C .3、D【答案解析】解答此题要延长AB 、DC 相交于F ,则BFC 构成直角三角形,再用勾股定理进行计算.【题目详解】延长AB 、DC 相交于F ,则BFC 构成直角三角形,运用勾股定理得:BC 2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm .故选D .【答案点睛】本题主要考查了勾股定理的应用,解答此题要延长AB 、DC 相交于F ,构造直角三角形,用勾股定理进行计算. 4、B【答案解析】 由已知可得:2,(12)(12)1m n mn +==+-=-223m n mn +-2()5m n mn +-【题目详解】 由已知可得:2,(12)(12)1m n mn +==+-=-,原式22()525(1)93m n mn +-=-⨯-==故选:B【答案点睛】考核知识点:二次根式运算.配方是关键.5、A【答案解析】分析:根据关于x 的一元二次方程x 23有两个不相等的实数根可得△=(3)2-4m >0,求出m 的取值范围即可.详解:∵关于x的一元二次方程x2x+m=0有两个不相等的实数根,∴△=(2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6、D【答案解析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BD,然后可对各选项进行判断.【题目详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BD,即23AEEC=或25AEAC=.所以D选项是正确的.【答案点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.7、A【答案解析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【题目详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【答案点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.8、B【答案解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.9、A【答案解析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【题目详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【答案点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.10、D【答案解析】分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以23OA AC ==;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,当∠ABO =30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A 、C 、B 、O 四点共圆,则AB 为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC 是直径时,AB 与OC 互相平分,但AB 与OC 不一定垂直; ④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.详解:在Rt △ABC 中,∵°2,30BC BAC ,=∠=∴224,4223AB AC ,==-=①若C .O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则23OA AC ==;所以①正确;②如图1,取AB 的中点为E ,连接OE 、CE ,∵°90AOB ACB ,∠=∠= ∴12,2OE CE AB === 当OC 经过点E 时,OC 最大,则C .O 两点距离的最大值为4;所以②正确;③如图2,当°30ABO ∠=时, °90OBC AOB ACB ∠=∠=∠=,∴四边形AOBC 是矩形,∴AB 与OC 互相平分,但AB 与OC 的夹角为°°60120、,不垂直, 所以③不正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2为半径的圆周的1,4则:90π2π,180⨯= 所以④正确;综上所述,本题正确的有:①②④;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、x >﹣1.【答案解析】一次函数y =kx +b 的图象在x 轴下方时,y <0,再根据图象写出解集即可.【题目详解】当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.故答案为:x>﹣1.【答案点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、174cm1.【答案解析】直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=6013 AB BOAO⨯=,圆锥底面半径=BD=6013,圆锥底面周长=1×6013π,侧面面积=12×1×6013π×11=72013π.点睛: 利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.13、B.【答案解析】测试卷分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.14、5 3【答案解析】2,3a b = a b b +∴=2511b 33a +=+=. 15、23﹣23π 【答案解析】过点F 作FE ⊥AD 于点E ,则AE=12AD=12AF ,故∠AFE=∠BAF=30°,再根据勾股定理求出EF 的长,由S 弓形AF =S 扇形ADF -S △ADF 可得出其面积,再根据S 阴影=2(S 扇形BAF -S 弓形AF )即可得出结论【题目详解】如图所示,过点F 作FE ⊥AD 于点E ,∵正方形ABCD 的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴EF=3. ∴S 弓形AF =S 扇形ADF -S △ADF =6041223336023ππ⨯-⨯⨯=-, ∴ S 阴影=2(S 扇形BAF -S 弓形AF )=2×[304233603ππ⨯⎛⎫-- ⎪⎝⎭]=2×(12333ππ-+)=2 233π-.