现代时间序列分析模型

合集下载

现代城市人口发展趋势的时间序列预测模型

现代城市人口发展趋势的时间序列预测模型

现代城市人口发展趋势的时间序列预测模型1. 引言现代城市人口的发展趋势对于城市规划、社会经济发展等方面具有重要意义。

时间序列预测模型是一种重要的工具,可以帮助我们预测未来城市人口的变化趋势。

本文将介绍现代城市人口发展趋势的时间序列预测模型,并分析其在实际应用中的价值和局限性。

2. 现代城市人口发展趋势分析在现代社会,城市化进程不断加快,城市人口规模不断扩大。

为了更好地了解和掌握现代城市人口发展趋势,我们可以通过对历史数据进行分析来揭示一些规律和特点。

通过统计数据和相关研究报告,我们可以了解到不同地区、不同国家的城市化进程存在一定差异,但总体上呈现出稳定增长的态势。

3. 时间序列预测模型介绍时间序列预测是一种基于历史数据进行未来值预测的方法。

常用的时间序列预测模型包括移动平均法、指数平滑法、ARIMA 模型等。

这些模型通过对历史数据的分析和建模,可以预测未来一段时间内的数值变化趋势。

4. 移动平均法移动平均法是一种简单有效的时间序列预测模型。

它通过计算一定时间段内数据的平均值来预测未来数值。

移动平均法适用于数据变化较为平稳的情况,对于长期趋势和周期性变化较为明显的数据,效果较好。

5. 指数平滑法指数平滑法是一种利用历史数据赋予不同权重进行预测的方法。

它通过对历史数据进行加权计算,赋予近期数据更高权重,从而更好地反映近期趋势。

指数平滑法适用于短期波动较大、长期趋势不明显的情况。

6. ARIMA 模型ARIMA 模型是一种常用于时间序列分析和预测的方法。

ARIMA 模型结合了自回归(AR)和移动平均(MA)两个部分,并考虑了时间序列中存在的趋势、季节性等因素。

ARIMA 模型适用于具有明显趋势和季节性变化的时间序列。

7. 时间序列预测模型的应用案例时间序列预测模型在现代城市人口发展趋势的预测中具有广泛应用。

例如,可以利用移动平均法对城市人口的年均增长率进行预测,以帮助城市规划部门制定合理的发展规划。

指数平滑法可以用于对短期内人口波动进行预测,以帮助领导部门制定灵活的措施。

时间序列分析模型课件(PPT108张)

时间序列分析模型课件(PPT108张)

确定性时序分析的目的
• 克服其它因素的影响,单纯测度出某一个 确定性因素对序列的影响 • 推断出各种确定性因素彼此之间的相互作 用关系及它们对序列的综合影响
4-3-2 时间序列趋势分析
• 目的
–有些时间序列具有非常显著的趋势,我们分析 的目的就是要找到序列中的这种趋势,并利用 这种趋势对序列的发展作出合理的预测
随机性变化分析: AR、MA、ARMA模型
Cramer分解定理(1961)
• 任何一个时间序列 { x t }都可以分解为两部分的叠 加:其中一部分是由多项式决定的确定性趋势成 分,另一部分是平稳的零均值误差成分,即
x t t t

d j0
jt j
(B)at
随机性影响
确定性影响
对两个分解定理的理解
(2)季节性周期变化 受季节更替等因素影响,序列依一固 定周期规则性的变化,又称商业循环。 采用的方法:季节指数; (3)循环变化 周期不固定的波动变化。
(4)随机性变化
由许多不确定因素引起的序列变化。 随机性变化分析: AR、MA、ARMA模型
确定性变化分析 时间序列分析
趋势变化分析 周期变化分析 循环变化分析
(1 )
0 1 , 2 j
j0

2 ~ WN ( 0 , (2) t )
( V , ) 0 , t s (3 ) E t s
确定性序列与随机序列的定义
• 对任意序列 而言,令 序列值作线性回归 关于q期之前的
2 ( t ) q 其中{ t } 为回归残差序列, Var
参数估计方法
线性最小二乘估计
Tt ab
t
a ln a b ln b
b t T t a

