人教版七年级数学上册月考测试题(含答案解析)
人教版七年级数学上册月考测试题(含答案解析)

人教版七年级数学上册月考测试题(含答案解析)1、答案:C。
正数和负数互为相反数,正数的相反数是它的负数,任何一个有理数都有相反数,数轴上原点两边的两个点表示的数互为相反数。
2、答案:D。
由题可知点A表示-2,又已知点B和点A 相距5个单位长度,因此点B表示的数可以是-7或3.3、答案:B。
-a表示a的相反数,即负数。
4、答案:C。
|a-+b|表示a-+b的绝对值,即|a-b|,|b-1|表示b-1的绝对值,|a-c|表示a-c的绝对值,|1-c|表示1-c的绝对值,将它们代入式子中,化简得2c-2a-2.5、答案:A。
2m2n和2a2b都是二次单项式,属于同类项。
6、答案:D。
-(-m+n)=m-n。
7、答案:B。
7x+5=6(x-1)是一元一次方程。
8、答案:A。
去分母后得到3x-2(x-1)=1,化简得3x-2x+2=1,解得x=-1.9、答案:670℃。
白天最高温度为+400℃,夜间最低温度为-270℃,因此温差为400-(-270)=670℃。
10、答案:无法确定。
展开图中的四个正方形的大小没有给出,因此无法确定它们内部表示的数。
1.绝对值不大于4的整数有9个。
2.迎迎头上有大约1.5×10^6根头发,用科学记数法表示为1.5×10^6.3.-2xmy^6与x^3y^2n是同类项,则mn=5.4.代数式2x+y的值是-4,则4x+2y+9的值是-1.5.x的三倍减去7,等于它的两倍加上5,用方程表示为3x-7=2x+5.16.1) 3x+56=7x2) -10+2+12-15=-113) x=84) y=2b-517.由题意可知,2a=-2c,cd=1/d=1/-b,代入2a-(cd)得-2c-(-b)=2b,即c=3/4,d=-4/3,代入得2a-(cd)=1/2.18.2A-3B=2(a-2ab+b)-3(-a-3ab-b)=8ab+5a+2b。
19.化简得3b+4=3a+m+1,2b-a+m+1=b-a+m+1,解得m=-3.20.1) 第10个数为-1024.2) 第10个数为-53.3) 三个数的和为-999.21.1) 个体车主的费用为1500×3+1500×2=7500元,国营出租公司的费用为2000+1500×2=5000元,选择国营出租公司更合算。
2022-2023学年新人教版七年级上数学月考试卷(含解析)

2022-2023学年初中七年级上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 的相反数是( )A.B.C.D.2. 目前,第五代移动通信技术()发展迅速,按照产业间的关联关系测算,年,间接拉动增长超过亿元,亿用科学记数法表示为( )A.B.C.D.3. 设,,,,则,,,按由小到大的顺序排列正确的是()A.B.C.D.4. 运用等式性质进行的变形,错误的是( )A.若,则22−212±25G 20205G GDP 419041904.19×1030.4190×1044.19×1011419×109a =20b =(−3)2c =−27−−−−√3d =()12−1a b c d b <d <a <cc <a <d <ba <c <d <bb <c <a <dx =y =x c y cx yB.若,则C.由,得到D.若,则5. 方程的解是 ( )A.B.C.D.6. 某商品打七折后价格为元,则原价为 ( )A.元B.元C.元D.元7. 若 是方程的解,则代数式的值为 A.B.C.D.8. 按下图程序计算,若开始输入的值为,则最后输出的结果是( )A.B.C.=xc yc x =y3x −2=4x +33x −4x =3+2a =3=3aa 23x +2(1−x)=4x =25x =56x =2x =1a a a 10730%a a 710x =−2ax −b =14a +2b +7()−5−115x =323115621D.9. 中国政府在年月日,向世界卫生组织捐款万美元,支持世卫组织开展抗击新冠肺炎疫情国际合作.万用科学记数法表示为,的值为( )A.B.C.D.10. 若正方形的边长增加,它的面积就增加,则正方形的边长原来是 A.B.C.D.11. 已知,,的位置如图,化简的结果为( )A.B.C.D.12. 从甲地到乙地,公共汽车原需行驶小时,开通高速公路后,车速平均每小时增加了千米,只需个小时即可到达.则公共汽车提速后的速度是( )千米/时.A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )6202037200020002×10n n 56783cm 39cm ()8cm6cm5cm10cma b c |a|+|b|−|a +b|−|b −c|−2a +b −c3b −cb +c2a +b +c7205405060702m+2+313. 若与是同类项,则________.14. 计算=________.15. 已知,则代数式的值为________.16. 足球比赛的记分规则为:胜一场得分,平一场得分,负一场得分,一个队打了场比赛,负了场,共积分,那么该队胜多少场?若设该队胜场,则可列方程为________.17. 若关于的方程的解是正整数,则整数的值为________.18. 下面是一种利用图形计算正整数乘法的方法,请根据图图四个算图所示的规律,可知图所表示的算式为________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19. 若规定:,如,请计算:.20. 先化简,再求值:,其中.21. 已知关于的方程的解比关于的方程的解相同,求的值.22. 某校组织师生去参观三峡工程建设,若单独租用座客车若干辆,则刚好坐满;若单独租用座客车,则可少租一辆,且余个坐位,求该校参观三峡工程建设的人数.23. 某文艺团为“希望工程”募捐组织了一场义演,成人票每张元,学生票每张元,共售出张票,筹得票款元,求成人票与学生票各售出多少张?24. 如图,数轴上点表示的数为,点表示的数为,且.求,的值;若动点,分别以每秒个单位长度和每秒个单位长度的速度从点,同时出发沿数轴向负方向作匀速运动,当点的运动时间为秒时,①写出点,所表示的数;(用含的代数式表示)②若数轴上的点到点,的距离相等,求点,之间的距离.b a m+423a 2m+2b n+3m +n =|+24|+|−6|x −2y +3=0−2x +4y +201831020632x x 9x −2=kx +7k 1∼45(2∗3)∗(−4)(x +y)(x −y)+(4x −8)÷4xyy 3x 2y 2x =2,y =1x 5m +3x =1+x x 2x +m =3m m 3040208510006950A a B b +|b +6|=0(a −10)2(1)a b (2)P Q 42A B P t P Q t M A P O M参考答案与试题解析2022-2023学年初中七年级上数学月考试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】B【考点】相反数【解析】此题暂无解析【解答】解:因为绝对值相等,正负号相反的两个数互为相反数,所以的相反数是.故选.2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:亿.故选.3.【答案】B2−2B a ×10n 1≤|a|<10n n a n ≥10n <1n 4190=419000000000=4.19×1011C【考点】实数大小比较零指数幂负整数指数幂有理数的乘方【解析】此题主要考查了实数的大小比较.【解答】解:,,,,,,,,,∴.故选.4.【答案】A【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:、不成立,因为必需不为;、利用等式性质,两边都乘以,得到,所以成立;、移项,得到,所以成立;、若,两边都乘以,则,所以成立.故选.5.【答案】C【考点】解一元一次方程【解析】a ==120b =(−3)2=9c ==−3−27−−−−√3d ==2()12−1∴a =1b =9c =−3d =2∵−3<1<2<9c <a <d <b B A c 0B 2c x =y C 3x −4x =3+2D a =3a =3a a 2A【解答】解:将方程去括号得,移项、合并同类项得.故选.6.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】【解答】解:设该商品原价为:元.