【答案点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力. 16、19【答案解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【题目详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是19,故答案为19.【答案点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.三、解答题(共8题,共72分)17、路灯高CD为5.1米.【答案解析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【题目详解】设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴BNCD=ABAC,即1.8 1.21.8x x=-,解得:x=5.1.经检验,x=5.1是原方程的解,∴路灯高CD为5.1米.【答案点睛】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.18、有触礁危险,理由见解析.【答案解析】测试卷分析:过点P 作PD ⊥AC 于D ,在Rt △PBD 和Rt △PAD 中,根据三角函数AD ,BD 就可以用PD 表示出来,根据AB =12海里,就得到一个关于PD 的方程,求得PD .从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.测试卷解析:有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°.∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°∴AD =330x x tan =︒∵AD =AB +BD 3=12+x∴x 3+131-() ∵63)<18∴渔船不改变航线继续向东航行,有触礁危险.【答案点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.19、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵【答案解析】(1)设购进A 种树苗的单价为x 元/棵,购进B 种树苗的单价为y 元/棵,根据“若购进A 种树苗3棵,B 种树苗5棵,需210元,若购进A 种树苗4棵,B 种树苗1棵,需3800元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【题目详解】设购进 A 种树苗的单价为x 元/棵,购进 B 种树苗的单价为y 元/棵,根据题意得:,解得:.答:购进 A 种树苗的单价为200 元/棵,购进 B 种树苗的单价为300 元/棵.(2)设需购进A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进 1 棵.【答案点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.20、(1);(2)【答案解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.21、(1)证明见解析;(2)【答案解析】(1)根据正方形的性质得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA推出△ABE≌△BCN;(2)tan∠ABE=,根据已知求出AE与AB的关系即可求得tan∠ABE.【题目详解】(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中,∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.【答案点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE≌△BCN是解此题的关键.22、(1)3(22-1【答案解析】测试卷分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.测试卷解析:(1)原式=2﹣1+4﹣2×2﹣1+4(2)原式=()()()()()()()22 111121·111a a a aa a aa a a a a a+-+-++÷=--+=11a+,当时,原式.23、(1)32;(2)1.【答案解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【题目详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【答案点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.24、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°. 【答案解析】测试卷分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;⨯即可求出对应的扇形圆心角的(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,度数.÷=(人).测试卷解析:()15025%200()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.⨯=200⨯=学生学习兴趣为“中”对应扇形的圆心角为:30%360108.。

泉州市南安市2019年中考数学模拟试卷(五)含答案解析

泉州市南安市2019年中考数学模拟试卷(五)含答案解析