时间序列分析简介与模型

时间序列分析简介与模型

时间序列分析简介与模型时间序列分析是一种统计分析方法,用于研究时间序列数据的发展趋势、周期性和随机性。

时间序列数据是按照时间顺序排列的一系列观测值,如股票市场的每日收盘价、气温的每月平均值等。

时间序列分析可以帮助我们理解数据的变化规律,预测未来的趋势,并支持决策和规划。

在时间序列分析中,一般将数据分为三个主要成分:趋势、季节性和随机扰动。

趋势是序列长期的增长或下降趋势,季节性是周期性的波动,随机扰动是非系统性的噪声。

为了进行时间序列分析,我们需要选择适当的模型。

常见的时间序列模型包括平滑模型、自回归移动平均模型(ARMA)、季节性自回归移动平均模型(SARMA)、季节性自回归整合移动平均模型(SARIMA)和指数平滑模型等。

平滑模型适用于没有趋势和季节性的数据。

其中,移动平均法是一种常用的平滑方法,它通过计算观测值的移动平均值来估计趋势。

指数平滑法是一种适应性的平滑方法,根据最新的观测值赋予较大的权重,较旧的观测值则被较小的权重所影响。

自回归移动平均模型(ARMA)是一种常用的线性模型,它将序列的当前值与它的滞后值和滞后误差联系起来,以预测序列的未来值。

ARMA模型的参数包括自回归阶数(p)和移动平均阶数(q),通过拟合模型可以估计这些参数。

季节性自回归移动平均模型(SARMA)是一种在季节性数据上拓展了ARMA模型的模型。

它引入了季节性序列和季节性滞后误差,以更准确地预测季节性数据的未来值。

季节性自回归整合移动平均模型(SARIMA)是ARIMA模型在季节性数据上的扩展。

ARIMA模型是一种广义的线性模型,包括自回归、差分和移动平均三个部分。

ARIMA模型的参数包括自回归阶数(p)、差分阶数(d)和移动平均阶数(q)。

SARIMA模型加入了季节性差分和季节性滞后误差,以更好地拟合季节性数据。

时间序列分析的核心目标是对未来趋势进行预测。

通过拟合适当的时间序列模型,我们可以估计模型的参数,并使用已知的数据来预测未来时间点的值。

时间序列分析模型概述

时间序列分析模型概述

时间序列分析模型概述时间序列分析是一种统计方法,用于研究时间序列数据中的模式、趋势和周期性。

它基于时间序列数据的特点,通过建立数学模型来预测未来的数值。

时间序列数据是按照时间顺序排列的一系列观测值,它们通常用于描述一种随时间变化的现象。

例如,股票价格、气温、销售数据等都是时间序列数据。

时间序列分析的目标是通过对已知的观测值进行分析,找出数据中的规律,并利用这些规律来预测未来的数值。

时间序列分析模型通常可以分为两类:基于统计方法的模型和基于机器学习的模型。

基于统计方法的时间序列模型包括AR(自回归模型)、MA (移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。

这些模型基于不同的假设和理论,通过寻找数据中的自相关和移动平均性质,来建立模型并进行预测。

它们常常需要对数据进行平稳性检验和参数估计。

基于机器学习的时间序列模型包括神经网络模型、支持向量机模型和深度学习模型等。

这些模型不同于统计方法,它们通过学习时间序列数据中的特征和模式来建立预测模型。

这些模型通常需要大量的数据进行训练,并且需要对模型进行调参。

除了上述模型,时间序列分析还可以包括季节性调整模型、外生变量模型等。

季节性调整模型是用于处理具有明显季节性的时间序列数据,它通过分解数据中的趋势和季节成分,来消除季节性的影响,从而提高预测的准确性。

外生变量模型是将其他影响因素(例如经济指标、政策变化等)引入时间序列模型中,以更全面地考虑影响因素对数据的影响。

时间序列分析模型在经济学、金融学、气象学等领域有着广泛的应用。

例如,在金融领域,时间序列分析模型可以用于预测股票价格和汇率等,帮助投资者做出更准确的投资决策。

在气象学领域,时间序列分析模型可以用于预测天气变化,从而为农业生产和灾害预防提供支持。

总之,时间序列分析是一种重要的数据分析方法,用于处理时间序列数据并进行预测。

它采用统计方法和机器学习方法来建立模型,并通过对数据的分析来找出数据中的规律和趋势。

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型
• 假设序列如下
xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析