∵某商品打七折后价格为元,∴,则(元),故选.7.【答案】D【考点】列代数式求值一元一次方程的解【解析】把x=2代入方程ax+b=1中求出2a+b=1,再将它代入4a+2b+7中求解.【解答】解:是方程的解,,,.3x +2−2x =4x =2C x a 0.7x =a x =a 107B ∵x =−2ax −b =1∴−2a −b =1∴2a +b =−1∴4a +2b +7=2(2a +b)+7=2×(−1)+7=5故选.8.【答案】A【考点】列代数式求值【解析】观察图示我们可以得出关系式为:,因此将的值代入就可以计算出结果.如果计算的结果等于则需要把结果再次代入关系式求值,直到算出的值为止,即可得出的值.【解答】解:依据题中的计算程序列出算式:由于,∵,∴应该按照计算程序继续计算,∵,∴应该按照计算程序继续计算,∴输出结果为.故选.9.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:万,的值为.故选.10.【答案】CD x(x +1)2x <100>100y ==6x(x +1)23×(3+1)26<100=216×(6+1)221<100=23121×(21+1)2231A 2000=20000000=2×107n 7C【考点】一元一次方程的应用——面积问题【解析】试题分析:原来正方形的边长为,则,解得:【解答】此题暂无解答11.【答案】A【考点】绝对值数轴【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:,则,则.故选.12.【答案】D【考点】一元一次方程的应用——路程问题【解析】设甲乙两地的路程是千米,则公共汽车原来的车速是,,开通高速公路后的车速是,根据两地的路程这个相等关系列方程得,求出甲乙两地的路程,再除以公共汽车提速后的时间,即可得出答案.x −=39(x +3)2x 2x =5a <0<b <c ,|a|<|b|<|c|a +b >0,b −c <0|a|+|b|−|a +b|−|b −c|=−a +b −(a +b)−(c −b)=−a +b −a −b −c +b =−2a +b −c A x z (+20)×5=x π7【解答】设:甲乙两地的路程是千米.根据题意列方程得:解得:则公共汽车提速后的速度是千米时.故选:.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13.【答案】【考点】同类项的概念列代数式求值【解析】根据同类项的定义可得,,然后求出,的值,最后把,的值代入计算即可.【解答】解:∵与是同类项,∴,,解得,,∴.故答案为:.14.【答案】【考点】有理数的加法绝对值【解析】根据绝对值的含义和求法,以及有理数的加法的运算方法,求出算式的值是多少即可.【解答】x (+20)×5=x π7x =350|56s =70/D 0m +4=2m +2n +3=1m n m n m +n b a m+423a 2m+2b n+3m +4=2m +2n +3=1m =2n =−2m +n =2−2=0030|+24|+|−6|==15.【答案】【考点】列代数式求值【解析】此题暂无解析【解答】解:由,得到,则原式.故答案为:.16.【答案】【考点】由实际问题抽象出一元一次方程【解析】设这个队胜了场,等量关系为:胜的场数平的场数负的场数总得分,据此列方程解答即可.【解答】解:设这个队共胜了场.由题意得:,即.故答案为:.17.【答案】,,【考点】一元一次方程的解含字母系数的一元一次方程|+24|+|−6|24+6302024x −2y +3=0x −2y =−3=−2(x −2y)+2018=6+2018=202420243x +20−6−x =32x ×3+×1+×0=x 3x +(20−6−x)×1+6×0=323x +20−6−x =323x +20−6−x =32068【解析】先解方程,得到一个含有字母的解,然后用完全归纳法解出的值.【解答】解:移项得,,合并同类项得,.因为方程有解,所以,则系数化为得,.又关于的方程的解是正整数,所以的值可以为:,,,其自然数解相应为:,,.故答案为:,,.18.【答案】【考点】规律型:图形的变化类规律型:数字的变化类【解析】根据利用图形计算正整数乘法的方法进行计算.【解答】解:如图:图中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为,右下方的两组交点个数逆时针排列为,它们为两个因数,即,如图:图中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为,右下方的两组交点个数逆时针排列为,它们为两个因数,即,如图:图中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为,右下方的两组交点个数逆时针排列为,它们为两个因数,即,如图:图中标的数字的个位逆时针顺序排列正是结果,左下方的两组交点个数逆时针排列为,右下方的两组交点个数逆时针排列为,它们为两个因数,即,∴如图:图中标的数字个位逆时针顺序排列正是结果,左下方的三组交点个数逆时针排列为,右下方的三组交点个数逆时针排列为,它们为两个因数,即,故答案为:.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19.【答案】∵,∴k k 9x −kx =2+7(9−k)x =9k ≠91x =99−k x 9x −2=kx +7k 068x =1x =3x =9068321×123=394831111111×11=1212211121×11=2313211221×12=2524312131×12=3725321123321×123=39483321×123=39483(2∗4)∗(−4)======.【考点】有理数的混合运算【解析】此题暂无解析【解答】此题暂无解答20.【答案】解:原式当时,原式【考点】非负数的性质:偶次方非负数的性质:绝对值整式的加减——化简求值【解析】此题暂无解析【解答】解:原式当时,原式.21.【答案】解:化简方程,得①,②,①-②得∗(−4)∗(−4)−6∗(−4)=−+−2xy x 2y 2y 2=−2xyx 2x =2,y =1=0=−+−2xy x 2y 2y 2=−2xyx 2x =2,y =1=05m +2x =12x =2m.【考点】同解方程【解析】根据同解方程,移项化简,可得方程①,②,根据加减消元法,可得关于的一元一次方程,可求出的值.【解答】解:化简方程,得①,②,①-②得.22.【答案】解:设需要座的车辆,根据题意得:,解得:.所以参观人数为:(人)答:该校参观三峡建设的人数为人.【考点】一元一次方程的应用——调配与配套问题【解析】先设需要座的车是辆,根据人数不变可列出等式.【解答】解:设需要座的车辆,根据题意得:,解得:.所以参观人数为:(人)答:该校参观三峡建设的人数为人.23.【答案】解:设成人票售出张,学生票售出张,根据题意列方程得:,解得,(张).5m =1−2m m =13m m 5m +2x =12x =2m 5m =1−2m m =1330x 30x =40(x −1)−20x =6=30×6=18018030x 30x 30x =40(x −1)−20x =6=30×6=180180x (1000−x)8x +5(1000−x)=6950x =6501000−x =350答:成人票售出张,学生票各售出张.【考点】一元一次方程的应用——其他问题【解析】此题基本的数量关系是:①成人票张数+学生票张数张,②成人票票款+学生票票款,利用①设未知数,另一个用表示,利用②列方程解答即可.【解答】解:设成人票售出张,学生票售出张,根据题意列方程得:,解得,(张).答:成人票售出张,学生票各售出张.24.【答案】解:,,,,,,,,;①点表示的数是,点表示的数是.②设点表示的数为.因为,点到点,的距离相等,所以,点在,两点中间,所以,,,所以,,即,所以,.【考点】非负数的性质:偶次方非负数的性质:绝对值数轴【解析】左侧图片未给出解析【解答】解:,,,,,,,650350=1000=6950x x (1000−x)8x +5(1000−x)=6950x =6501000−x =350650350(1)∵+|b +6|=0(a −10)2≥0(a −10)2|b +6|≥0∴=0(a −10)2|b +6|=0∴a −10=0b +6=0∴a =10b =−6(2)P 10−4t Q −6−2t M m M A P M A P AM =10−m MP =m −(10−4t)=m −10+4t 10−m =m −10+4t m =10−2t QM =|10−2t −(−6−2t)|=16(1)∵+|b +6|=0(a −10)2≥0(a −10)2|b +6|≥0∴=0(a −10)2|b +6|=0∴a −10=0b +6=0∴a =10b =−6,;①点表示的数是,点表示的数是.②设点表示的数为.因为,点到点,的距离相等,所以,点在,两点中间,所以,,,所以,,即,所以,.∴a =10b =−6(2)P 10−4t Q −6−2t M m M A P M A P AM =10−m MP =m −(10−4t)=m −10+4t 10−m =m −10+4t m =10−2t QM =|10−2t −(−6−2t)|=16。