福建省泉州市南安市2019年中考数学模拟试卷(五)(解析版)一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.965.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<26.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A .,B .,﹣C .,﹣D .﹣,二、填空题:.8.16的算术平方根是______.9.计算:﹣=______.10.分解因式:4x 2﹣6x=______.11.如图,已知AB ∥ED ,∠B=58°,∠C=35°,则∠D 的度数为______度.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为______.13.方程组的解为______.14.如图,已知AB 是⊙O 的直径,OD ⊥AC ,OD=3,则弦BC 的长为______.15.一个扇形的半径为6cm ,弧长是4πcm ,这个扇形的面积是______cm 2.16.如图,菱形ABCD 中,点O 是对角线AC 、BD 的交点,已知AB=5,OB=3,则菱形ABCD 的面积是______.17.在平面直角坐标系中,点A (0,6),点B (t ,0)是x 轴正半轴上的点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .(1)点C 的坐标为______;(2)△ABC 的面积为______.(均用含t 的代数式表示)三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为______.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.2019年福建省泉州市南安市中考数学模拟试卷(五)参考答案与试题解析一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数,可得出答案.【解答】解:,故选:D.【点评】本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则化简求出答案.【解答】解:A、4a+5b无法计算,故此选项错误;B、(a3)5=a15,正确;C、a4•a2=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算等知识,掌握运算法则是解题关键.3.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.96【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据按从小到大的顺序排列为:76,78,82,88,96,96,处于中间位置的两个数是82和88,那么由中位数的定义可知,这组数据的中位数是(82+88)÷2=85.故选B.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<2【考点】不等式的解集.【分析】根据x的取值范围画出数轴即可得出不等式组的解集.【解答】解:如图所示:,故不等式组的解集是:x>2.故选:C.【点评】此题主要考查了不等式的解集,正确在数轴上表示出解集是解题关键.6.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【考点】圆周角定理.【分析】由圆周角定理知,∠AOB=2∠C=68°.【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选D.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【考点】二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.二、填空题:.8.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.9.计算:﹣=1.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==1.故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.分解因式:4x2﹣6x=2x(2x﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式法分解因式得出答案.【解答】解:原式=2x(2x﹣3).故答案为:2x(2x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为23度.【考点】平行线的性质;三角形的外角性质.【分析】要求∠D的度数,只需根据三角形的外角的性质求得该三角形的外角∠1的度数.显然根据平行线的性质就可解决.【解答】解:∵AB∥ED,∠B=58°,∠C=35°,∴∠1=∠B=58°.∵∠1=∠C+∠D,∴∠D=∠1﹣∠C=58°﹣35°=23°.故答案为:23.【点评】根据两直线平行同位角相等和三角形外角的性质解答.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为 2.67×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26700用科学记数法表示为2.67×104.故答案为:2.67×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.方程组的解为.【考点】二元一次方程组的解.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=4,解得:x=1,将x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.如图,已知AB是⊙O的直径,OD⊥AC,OD=3,则弦BC的长为6.【考点】圆周角定理;垂径定理.【分析】先根据圆周角定理求出∠C的度数,再由OD⊥AC,点O是直径AB的中点可得出OD是△ABC的中位线,根据中位线定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵OD⊥AC,∴OD∥BC.