N
束 N

差分 运算
拟合
ARMA 模型

时间序列模型案例分析

时间序列模型案例分析

时间序列模型案例分析时间序列模型案例分析: 新冠疫情趋势预测背景:新冠疫情自2020年开始全球流行,给世界各国的医疗体系和经济造成了巨大冲击。

为了有效应对疫情,政府和医疗机构需要准确预测疫情未来的趋势,并做出相应的决策和应对措施。

数据:本案例使用了每天的新增确诊病例数作为时间序列数据。

数据包括了从疫情开始到某一时间点的每天新增病例数,以及历史病例数、疫情防控政策等其他相关因素。

目标:利用时间序列模型预测未来疫情的趋势,帮助政府和医疗机构制定合理的防控策略。

方法:我们采用了ARIMA模型(自回归移动平均模型)进行疫情趋势预测。

ARIMA模型是一种广泛应用于时间序列分析的经典模型,可对时间序列数据进行模拟和预测。

步骤:1. 数据预处理: 首先,我们进行了数据清洗和转换,确保数据的准确性和一致性。

我们还对数据进行了平稳性检验,如果数据不平稳,则需要进行差分操作。

2. 模型选择: 然后,我们选择了合适的ARIMA模型。

模型选择的关键是要找到合适的参数p、d和q,它们分别代表了自回归阶数、差分阶数和移动平均阶数。

3. 参数估计和模型拟合: 我们使用最大似然估计方法来估计模型的参数,并对模型进行拟合。

拟合后,我们对模型进行残差分析,以检验模型的拟合效果。

4. 模型评估和预测: 接下来,我们使用已有的数据来评估模型的预测效果。

我们将模型的预测结果与实际数据进行比较,并计算误差指标,如均方根误差(RMSE)和平均绝对误差(MAE)。

最后,我们使用拟合好的模型来进行未来疫情的趋势预测。

结果与讨论:经过模型拟合和评估,我们得到了一个较为准确的ARIMA模型来预测未来疫情的趋势。

根据模型的预测结果,政府和医疗机构可以制定对应的防控策略,以应对疫情的发展。

结论:时间序列模型在新冠疫情趋势预测中发挥了重要作用。

通过对历史疫情数据的分析和建模,我们可以预测未来疫情的走势,并相应地采取措施。

然而,需要注意的是,时间序列模型是一种基于过去数据的预测方法,其预测精度可能受到多种因素的影响。

时间序列分析与ARIMA模型

时间序列分析与ARIMA模型

时间序列分析与ARIMA模型时间序列分析是一种研究时间上连续测量所构成的数据的方法。

它可以用来分析数据中的趋势、周期性和随机性,并预测未来的走势。

ARIMA(自回归滑动平均模型)是时间序列分析中常用的模型之一。

本文将介绍时间序列分析的基本概念以及ARIMA模型的原理和应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一组连续观测数据。