人教版七年级上册数学第一次月考测试卷(附答案)

人教版七年级上册数学第一次月考测试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是( )A .235×104B .0.235×107C .23.5×105D .2.35×1062.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.下列说法正确的是( )A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则a -不一定是负数D .零既不是正数也不是负数5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6510.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:2ab a-=________.2.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.3.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.6.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是________,理由________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)1311 48x x---=2.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.3.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.光华中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天. (1)若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅?(2)若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?(3)学校需要每天支付甲修理组、乙修理组修理费分别为80元,120元.任务完成后,两修理组收到的总费用为1920元,求甲修理组修理了几天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、B6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a(b+1)(b﹣1).2、a+c3、43 32a≤≤4、如果两个角是同一个角的余角,那么这两个角相等5、454353 x yx y+=⎧⎨-=⎩6、PN, 垂线段最短三、解答题(本大题共6小题,共72分)1、(1):x=5;(2)x=﹣9.2、m>﹣23、略4、∠BOE的度数为60°5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)需8天可以修好这些套桌椅;(2)甲修理组离开6天;(3)甲修理组修理了6天.。
人教版七年级上册数学第一次月考测试卷(参考答案)

人教版七年级上册数学第一次月考测试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.下列图形中,不是轴对称图形的是()A.B.C.D.3.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A.、1个B.2个C.3个D.4个4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.6的相反数为( )A .-6B .6C .16-D .169.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( )A .10B .9C .8D .7二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.如果方程34217123x x -+-=- 的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求代数式a 2+a -1的值.3.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t0 1 2 3 …(h)油箱剩余油量Q100 94 88 82 …(L)①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、D5、D6、D7、C8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、40°3、<4、78°5、-1或-46、②.三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、x=10;a=-4;11.3、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、(1)45°;(2)详略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、①Q=100﹣6t;② 10L;③25003km.。
人教版七年级(上)数学第一次月考试卷(含答案)

人教版七年级数学(上)第一次月考时间:120分钟 满分:120分班级: 姓名: 得分:题号 一 二 三 总分 得分一、选择题(每小题3分,共30分) 1.-1.5的相反数是( )A.0B.-1.5C.1.5D.232.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列各数:0,1-2,-(-1),⎪⎪⎪⎪⎪⎪-12,(-1)2,(-3)3,其中负数的个数是( )A.1个B.2个C.3个D.4个4.研究表明,可燃冰是一种可替代石油的新型清洁能源.在我国某海域已探明的可燃冰储存量约150000000000立方米,其中数字150000000000用科学记数法可表示为( )A.15×1010B.0.15×1012C.1.5×1011D.1.5×10125.下列运算错误的是( )A.(-14)+7-(+5)=-12B.(-6)÷(-2)×0.5=-1.5C.(-5)×(-2)×(-4)=-40D.(-3)×(-4)÷(-2)=-66.若x 是最大的负整数,y 是最小的正整数,z 是绝对值最小的数,w 是相反数等于它本身的数,则x -z +y -w 的值是( )A.0B.-1C.1D.-27.有理数a ,b 在数轴上的对应点的位置如图所示,则a ,b ,-a ,|b|的大小关系正确的是( )A.|b |>a >-a >bB.|b |>b >a >-aC.a >|b |>b >-aD.a >|b |>-a >b 8.一个病人每天下午需要测量血压,该病人上周日的收缩压为120单位,下表是该病人这周一到周五与前一天相比较收缩压的变化情况:星期一二三 四 五增减 +20 -30 -25 +15 +30本周四的收缩压是( )A.100单位B.110单位C.115单位D.120单位9.点A 为数轴上一点,距离原点4个单位长度,一只蚂蚁从A 点出发,向右爬了2个单位长度到达B 点,则点B 表示的数是( )A.-2B.6C.-2或6D.-6或210.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号.