∵OD=3,点O是AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.故答案为:6.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.一个扇形的半径为6cm,弧长是4πcm,这个扇形的面积是12πcm2.【考点】扇形面积的计算;弧长的计算.【分析】直接根据扇形的面积公式即可得出结论.【解答】解:∵扇形的半径为6cm,弧长是4πcm,∴这个扇形的面积=×4π×6=12πcm2..故答案为:12π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.16.如图,菱形ABCD中,点O是对角线AC、BD的交点,已知AB=5,OB=3,则菱形ABCD的面积是24.【考点】菱形的性质.【分析】根据菱形的面积公式,求出菱形的对角线的长即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,OB=OD,∴∠AOB=90°,∵AB=5,OB=3,∴AO===4,∴AC=8,BD=6,=•AC•BD=×6×8=24.∴S菱形ABCD【点评】本题考查菱形的性质、菱形的面积公式、勾股定理等知识,解题的关键是记住菱形的面积公式,灵活应用菱形的性质解决问题,属于中考常考题型.17.在平面直角坐标系中,点A(0,6),点B(t,0)是x轴正半轴上的点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.(1)点C的坐标为(t+3,);(2)△ABC的面积为.(均用含t的代数式表示)【考点】坐标与图形变化-旋转;三角形的面积.【分析】(1)根据点A和点B的坐标可以求得点M的坐标,从而可以求得点C的坐标;(2)根据点A和点B的坐标可以求得AB的长,从而可以求得BM的长,进而求得△ABC 的面积.【解答】解:(1)∵点A(0,6),点B(t,0),点M是线段AB的中点,∴点M的坐标是(),又∵将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,∴点C的坐标为:(t+3,),故答案为:(t+3,);(2)∵点A(0,6),点B(t,0),点M的坐标是(),∠ABC=90°,∴AB=,BM==,∴BC=,∴△ABC的面积是:,故答案为:.【点评】本题考查坐标与图形的变化﹣旋转,三角形的面积,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2×﹣1+3﹣﹣4=﹣1﹣.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.【考点】整式的混合运算—化简求值.【分析】根单项式乘以多项式、平方差公式对所求式子化简,然后将a=﹣3代入即可解答本题.【解答】解:a(a﹣2)﹣(a+3)(a﹣3)=a2﹣2a﹣a2+9=﹣2a+9,当a=﹣3时,原式=﹣2×(﹣3)+9=15.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.【考点】旋转的性质;平行四边形的判定.【分析】(1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋转的性质可得到∠BAD=∠CAE,通过等量代换,即可证得所求的两条线段所在直线的内错角相等,由此得证.(2)由旋转的性质易知:AD=AE=BD,且已证得AE∥BD,根据一组对边平行且相等的四边形是平行四边形,即可判定四边形ABDE是平行四边形.【解答】(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)解:四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.【点评】此题主要考查了旋转的性质以及平行四边形的判定和性质,难度不大.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.【考点】列表法与树状图法;等腰三角形的判定与性质;概率公式.【分析】(1)由概率公式容易得出结果;(2)画出树状图,所有等可能结果共有12种,其中能构成等腰三角形有8种,即可求出概率.【解答】解:(1)P(取出的小球上的数字为5)=;(2)画出树状图如下所有等可能结果共有12种,其中能构成等腰三角形有8种,∴P(能构成等腰三角形)==.【点评】本题考查的是用列表法或画树状图法求概率、概率公式、等腰三角形的判定与性质.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过C点作CD⊥AB于D,根据三角形外角的性质得出∠CBD=∠CAB+∠ACB,故可得出∠ACB=30°,BC=AB=10.在Rt△BCD中根据sin60°=即可得出CD的长.【解答】解:过C点作CD⊥AB于D,∵∠CBD=∠CAB+∠ACB,∴∠ACB=30°,∴∠ACB=∠CAB,∴BC=AB=10.在Rt△BCD中,sin60°=,∴CD=10×=5(m).因此C点离地面的高度为5m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.【考点】一次函数的应用.【分析】(1)根据x=0时,甲距离B地30千米,由此即可解决问题.(2)根据相遇时间=即可解决.(3)分三个时间段求出时间即可,①是相遇前,则15x+30x=30﹣3,②是相遇后,则15x+30x=30+3,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,分别解方程即可.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;(3)设x小时甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查一次函数的应用、相遇问题等知识,理解题意是解题的关键,考虑问题要全面,不能漏解,属于中考常考题型.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x﹣a)2+(y﹣b)2=r2.