在时间序列分析中,我们常常关注序列中的趋势(trend)、季节性(seasonality)和周期性(cycle)等特征。

趋势是指长期上升或下降的走势;季节性是指数据在相同周期内波动的规律性;周期性是指超过一年的时间内出现的规律性波动。

二、ARIMA模型的原理ARIMA模型是由自回归(AR)和滑动平均(MA)模型组成的。

AR模型用过去的观测值来预测未来的值,滑动平均模型则用过去的噪声来预测未来的值。

ARIMA模型是将这两种模型结合起来,对时间序列进行建模和预测。

ARIMA模型包括三个主要部分:自回归阶数(p)、差分阶数(d)和滑动平均阶数(q)。

p表示模型中的自回归项数目,d表示需要进行的差分次数,q表示模型中的滑动平均项数目。

通过对时间序列的观测值进行差分,ARIMA模型可以将非平稳的序列转化为平稳的序列。

然后,可以通过对平稳序列的自回归和滑动平均建模,预测未来的值。

三、ARIMA模型的应用ARIMA模型在实际应用中被广泛使用。

它可以用于经济学、金融学、气象学等领域中的时间序列预测和分析。

以股票市场为例,投资者可以利用ARIMA模型对历史股价进行分析,预测未来股价的走势。

在气象学中,ARIMA模型可以用于预测未来的天气情况。

除了ARIMA模型,时间序列分析还包括其他模型,如季节性分解、移动平均、指数平滑等。

这些模型都有各自的优点和应用领域。

在实际应用中,根据不同的数据特点和研究目的,选择合适的模型进行分析和预测是十分重要的。

总结时间序列分析和ARIMA模型是研究时间数据的重要方法。

时间序列模型及其应用分析

时间序列模型及其应用分析

时间序列模型及其应用分析时间序列是一系列时间上连续的数据点所组成的序列,其中每个数据点都表示了某一特定时刻的某个特征。

这些数据点可以是均匀间隔的,也可以是不均匀间隔的。

时间序列模型是对时间序列数据进行分析和预测的一种方法,它可以用来预测未来的趋势、季节性以及周期性变化等。

时间序列模型应用广泛,包括经济学、金融学、气象学、生态学、医学等领域。

时间序列分析的三个方面时间序列模型的分析过程可以分为三个方面:描述性分析、模型建立和模型预测。

描述性分析是对时间序列数据进行探索性的分析,以了解数据的整体特征。

常用的描述性统计学方法有均值、方差、标准差、自相关和偏自相关函数等。

作为对比,我们还可以对比不同时间序列数据之间的相关性、差异性等指标。

模型建立则是对时间序列进行拟合,以找出可以描述时间序列数据模式的数学模型。

时间序列数据的核心特征是时间的序列性质,因此模型的选择需要充分考虑到时间因素。

常用的时间序列模型包括AR、MA、ARMA、ARIMA和季节性模型等。

这些模型可以用自回归、移动平均、季节性变量等手段描述时间序列中可能出现的趋势和周期性变化。

预测也是时间序列模型分析的重要一环,它可以帮助我们预测未来的趋势和变化。

预测分析通常需要对历史数据进行处理、建立模型、进行模型检验和预测。

预测结果应当与实际值进行比较,以评估预测模型的准确性和可靠性。

常规时间序列分析方法:ARMA模型ARMA模型是一个经典时间序列预测模型。

ARMA模型的基本思想是把时间序列变成可以预测的序列,根据历史数据样本建立恰当的模型,预测未来数据的值。

ARMA模型由自回归过程(AR)和移动平均过程(MA)组成,AR过程考虑的是某一时刻的过去的信息对当前时刻的影响,MA过程关注的是随机变量的移动平均值对当前随机变量的影响。