这些符号与十进制数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 ABCDEF十进制12345678910 11 12 13 14 15例如,用十六进制表示:E +F =1D ,则A ×B 用十六进制表示为( ) A.B0 B.1A C.5F D.6E 二、填空题(每小题3分,共24分)11.-⎝ ⎛⎭⎪⎫+52的倒数是 . 12.比较大小:-23 -45;-22 (-2)2(填“>”或“<”).13.用四舍五入法对0.06398取近似值,精确到千分位是 . 14.如果有理数a ,b 满足(a -3)2+|b +1|=0,那么b a= .15.草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是 千克.16.如图所示是一个程序运算,若输入的x 为-6,则输出y 的结果为 .17.已知|a |=6,|b |=4,且ab <0,则a +b 的值为 .18.规定:对任意有理数对【a ,b 】,都有【a ,b 】=a 2+2b +1.例如:有理数对【-5,-2】=(-5)2+2×(-2)+1=22.若有理数对【-2,1】=n ,则有理数对【n ,-1】= .三、解答题(共66分) 19.(12分)计算:(1)0-(-11)+(-9); (2)|-0.75|+(-3)-(-0.25)+⎪⎪⎪⎪⎪⎪-18+78;(3)(-56)×⎝ ⎛⎭⎪⎫47-38+114; (4)2×(-3)2-5÷⎝ ⎛⎭⎪⎫-12×(-2).20.(6分)如图,一名跳水运动员参加10m 跳台的跳水比赛(10m 跳台是指跳台离水面的高度为10m ),这名运动员举高手臂时身长为2m ,跳水池池深为5.4m .(1)若以水面为基准,高于水面为正,则这名运动员指尖的高度及池底的深度分别如何表示?(2)若以池底为基准,高于池底为正,则水面的高度、跳台的高度及这名运动员指尖的高度分别如何表示?(3)若以跳台为基准,高于跳台为正,则池底的深度与水面的高度分别如何表示?21.(8分)阅读下题的解答过程:计算:⎝ ⎛⎭⎪⎫-124÷⎝ ⎛⎭⎪⎫23-34+78. 分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:⎝ ⎛⎭⎪⎫23-34+78÷⎝ ⎛⎭⎪⎫-124=⎝ ⎛⎭⎪⎫23-34+78×(-24)=-16+18-21=-19. 所以原式=-119.根据阅读材料提供的方法,完成下面的计算: ⎝ ⎛⎭⎪⎫-142÷⎣⎢⎡⎦⎥⎤12-13+57+⎝ ⎛⎭⎪⎫-232×(-6).22.(8分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm ):+5,-3,+10,-8,-6,+12,-10.问:(1)小虫最后是否回到出发点O ?(2)小虫离开出发点O 的最远距离是多少?(3)在爬行过程中,若每爬行1cm 奖励一粒芝麻,则小虫共可得到多少粒芝麻?23.(10分)某矿泉水厂从所生产的瓶装矿泉水中,抽取了40瓶检查质量,质量超出标准质量的用正数表示,质量低于标准质量的用负数表示,结果记录如下表:瓶数 2 3 13 14 6 2(1)这40瓶矿泉水中,最重的一瓶比最轻的一瓶重多少克? (2)这40瓶矿泉水的总质量比标准质量多还是少?两者相差多少?24.(10分)小明有5张写着不同数字的卡片,如图所示,请你按要求完成下列问题: (1)从中取出2张卡片,使这2张卡片上的数字乘积最大,如何抽取?最大值是多少? (2)从中取出3张卡片,使这3张卡片上数字乘积最小,如何抽取?最小值是多少? (3)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).25.(12分)观察下列各式:13=1=14×12×22;13+23=9=14×22×32;13+23+33=36=14×32×42;13+23+33+43=100=14×42×52;……回答下面的问题:(1)13+23+33+43+…+103=(写出算式即可);(2)计算13+23+33+…+993+1003的值;(3)计算113+123+…+993+1003的值.参考答案与典题详析1.C2.C3.B4.C5.B6.A7.A8.A9.C 10.D 11.-25 12.> < 13.0.06414.-1 15.20.1 16.-517.2或-2 解析:因为|a |=6,|b |=4,所以a =±6,b =±4.因为ab <0,所以a =6,b =-4或a =-6,b =4,所以a +b =2或-2.18.48 解析:根据规定,n =【-2,1】=(-2)2+2×1+1=4+2+1=7,所以【n ,-1】=【7,-1】=72+2×(-1)+1=49-2+1=48.19.解:(1)原式=0+11-9=2.(3分)(2)原式=0.75-3+0.25+18+78=-2+1=-1.(6分)(3)原式=-32+21-4=-36+21=-15.(9分) (4)原式=18-20=-2.(12分)20.解:(1)若以水面为基准,则这名运动员指尖的高度表示为+12m ,池底的深度表示为-5.4m .(2分)(2)若以池底为基准,则水面的高度表示为+5.4m ,跳台的高度表示为+15.4m ,这名运动员指尖的高度表示为17.4m .(4分)(3)若以跳台为基准,则池底的深度表示为-15.4m ,水面的高度表示为-10m .(6分)21.解:⎣⎢⎡⎦⎥⎤12-13+57+⎝ ⎛⎭⎪⎫-232×(-6)÷⎝ ⎛⎭⎪⎫-142=⎝ ⎛ 12-⎭⎪⎫13+57-83×(-42)=-21+14-30+112=75.(6分)所以原式=175.(8分)22.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=27+(-27)=0,所以小虫最后回到出发点O .(3分)(2)根据记录,小虫离开出发点O 的距离分别为5cm 、2cm 、12cm 、4cm 、2cm 、10cm 、0cm ,所以小虫离开出发点O 的最远距离为12cm .(5分)(3)根据记录,小虫共爬行的路程为5+3+10+8+6+12+10=54(cm ),所以小虫共可得到54粒芝麻.(8分)23.解:(1)10-(-8)=18(克).(3分)答:这40瓶矿泉水中,最重的一瓶比最轻的一瓶重18克.(4分)(2)-8×2+(-6)×3+0×13+4×14+5×6+10×2=-16-18+0+56+30+20=-34+106=72(克).(8分)因为72>0,所以这40瓶矿泉水的总质量比标准质量多,多72克.(10分)24.解:(1)取+4,+5,乘积最大值为20.(3分) (2)取-6,+4,+5,乘积最小值为-120.(6分)(3)取-2,-6,+4,+5,(+4)×(+5)-[-6-(-2)]=24(答案不唯一).(10分) 25.解:(1)14×102×112(3分)(2)原式=14×1002×1012=25502500.(7分)(3)原式=(13+23+…+993+1003)-(13+23+…+93+103)=14×1002×1012-14×102×112=25502500-3025=25499475.(12分)。
人教版数学七年级上学期第一次月考数学试卷(含答案)