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.【考点】圆的综合题.【分析】(1)问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;(2)综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.【解答】解:(1)问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案为(x﹣a)2+(y﹣b)2=r2;(2)综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB(SAS),∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=8.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙Q的方程:(x﹣4)2+(y﹣3)2=25.【点评】此题考查了圆的综合、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质、勾股定理、切线的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义等知识,正确应用相关定理是解题关键.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【考点】二次函数综合题.【分析】(1)利用tan∠ABC=3,得出C但坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF=(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c=0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.【点评】此题主要考查了二次函数综合以及待定系数法求二次函数解析式和直角三角形中线的性质等知识,用AD表示出△PEF的周长是解题关键.。

2022中考特训:浙教版初中数学七年级下册第五章分式综合练习试卷(含答案解析)

2022中考特训:浙教版初中数学七年级下册第五章分式综合练习试卷(含答案解析)

初中数学七年级下册第五章分式综合练习(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米0.000000022=米,将0.000000022用科学记数法表示为( ) A .82.210⨯B .82.210-⨯C .70.2210-⨯D .92210-⨯2、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( ) A .85×10-6B .8.5×10-5C .8.5×10-6D .0.85×10-43、在研制新冠肺炎疫苗过程中,某细菌的直径大小为0.000000000072米,用科学记数法表示这一数字,正确的是( ) A .120.7210-⨯ B .127.210-⨯ C .117.210-⨯D .107.210-⨯4、新冠病毒的大小为125纳米也就是0.000000125米,这个数据用科学记数法可表示为( ) A .0.125×107B .1.25×107C .1.25×10﹣7D .0.125×10﹣75、下列运算错误的是( )A .11(0.1)10--=-B .31128⎛⎫-=- ⎪⎝⎭C .0112020⎛⎫= ⎪⎝⎭D .211-=-6、若 21364x =,则 13x -=( ) A .18-B .18C .180D .15127、分式211a a ++,22ab a b --,()412a a b -,11x -中,最简分式有( ) A .1个 B .2个 C .3个 D .4个8、某种细胞的直径是0.0005mm ,这个细胞的直径是( ) A .4510⨯mmB .30.510-⨯mmC .4510-⨯mmD .3510-⨯mm9、若(a ﹣3)0有意义,则a 的取值范围是( ) A .a >3B .a <3C .a ≠0D .a ≠310、用科学记数法表示数0.0000104为( ) A .51.0410⨯B .51.0410-⨯C .51.0410-⨯D .510410-⨯二、填空题(5小题,每小题4分,共计20分)1、要使分式()()212x x x -+-有意义,x 的取值应该满足________.2、计算:21(5)3-⎛⎫-+-= ⎪⎝⎭__________.3、某种苔藓植物的孢子的直径约为18微米,将“18微米”用科学记数法表示为“1810n ⨯.米”,其中n 的值为______(1米=1000000微米).4、用小数表示下列各数:510-=________,32.510-⨯=________.5、在疫情泛滥期间,口罩已经变成硬通货,其中,N 95口罩尤其火爆,N 95口罩对直径为0.0000003米(即0.3微米)的颗粒物过滤效果会大于等于95%, 0.0000003用科学记数法表示为_____. 三、解答题(5小题,每小题10分,共计50分) 1、计算(1)2020*******(3)8(0.125)2π-⎛⎫-+--⨯- ⎪⎝⎭;(2)()()()22233326x y xy x y -⋅÷-;(3)(21)(21)x y x y +--+.2、计算:﹣22+(π﹣3.14)0+|﹣2|×(﹣12)2- 3、计算: (1)()()202102421π3-⨯+-+-(2)2202220202021⨯- 4、小辉在解一道分式方程134122x x x x ---=--的过程如下: 方程整理,得134122x x x x ---=--, 去分母,得x ﹣1﹣1=3x ﹣4, 移项,合并同类项,得x =1, 检验,经检验x =1是原来方程的根.小辉的解答是否有错误?如果有错误,写出正确的解答过程. 5、计算:(1)()()1020211π312-⎛⎫--+- ⎪⎝⎭.(2)()()()111x x x x -+--.---------参考答案----------- 一、单选题 1、B 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:将0.000000022用科学记数法表示为82.210-⨯. 