七年级(上)第一次月考数学试卷一、填空题1.如果盈利700元记为+700元,那么﹣800元表示.2.在数轴上距离原点1.5个单位的点表示的数是.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过,最小不低于.4.用“>”、“<”、“=”号填空:(1)﹣0.02 1;(2)﹣﹣.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是℃.7.化简:﹣|﹣|= ,﹣(﹣2.3)= .8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= .9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2=.10.若|x﹣2|与(y+3)2互为相反数,则x+y= .二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.012.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+616.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.717.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和018.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ …}非正数集合{ …}负分数集合{ …}有理数集合{ …}.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = .(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题1.如果盈利700元记为+700元,那么﹣800元表示亏损800元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利700元记为+700元,∴﹣800元表示亏损800元.故答案为:亏损800元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在数轴上距离原点1.5个单位的点表示的数是±1.5 .【考点】数轴.【分析】在数轴上距离原点1.5个单位的点表示的数有两个:分别是﹣1.5、1.5.【解答】解:在数轴上距离原点1.5个单位的点表示的数是:±1.5;故答案为:±1.5.【点评】本题考查了数轴的有关知识,比较简单,明确所有的有理数都可以用数轴上的点表示,数轴上与原点的距离为a的点有两个,是互为相反数.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8.04 ,最小不低于7.96 .【考点】正数和负数.【分析】根据正数与负数表示相反意义的量得到8±0.04(m)的含义为最大不超过8+0.04m,最小不超过8﹣0.04m,然后回答问题.【解答】解:零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8+0.04=8.04m,最小不低于8﹣0.04=7.96m,故答案为8.04;7.96.【点评】本题考查了正数和负数:用正数与负数表示相反意义的量,此题基础题,比较简单.4.用“>”、“<”、“=”号填空:(1)﹣0.02 < 1;(2)﹣<﹣.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据两负数比较大小,绝对值大的反而小,可得答案.【解答】解:(1)﹣0.02<1;(2),﹣,故答案为:<,<.【点评】本题考查了有理数比较大小,(1)正数大于负数,(2)先比较绝对值,再比较两负数的大小.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【考点】规律型:数字的变化类.【专题】规律型.【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是 6 ℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】根据有理数的加减混合运算的运算方法,用南通市某天上午的温度加上中午又上升的温度,再减去夜间又下降的温度,求出这天夜间的温度是多少即可.【解答】解:8+5﹣7=13﹣7=6(℃)答:这天夜间的温度是6℃.故答案为:6.【点评】此题主要考查了有理数的加减混合运算,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.7.化简:﹣|﹣|= ﹣,﹣(﹣2.3)= 2.3 .【考点】绝对值;相反数.【专题】推理填空题.【分析】根据绝对值的含义和求法,以及相反数的含义和求法,逐一求解即可.【解答】解:﹣|﹣|=﹣,﹣(﹣2.3)=2.3.故答案为:﹣、2.3.【点评】此题主要考查了绝对值的含义和应用,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= 1.5 .【考点】代数式求值.【分析】依据互为相反数的两数之和为0可知a+b=0,互为倒数的两数的乘积为1求解即可.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=1.5×1+0=1.5,故答案为:1.5.【点评】本题主要考查的是求代数式的值,掌握倒数的定义和互为相反数的两数之和为0是解题的关键.9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= 1 .【考点】实数的运算.【专题】计算题;新定义;实数.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:﹣3☆2=4﹣3=1.故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.若|x﹣2|与(y+3)2互为相反数,则x+y= ﹣1 .【考点】相反数;非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【分析】根据相反数的定义列式,然后根据非负数的性质列式求出x、y的值,再代入进行计算即可得解.【解答】解:∵|x﹣2|与(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义,绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.0【考点】绝对值.【分析】根据绝对值的意义得到x≤0.【解答】解:∵|x|=﹣x,∴x≤0.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.12.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b【考点】有理数大小比较;数轴.【分析】根据数轴和相反数比较即可.【解答】解:因为从数轴可知:a<0<b,|a|>|b|,所以a<﹣b<b<﹣a,故选B.【点评】本题考查了数轴,相反数的,有理数的大小比较的应用,能根据数轴得出﹣a和﹣b的位置是解此题的关键.13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个【考点】有理数大小比较;绝对值.【分析】根据绝对值的意义,可得答案.【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.【点评】本题考查了有理数比较大小,到原点的距离小于3.5的整数.14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【考点】绝对值;有理数.【分析】根据绝对值的性质、整数的定义、正数和负数的定义,对A、B、C、D四个选项进行一一判断,从而求解.【解答】解:A、∵﹣1是整数,但﹣1<0,故A错误;B、∵|a|=|﹣a|,∴互为相反数的两个数的绝对值相等,故B正确;C、∵0也是有理数,故C错误;D、∵|﹣1|=|1|,但﹣1≠1,故D错误;【点评】此题主要考查整数的定义、正数和负数的定义及绝对值的性质,当a>0时,|a|=a;当a ≤0时,|a|=﹣a,是一道基础题.15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【考点】绝对值;数轴.【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.答案:B.【点评】考查了绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离),要求熟悉绝对值定义和数轴上数的规律.16.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.7【考点】有理数大小比较.【分析】根据有理数的大小比较法则求出﹣6.1和1之间的整数即可.【解答】解:比﹣5.1大,而比1小的整数有﹣5,﹣4,﹣3,﹣2,﹣1,0,共6个.故选:C.【点评】本题考查了有理数的大小比较法则的应用,能求出所有的整数是解此题的关键,题目比较好,难度不大.17.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.【点评】本题考查的是倒数的定义,解答此题时要熟知0没有倒数这一关键知识.18.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|【考点】绝对值;相反数.