故选:B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 2、B 【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可. 【详解】解: 0.000085=8.5×10-5, 故选:B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、C 【分析】用科学记数法表示较小的数,一般形式为a ×10−n,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】110.0000000000727.210-=⨯故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键.4、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:0.000000125=1.25×10﹣7,故选:C.【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,n等于原数左数第一个非零数字前0的个数,按此方法即可正确求解.5、A【分析】利用负整数指数幂的性质和零次幂的性质、乘方的意义进行计算.【详解】解:A、(−0.1)−1=−10,故原题计算错误;B、31128⎛⎫-=-⎪⎝⎭,故原题计算正确;C、112020⎛⎫=⎪⎝⎭,故原题计算正确;D 、−12=−1,故原题计算正确;故选:A . 【点睛】此题主要考查了负整数指数幂,关键是掌握负整数指数幂:a −p=1pa (a ≠0,p 为正整数),零指数幂:a 0=1(a ≠0).6、B 【分析】先利用213x 的值,求出13x ,再利用负整数指数幂的运算法则,得到13-x 的值. 【详解】 解:21364x =,138∴=x 或138x =-(舍去), 1131318x x -∴==, 故选:B . 【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:1x xa a -=,是解决本题的关键. 7、B 【分析】根据最简分式的定义,即可求得,最简分式:一个分式的分子与分母没有公因式时,叫最简分式. 【详解】221=()()a b a b a b a b a b a b--=--++,()4=123()a a a b a b --.∴22a ba b --,()412a a b -不是最简分式.211a a ++,11x -是最简分式,最简分式有2个. 故选B 【点睛】本题考查了最简分式,掌握最简分式的定义是解题的关键. 8、C 【分析】根据科学记数法可直接进行求解. 【详解】解:由题意得:0.0005mm=4510-⨯mm ; 故选C . 【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 9、D 【分析】根据零指数幂的底数不等于0,列出不等式,即可求解. 【详解】解:∵(a ﹣3)0有意义, ∴a ﹣3≠0, ∴a ≠3, 故选D .本题主要考查零指数幂有意义的条件,掌握零指数幂的底数不等于0,是解题的关键. 10、B 【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a ×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000104=1.04×10-5, 故选:B . 【点睛】本题考查科学记数法,解答本题的关键是明确科学记数法的方法. 二、填空题 1、1,2x x ≠-≠ 【分析】根据分式有意义的条件求解即可. 【详解】分式()()212x x x -+-有意义,1,2x x ∴≠-≠.故答案为:1,2x x ≠-≠. 【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是解题的关键. 2、10先算零指数幂和负整数指数幂,再算加法,即可求解.【详解】原式=1910+=,故答案是:10.【点睛】本题主要考查实数的运算,掌握零指数幂和负整数指数幂的性质,是解题的关键.3、-5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:18微米=0.000018米=1.8×10-5米,∴n=-5,故答案为:-5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、0.00001 0.0025【分析】把1小数点向左移动5位即可得出答案,2.5小数点向左移动3位即可得出答案.【详解】解:5-=;100.0000132.5100.0025-⨯=;故答案为:0.00001;0.0025. 【点睛】本题考查了写出科学记数法表示的原数,将科学记数法10n a -⨯表示的数,还原成通常表示的数,就是把a 的小数向左移动n 位所得到的数. 5、3×10-7【分析】根据用科学记数法表示较小的数,一般形式为a ×10−n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.即可求解. 【详解】解:0.0000003用科学记数法表示为:3×10−7. 故答案为:3×10−7. 【点睛】本题考查了科学记数法,用科学记数法表示较小的数,一般形式为a ×10−n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 三、解答题1、(1)5.125;(2)23x y -;(3)22421x y y -+- 【分析】(1)根据负整数指数幂法则,零指数幂法则以及幂的乘方法则的逆用及积的乘方法则的逆用逐步计算即可;(2)根据积的乘方法则及单项式乘单项式法则、单项式除以单项式法则逐步计算即可; (3)先将原式变形为[2(1)][2(1)]x y x y +---,再利用平方差公式及完全平方公式计算即可. 【详解】解:(1)原式202041[8(0.125)](0.125)=+-⨯-⨯-411(0.125)=+-⨯-410.125=++5.125=;(2)原式()()42233926x y xy x y =⋅÷-()5433186x y x y =÷-23x y =-;(3)原式[2(1)][2(1)]x y x y =+---224(1)x y =--22421x y y =-+-.