【分析】分别化简各选项即可判断.【解答】解:A、﹣(﹣1.2)=1.2≠﹣1.2,此选项错误;B、+(﹣1.2)=﹣1.2,﹣(﹣1.2)=1.2,此选项错误;C、﹣(﹣1.2)=1.2,|﹣1.2|=1.2,此选项正确;D、﹣(﹣1.2)=1.2,﹣|﹣1.2|=﹣1.2,此选项错误,故选:C.【点评】本题主要考查相反数和绝对值,掌握相反数的表示方法及绝对值是解题的关键.19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz【考点】非负数的性质:绝对值;代数式求值.【分析】本题可根据非负数的性质解出x、y、z的值,再把x、y、z的值代入(x+1)(y﹣2)(z+3)中求解即可.【解答】解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得x=1,y=﹣2,z=3.∴(x+1)(y﹣2)(z+3)=﹣48.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②【考点】相反数.【专题】探究型.【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①∵只有符号不同的两个数叫做互为相反数,∴若a、b互为相反数,则a+b=0,故本小题正确;②∵a+b=0,∴a=﹣b,∴a、b互为相反数,故本小题正确;③∵0的相反数是0,∴若a=b=0时,﹣无意义,故本小题错误;④∵=﹣1,∴a=﹣b,∴a、b互为相反数,故本小题正确.故选C.【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ +5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{ ﹣2.04,﹣…}有理数集合{ +5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…}.【考点】有理数;绝对值.【分析】根据大于零的整数是正整数,小于或等于零的数是非正数,小于零的分数是负分数,有限小数或无限循环小数是有理数,可得答案.【解答】解:正整数集合{+5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{﹣2.04,﹣…}有理数集合{+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…};故答案为:+5,﹣(﹣7);0,﹣2.04,﹣|﹣1|,﹣;﹣2.04,﹣;+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0..【点评】本题考查了有理数,利用有理数的分类是解题关键,注意不能重复,也不能遗漏.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.【考点】有理数大小比较;数轴.【分析】先画出数轴并在数轴上表示出各数,再按照数轴的特点从左到右用小于号把各数连接起来.【解答】解:画出数轴并在数轴上表示出各数:按照数轴的特点用小于号从左到右把各数连接起来为:【点评】本题考查的是有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算括号中的运算,再从左到右依次计算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式被除数与除数换过,求出倒数,即可确定出原式的值;(7)原式利用减法法则变形,计算即可得到结果.【解答】解:(1)原式=6﹣6.25++﹣﹣=﹣;(2)原式=﹣×﹣×+×=﹣×(+﹣1)=﹣×=﹣;(3)原式=﹣14﹣40+18=﹣36;(4)原式=×(﹣)××=﹣;(5)原式=+2.5+1﹣2+1=﹣0.5;(6)∵(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,∴原式=﹣;(7)原式=﹣4.3﹣3.2+2.2﹣15.7=﹣23.2+2.2=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .【考点】规律型:数字的变化类.【专题】推理填空题.【分析】(1)观察题目所给等式,总结隐含的恒等变换,直接写出所求等式.(2)利用等式: =﹣将相邻两个正整数的积的倒数写成它们的倒数的差,然后计算出结果即可.【解答】解:(1)∵﹣=﹣=∴=﹣(2)①+++…+=1﹣+﹣+﹣+…+﹣=1﹣=②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=故答案为:(1)﹣;(2)①;②【点评】本题考查了数字的变化规律问题,解题的关键是能够总结出题目隐含的数字变换规律并加以运用七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.25.|﹣|等于()A.2 B.﹣2 C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)= .13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2= .15.若|x+2|+|y﹣3|=0,则xy= .16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= .17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= .三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选 D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 符号不同,数也不同,故A不是相反数;B 数的绝对值不同,故B不是相反数;C 符号相同,故C不是相反数;D 只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2 B.﹣2 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)= ﹣2 .【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2 .【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2= ﹣3 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy= ﹣6 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= 9900 .【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= 110 .【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4 )×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车212 辆;(2)产量最多的一天比产量最少的一天多生产自行车26 辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.。
人教版七年级上册数学《第一次月考》试卷(附答案)

人教版七年级上册数学《第一次月考》试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A .4.4×108B .4.40×108C .4.4×109D .4.4×10103.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13119B .13或15C .13D .157.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠59.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.多项式 3x 2+2 是______次______项式.2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.已知5x y =-,2xy =,计算334x y xy +-的值为_________.4.已知2a ﹣3b=7,则8+6b ﹣4a=________.5364 的平方根为________.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知实数x 、y 满足2x+3y=1.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足x >﹣1,y ≥﹣12,且2x ﹣3y=k ,求k 的取值范围.3.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .4.如图,△ABC 中,∠ACB=90°,AD 平分∠BAC ,DE ⊥AB 于E ,(1)若∠BAC=50°,求∠EDA 的度数;(2)求证:直线AD 是线段CE 的垂直平分线.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、D5、A6、C7、C8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、二 二2、3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3、74、-65、±26、4.三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、(1)y=123x-;(2)x <﹣1;(3)﹣5<k ≤4.3、略4、(1)65°(2)证明略5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、(1)驾驶员在公司的南边10千米处;(2)在这个过程中共耗油4.8升;(3)驾驶员共收到车费68元。
人教版七年级上册数学月考试卷(带答案)

班级:姓名:1 .已知m,n 为常数,代数式2x4y+mx|5-n|y+xy 化简之后为单项式,则m n 的值共有( )A .1 个B .2 个C .3 个D .4 个2.如图,直线AB∥CD,则下列结论正确的是( )A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180 °D. ∠3+∠4=180°3.按如图所示的运算程序,能使输出y 值为1 的是( )A.m = 1,n = 1 B.m = 1,n = 0 C.m = 1,n = 2 D.m = 2,n = 1 4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有 100 个和尚分100 个馒头,如果大和尚1 人分3 个,小和尚3 人分1 个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A.x+ 3(100 - x)=100 B.3x + 100 - x =100 3 3C.x- 3 (100 - x)= 100 D.3x - 100 - x = 100 3 35.如图所示,已知∠AOB=64°,OA 平分∠AOB,OA 平分∠AOA,OA 平分∠1 2 1 3AOA ,OA 平分∠AOA,则∠AOA 的大小为( )2 43 4A.1 ° B.2 ° C.4 ° D.8 °6.下列图形中,不能通过其中一个四边形平移得到的是( )A. B. C. D.7.在数轴上,点A,B 在原点O 的两侧,分别表示数a,2,将点A 向右平移1 个单位长度,得到点C.若CO=BO,则a 的值为( )A.-3 B.-2 C.-1 D.18.已知多项式2x2+bx+c 分解因式为2(x-3)(x+1),则b,c 的值为().A .b =3,c =-1B .b =-6 ,c =2C .b =-6 ,c =-4D .b =-4 ,c =-69.如图,已知AE 是ΔABC的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A.5 ° B.13 ° C.15 ° D.20 °10.已知三条不同的射线OA、OB、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=-1 ∠AOB,其中能确定OC 平分∠AOB的2有( )A.4 个 B.3 个 C.2 个 D.1 个1.8 的立方根是.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S ,S ,S ,S ,则S1 2 3 4 1 +S +S +S = .2 3 43.如图为6 个边长相等的正方形的组合图形,则∠1+∠2+∠3=4.一个等腰三角形的两边长分别为4cm 和9cm,则它的周长为c m. 5.若一个数的平方等于5,则这个数等于.5.如图,长方体的底面边长分别为 1cm 和 3cm,高为 6cm.如果用一根细线从点A 开始经过4 个侧面缠绕一圈到达点B,那么所用细线最短需要c m.1.解方程:1──= ──3 2(3x + y = 4m + 22.已知关于x ,y 的二元一次方程组〈的解满足x + y < 3 ,求满足l x _ y = 6条件的m 的所有非负整数值.3.如图所示,宽为20 米,长为32 米的长方形地面上,修筑宽度为x 米的两条互相垂直的小路,余下的部分作为耕地,如果要在耕地上铺上草皮,选用草皮的价格是每平米a 元,_ 3 _ 5x 3x +1(1)求买草皮至少需要多少元?(用含a,x 的式子表示)(2)计算a=40,x=2 时,草皮的费用.4.如图,四边形ABCD 中,∠A=∠C=90°,BE,DF 分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE 与DF 有什么关系?请说明理由.5.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D 的圆心角的度数;(3)若该中学有2000 名学生,请估计其中有多少名学生能在1.5 小时内完成家庭作业?6.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3 个A 奖品和2个B 奖品共需120 元;购买5 个A 奖品和4 个B 奖品共需210 元.(1)求A,B 两种奖品的单价;(2)学校准备购买A,B 两种奖品共30 个,且A 奖品的数量不少于B 奖品数量1的.请设计出最省钱的购买方案,并说明理由.31、C2、D3、D4、B5、C6、D7、A8、D9、C10、D1、-22、a+c3、135 °4、22士55 、6、101、x=3.2、满足条件的m 的所有非负整数值为:0,1,23、(1)(640-52x+ x2)a;(2)21600 元.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)补图见解析;(2)27°;(3)1800 名6、(1)A 的单价30 元,B 的单价 15 元(2)购买A 奖品8 个,购买B 奖品22 个,花费最少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册月考测试题(含答案解析)
考场号: 班级: 学生姓名: 座位号:
–—— – — – — –– — – — – — 密 — – — – — – — – — – — – — – — – 封 — – — – — – — – — – — – — – — – 线 — – — – — – —– — – —— – — – — –— – — – —
–
XX 中学 年七年级上期月考
数学试卷
一、选择题(每小题3分,8道题,共24分)
1、下列说法正确的是 ( ) A.正数和负数互为相反数 B.正数的相反数是它本身
C.任何一个有理数都有相反数
D.数轴上原点两边的两个点表示的数互为相反数
2、已知点A 、B 都在同一条数轴上,点A 表示-2,又已知点B 和点A 相距5个单位长度,则点B 表示的数是 ( ) A .3 B .-7 C .7或-3 D .-7或3
3、下列关于-a 的叙述正确的是 ( ) A .正数 B .负数 C .零 D .以上都有可能
4、有理数a ,b ,c 在数轴上的位置如图所示,则化简 |a +b|-|b -1|-|a -c|-|1-c|得的结果是( ) A .-2a B .-2 C .2c-2a-2 D .2b-2c
5、下列各组单项式中属于同类项的是( )
A.2222m n a b 和
B.66xyz xy 和
C.