【点睛】本题考查了实数的混合运算及整式的混合运算,熟练掌握相关运算法则及乘法公式是解决本题的关键.2、5【分析】根据零指数幂,负整数指数幂以及实数混合运算法则计算即可.【详解】解:原式=41245-++⨯=.【点睛】本题考查了实数的运算,零指数幂以及负整数指数幂,熟练运用运算法则是解本题的关键.3、(1)1;(2)1-【分析】(1)根据负整指数幂,有理数的乘方,零次幂进行计算即可;(2)根据平方差公式进行计算即可【详解】解:(1)()()202102421π3-⨯+-+- 14114=⨯-+ 1=(2)2202220202021⨯-()()220211202112021=+⨯--22202112021=--1=-【点睛】本题考查了负整指数幂,有理数的乘方,零次幂,平方差公式,正确的计算是解题的关键.4、有错误,正确的解答过程见解析.x =53是原分式方程的解.【分析】将分式方程转化为整式方程,然后解方程,注意分式方程的结果要进行检验.【详解】解:有错误,正确的解答如下: 整理,得:134122x x x x ---=--,去分母,得:x﹣1﹣(x﹣2)=3x﹣4,解得:x53 =,检验:当x53=时,x﹣2≠0,∴x53=是原分式方程的解.【点睛】本题考查解分式方程,掌握解分式方程的步骤是解题关键,注意分式方程的结果要进行检验.5、(1)0;(2)1x-【分析】(1)先根据负整数指数幂,零指数幂和有理数的乘方进行计算,再算加减即可;(2)先根据平方差公式和单项式乘多项式进行计算,再合并同类项即可.【详解】解:(1)原式21(1)=-+-211=--=;(2)原式221x x x=--+1x=-.【点睛】本题考查了零指数幂,负整数指数幂,有理数的混合运算,整式的混合运算等知识点,能灵活运用有理数的运算法则和整式的运算法则进行计算是解此题的关键,注意运算顺序.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考综合训练数学试卷(五)说明:考试时间 120 分,满分150分.〔卷首提示语〕亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 教师一 直投给你信任的目光.请认真审题,看清要求,仔细答题,祝你考出好成绩。

第Ⅰ卷(选择题,共40分)一、 选择题(每小题4分,共40分,每小题给出4个答案,其中只有一个正确,1.4的算术平方根为 A.2 B.2-C.2±D.162.将点(22)P -,沿x 轴的正方向平移4个单位得到点P '的坐标是 A.(26)-, B.(62)-,C.(22),D.(22)-,301+的结果是A.1C.2D.14.已知a b <,则下列不等式一定成立的是 A.33a b +>+ B.22a b > C.a b -<- D.0a b -< 5.如图1,⊙O 是等边ABC △的外接圆,P 是⊙O 上一点,则CPB ∠等于 A.30oB.45oC.60oo6.图2是某班学生最喜欢的球类活动人数统计图,则下列说法不正确...的是 A.该班喜欢乒乓球的学生最多B.该班喜欢排球与篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍 D.该班喜欢其它球类活动的人数为5人7.顺次连结矩形的各边中点,所得的四边形一定是 A.正方形 B.菱形 C.矩形 D.梯形8.若两圆的半径分别为5cm 和3cm ,且它们的圆心距为3cm ,则此两圆的位置关系是 A.外离 B.相交 C.相切 D.内含图1图2它5%9、满足下列条件的△ABC 中,不是直角三角形的是( ) A 、∠B+∠A=∠C B 、∠A :∠B :∠C=2:3:5 C 、∠A=2∠B=3∠C D 、一个外角等于和它相邻的一个内角10)第Ⅱ卷(非选择题,共110分)愿你放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷 二、填空题(本大题共5小题,每小题4分,共20分.) 11.12_______-=.12.数据123321a a a a a a a +++---,,,,,,的中位数是 .13.在日历中圈出一竖列上相邻的3个数,使它们的和为42,则所圈数中最小的是 . 14.请先找出正三边形、正四边形、正五边形等正多边形的对称轴的条数,再猜想正n 边形对称轴的条数为 .15.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .三、解答题(每小题8分,共24分). 16.解不等式组:21318.x x ->-⎧⎨+<⎩,17.一袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出一球,请问: (1)“摸出的球是白球”是什么事件?它的概率是多少? (2)“摸出的球是黄球”是什么事件?它的概率是多少? (3)“摸出的球是红球或黄球”是什么事件?它的概率是多少?A. B. C. D.18.一个人由山底爬到山顶,需先爬45o的山坡200m ,再爬30o的山坡300m ,求山的高度(结果可保留根号).三,(每小题8分,共16分).19.如图,已知AD AE AB AC ==,. (1)求证:B C =∠∠;(2)若50A =o∠,问ADC △经过怎样的变换能与AEB △重合?20.如图,已知点A 的坐标为(13),,点B 的坐标为(31),. (1)写出一个图象经过A B ,两点的函数表达式; (2)指出该函数的两个性质.A BCDE五(每小题10分,共30分)21.如图,在ABC △中,AB AC =,点D E ,分别是AB AC ,的中点,F 是BC 延长线上的一点,且12CF BC =. (1)求证:DE CF =; (2)求证:BE EF =.22.已知:如图,D 是ΔABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且BF=CE . (1)求证:ΔABC 是等腰三角形;(2)当∠A=900时,试判断四边形AFDE 是怎样的四边形,证明你的结论.A B DE23如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19?