2234x y y x 和 D.ab ba -和
6、)]([n m ---去括号得( )
A 、n m -
B 、n m --
C 、n m +-
D 、n m +
7、下列方程中是一元一次方程的是( )
A .23x y =
B .()7561x x +=-
C .()21
112
x x +-=
D .1
2x x
-=
8、把方程1
123
x x --
=去分母后,正确的是( )。
A 、32(1)1x x --= B 、32(1)6x x --= C 、3226x x --= D 、3226x x +-= 二、填空题(每小题3分,7道题,共21分)
9、水星是八大行星中距离太阳最近的一颗,水星表面白天的温度最高可达零上
400℃,记作+400℃,夜间最低可达零下270℃,记作-270℃,那么白天与夜间温差为 _℃。
10、如图,是一个正方形纸盒的展开图,在其中的四个正方形内 标有数字1,2,3和-3,要在其余的正方形内分别填上―1,―2, 使得按虚线折成的正方体后,相对面上的两个数互为相反数,则A 处应填 。
11、绝对值不大于4的整数有_______个。
12、迎迎头上有大约1500000根头发,用科学记数法表示为 根
13、62m x y -与323
5
n x y 是同类项,则m n =________。
14、代数式2x +y 的值是-4,则4x+2y+9的值是 。
15、x 的三倍减去7,等于它的两倍加上5,用方程表示为_______。
三、解答题(共39分)
16、运算题:(每小题4分,4道题,共16分) (1) )5.0()6
1
1()212(65+----+ (2) -10+8÷(-2)2-3×(-4)-15
(3) ()432040x x --+= (4)
223
146
y y +--=
17、,a b 互为相反数,,c d 互为倒数,m =4,且0m >,求2007
2()23a cd b m
-+-的值。
(本小题5分)
18、已知2
2
2
2
2,3A a ab b B a ab b =-+=---,求:23A B -。
(本小题6分)
19、已知()2
310a b -++=,代数式
22b a m -+的值与1
2
b a m -++1相等,求m 。
(本小题6分)
20、观察下面三行数:(本小题6分)
-2,4,-8,16,-32,64,…;① -1,5,-9,13,-17,21,…;② -1,4,-9,16,-25,36,….③ (1)第①行第十个数是_______; (2)第②行第十个数是________;
(3)取每行数的第十个数,计算这三个数的和是_________。
四、应用题(共36分)
21、(此题12分)某单位急需用车,但又不需买车,他们准备和一个个体车主或一国营出租公司中的一家签定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元;
(1)这个单位若每月平均跑1500千米,租用哪个公司的车比较合算? (2)每月跑多少千米两家公司的费用一样?
(3)若你是单位负责人,该如何根据每月所跑路程作出抉择? 22、(此题12分)声音在空气中传播速度v (米/秒)与温度t(℃)的关系如下表:
(1)观察表格,你能发现声音在空气中的传播速度v 与温度t 有怎样的关系吗?
(2)当t=2.5℃时,求声音的传播速度 (3)当v=337米/秒时,求此时的温度?
23 、(此题12分)在如图所示的2017年11月份的日历中,用一个长方形的方框圈出任意3 X 3个数
如果从左下角到右上角的“对角线”上的3个数字的和为42,这九个数的和为 这九个日期中的最后一天是 月 号
(3)在这个月的日历中,用方框能否圈出“总和为108”的9个数?如果能,请求出这9个日期分别是几号;如果不能,请推测下几个月的日历中,能否用方框圈出,并推测圈出的9个数中最后一天是星期几?
XX 中学2017---2018学年度上期月考
数学试卷参考答案
1
3
2]2
125[67652
1
672565-=-=--++=+----+=)()()()()(31-12-81
-12--2-101-4- x 3-4÷810=+=+=+-=)()(04x 360-x 4=++123-y 22-2y 3=+)()(56
x 7=126y 4-6y 3=++8x =0y =-0
y =2
22
2222222b 5ab 5a 5b 3ab 9a 3b 2ab 4-a 2b -ab 3-a 3-b ab 2-a 2++=++++=-+=)()(
1
m a -b 21
2a -b 2++=+1m a -b 21
2a -b 2++=+
三解答题
16、(1)解:原式 (2)解:原式
(3)解: (4)解:
(16题共4小题,每题4分,共16分) 17、解:由题意可得:a+b=0 c.d=1 m=4
13
12-1-04x 31-0x 24m 1cd 0b a m
3cd -b a 2m 3cd -b 2a 2m 3-b 2cd -a 22007200720072007
-==-===+-+=-+=+带入得、、将)()()()(
17、解:
18、解:由题意可得a-3=0 、 b+1=0, 所以a=3、b=-1
将a=3、b=-1带入 得
m
25- m 5-m 25
-2m 5-+=++=+0
m =n
2-)
(]1-n 41[1-n )()(+2
n
.n 1-)(
2000 x 2x
+2000=3x =)()()(108
9x 108=)8+x (+)7+x (+)6+x (+)1+x (+x +1)-x (6-x +7-x +8-x =+1
m 3-1-x 21
2m 3-1-x 2++=+)()(
19、(1)、1024 规律: (2)、37 规律:
(3)、1161 第三行规律: 21、解:(1)个体:1500x3=4500(元) 国营:2000+1500x2=5000(元)
(2)设每月跑x 千米两家公司费用一样
答:每月跑2000千米时两家公司费用一样
(3)由(1)、(2)分析可得:
当每月跑小于2000千米时,选择个体比较划算 当每月跑等于2000千米时,两家公司均划算 当每月跑大于2000千米时,选择国营比较划算
22、解:(1)观察图标可知:温度t 与传播速度v 的关系为 V=331+0.6t
(2)将t=2.5带入V=331+0.6t 得: v=331+0.6x2.5=332.5 (3)
将v=337带入V=331+0.6t 得: 337=331+0.6t
解得:t=10
23、解:(1)126 11月22号
(2)
设九个数中中间数字为x 则其他数字分别为x-8、x-7、x-6、
x-1、x+1、x+6、x+7、x+8,由题意列得方程:。