(2)是否存在时刻t ,使以A M N ,,为顶点的三角形与ACD △相似?若存在,求t 的值;若不存在,请说明理由.六(每小题10分,共20分)24.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月收入不超过1600元,不需交税;超过1600元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2006年5月的收入为2 000元,问他应交税款多少元?(2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),当21003600x ≤≤时,请写出y 关于x 的函数关系式;(3)某公司一名职员2006年5月应交税款120元,问该月他的收入是多少元?25,如图,已知:以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,E 为BC 边上的中点,连结DE.(1) 如图所示,观察猜想DE 是⊙O 的切线吗?并证明你的结论;(2) 连结OE 、AE ,当∠CAB 为何值时,四边形AOED 是平行四边形,并说明理由._ B_ E_ A茂名市第十中学中考综合训练数学试卷(五)三、解答题16.解:解21x ->-,得1x >;解318x +<,得73x <; 所以,原不等式组的解集是713x <<. 17.解:(1)“摸出的球是白球”是不可能事件,它的概率为0; (2)“摸出的球是黄球”是不确定事件,它的概率为0.4; (3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 18.解;依题意,可得山高200sin 45300sin30h =+oo12003002=+⨯150=+所以山高为(150+.19.(1)证明:在AEB △与ADC △中,AB AC A A AE AD ===,∠∠,, AEB ADC ∴△≌△,B C ∴=∠∠.(2)解:先将ADC △绕点A 逆时针旋转50o,再将ADC △沿 直线AE 对折,即可得ADC △与AEB △重合.或先将ADC △绕点A 顺时针旋转50o,再将ADC △沿直线AB 对折,即可得ADC △与AEB △重合.20.解:(1)设经过A B ,两点的一次函数表达式为y kx b =+,ABCD E则有313.k b k b =+⎧⎨=+⎩,解得14.k b =-⎧⎨=⎩,故经过A B ,两点的一次函数表达式为4y x =-+.(2)函数4y x =-+有如下等性质,.①函数y 的值随x 的增大而减小;②函数的图象与x 轴的交点为(40),; ③函数的图象与y 轴的交点为(04),;④函数的图象经过第一、二、四象限; ⑤函数的图象与坐标轴围成一等腰直角三角形.(说明:用反比例函数或二次函数解答,同样给分) 21.证明:(1)D E Q ,分别为AB AC ,的中点,DE ∴为中位线.DE BC ∴∥,且12DE BC =;又12CF BC =Q ,DE CF ∴=.(2)连结DC .由(1)可得DE CF ∥,且DE CF =, ∴四边形DCFE 为平行四边形,EF DC ∴=. AB AC =Q ,且DE 为中位线,∴四边形DBCE 为等腰梯形, 又DC BE Q ,为等腰梯形DBCE 的对角线,DC BE ∴=, BE EF ∴=.22..(1)∵BD=CD ,BF=CE ,∴Rt ΔBDF ≌Rt ΔCDE ,∴∠B=∠C . ΔABC 是等腰三角形.(2)∵∠A=900,DE ⊥AC ;DF ⊥AB,∴四边形AFDE 是矩形, 又∵Rt ΔBDF ≌Rt ΔCDE,∴DF=DE ,∴四边形AFDE 是正方形. 23,解:(1)设经过x 秒后,AMN △的面积等于矩形ABCD 面积的1,则有:11(62)3629x x -=⨯⨯,即2320x x -+=,解方程,得1212x x ==,.经检验,可知1212x x ==,符合题意,所以经过1秒或2秒后,AMN △的面积等于矩形ABCD 面积的19.(2)假设经过t 秒时,以A M N ,,为顶点的三角形与ACD △相似,由矩形ABCD ,可得90CDA MAN ==o∠∠,因此有AM DC AN DA =或AM DA AN DC=BN即3626t t =- ①,或6623t t =- ②.解①,得32t =;解②,得125t =经检验,32t =或125t =都符合题意,所以动点M N ,同时出发后,经过32秒或125秒时,以A M N ,,为顶点的三角形与ACD △相似.24.解:(1)该工人5月的收入2 000元中,应纳税的部分是400元,按纳税的税率表,他应交纳税款400520⨯=%(元); (2)当21003600x ≤≤时,其中1 600元不用纳税,应纳税的部分在500元至2 000元之间,其中500元按5%交纳,剩余部分按10%交纳, 于是,有[](1600)500105005(2100)1025y x x =--⨯+⨯=-⨯+%%%; 即y 关于x 的函数关系式为(2100)1025(21003600)y x x =-⨯+%≤≤.(3)根据(2),当收入为2 100元至3 600元之间时,纳税额在25元至175元之间,于是,由该职员纳税款120元,可知他的收入肯定在2 100元至3 600元之间; 设他的收入为x 元,由(2)可得:(2100)1025120x -⨯+=%, 解得:3050x =;故该职员2006年5月的收入为3050元.25. 解:(1). 观察猜想DE 是⊙O 的切线. 证明: 如图,连接OD 、DB 、OE,.∵AB 是⊙O 直径,∴∠CDB=∠ADB=900. 又∵BE=CE ,∴ DE=BE.又∵OD=OB ,OE=OE ,∴△ODE ≌△OBE (SSS ). ∴∠ODE=∠OBE=900. ∴DE 是⊙O 的切线.(2).当∠CAB=450 时,四边形AOED 是平行四边形. 理由是:如图,∵CE=BE ,AO=BO ,∴OE ∥AC. 又∵∠CAB=450 ,∠ABC=900.∴∠C==450 .∴AB=BC. ∴AD=DC.∴AD=DC. ∴ DE ∥AB. ∴四边形AOED 是平行四边形. (其它解法合理,参照给分)._ B_ E _ A。

相关文档
最新文档