ARMA模型的具体表现形式是:$$ Y_t = \alpha_1 Y_{t-1} + \alpha_2 Y_{t-2} + ... +\alpha_p Y_{t-p} + \epsilon_t + \beta_1 \epsilon_{t-1} + \beta_2 \epsilon_{t-2}+ ... +\beta_q \epsilon_{t-q} $$其中,Yt表示时间序列的实际值,α1到αp表示历史数据对当前时刻的影响,εt到εt-q表示误差项,β1到βq表示误差项对当前时刻的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—△GDPP
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—△GDPP
•从△GDPP(-1)的 参数值看,其t统 计量的值大于临界 值(单尾),不能 拒绝存在单位根的 零假设。同时,由 于时间项项T的t统 计量也小于AFD 分布表中的临界值 (双尾),因此不 能拒绝不存在趋势 项的零假设。需进 一步检验模型2 。 在1%置信度下。
1、问题的提出
• 经典回归模型(classical regression model)是建立在 平稳数据变量基础上的,对于非平稳变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。
PPT文档演模板
现代时间序列分析模型
• ADF检验模型
•零假设 H0:=0 备择假设 H1:<0
PPT文档演模板
•模型 1 •模型2 •模型3
现代时间序列分析模型
• 检验过程
–实际检验时从模型3开始,然后模型2、模型1。 –何时检验拒绝零假设,即原序列不存在单位根,为
平稳序列,何时停止检验。 –否则,就要继续检验,直到检验完模型1为止。
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—GDPP
PPT文档演模板
•从GDPP(-1) 的参数值看, 其t统计量的 值大于临界值 (单尾),不 能拒绝存在单 位根的零假设。 同时,由于常 数项的t统计 量也小于ADF 分布表中的临 界值(双尾), 因此不能拒绝 不存在趋势项 的零假设。需 进一步检验模 型1。
– 只要其中有一个模型的检验结果拒绝了零假设,就 可以认为时间序列是平稳的;
– 当三个模型的检验结果都不能拒绝零假ห้องสมุดไป่ตู้时,则认 为时间序列是非平稳的。
PPT文档演模板
现代时间序列分析模型
3 、 例 : 检 验 1978~2000 年 间 中 国 支 出 法 GDP时间序列的平稳性
• 经过偿试,模型3取2阶滞后:
• 大多数非平稳的时间序列一般可通过一次或多 次差分的形式变为平稳的。
• 但也有一些时间序列,无论经过多少次差分, 都不能变为平稳的。这种序列被称为非单整的 (non-integrated)。
PPT文档演模板
现代时间序列分析模型
三、平稳性的单位根检验
(unit root test)
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—GDPP
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—GDPP
•从GDPP(-1) 的参数值看, 其t统计量的 值大于临界 值(单尾), 不能拒绝存 在单位根的 零假设。至 此,可断定 GDPP时间 序列是非平 稳的。
•宽平稳、广义平稳
PPT文档演模板
现代时间序列分析模型
• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2
• 随机游走的一阶差分(first difference)是平稳 的: Xt=Xt-Xt-1=t ,t~N(0,2)
–例如:如果有两列时间序列数据表现出一致的变化趋势 (非平稳的),即使它们没有任何有意义的关系,但进 行回归也可表现出较高的可决系数。
PPT文档演模板
现代时间序列分析模型
2、平稳性的定义
• 假定某个时间序列是由某一随机过程
(stochastic process)生成的,即假定时间序
列{Xt}(t=1, 2, …)的每一个数值都是从一个 概率分布中随机得到,如果满足下列条件:
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—△2GDPP
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—△2GDPP
•从 △2GDPP(-1) 的参数值看, 其统计量的值 小于临界值 (单尾),拒 绝存在单位根 的零假设。至 此,可断定 △2GDPP时 间序列是平稳 的。 •GDPP是I(2) 过程。
• 检验原理与DF检验相同,只是对模型1、2、3 进行检验时,有各自相应的临界值表。
• 检验模型滞后项阶数的确定:以随机项不存在 序列相关为准则。
PPT文档演模板
现代时间序列分析模型
PPT文档演模板
现代时间序列分析模型
PPT文档演模板
现代时间序列分析模型
• 一个简单的检验过程:
– 同时估计出上述三个模型的适当形式,然后通过 ADF临界值表检验零假设H0:=0。
•系数的t>临界值, 不能拒绝存在单位根
的零假设。
•LM(1)=0.92, LM(2)=4.16
•小于5%显著性水平下自由度分别 为1与2的2分布的临界值,可见不 存在自相关性,因此该模型的设定
是正确的。
•时间T的t统计量小于ADF临界 值,因此不能拒绝不存在趋势
项的零假设。
PPT文档演模板
•需进一步检验模型2 。
• 为什么将DF检验扩展为ADF检验?
• DF检验假定时间序列是由具有白噪声随机误差 项的一阶自回归过程AR(1)生成的。但在实际检 验中,时间序列可能由更高阶的自回归过程生 成,或者随机误差项并非是白噪声,用OLS法 进行估计均会表现出随机误差项出现自相关, 导致DF检验无效。
• 如果时间序列含有明显的随时间变化的某种趋 势(如上升或下降),也容易导致DF检验中的 自相关随机误差项问题。
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现— △GDPP
• 如果将置信度从1%降低至10%,将拒绝存在单 位根和不存在时间趋势项的假设,得到△GDPP 是平稳序列的结论,进而得到GDPP是I(1)序列。
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—△GDPP
– 均值E(Xt)=是与时间t 无关的常数;
– 方差Var(Xt)=2是与时间t 无关的常数;
– 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与 时间t 无关的常数;
• 则称该随机时间序列是平稳的(stationary), 而该随机过程是一平稳随机过程(stationary stochastic process)。
PPT文档演模板
现代时间序列分析模型
§2 协整与误差修正模型
一、长期均衡与协整分析 二、协整检验—EG检验 三、协整检验—JJ检验 四、误差修正模型
PPT文档演模板
现代时间序列分析模型
一、长期均衡与协整分析 Equilibrium and Cointegration
PPT文档演模板
现代时间序列分析模型
现代时间序列分析模型
1、DF检验(Dicky-Fuller Test)
•随机游走,非平稳
•对该式回归,如果确实 发现ρ=1,则称随机变
量Xt有一个单位根。
•等价于通过该式判 断是否存在δ=0。
• 通过上式判断Xt是否有单位根,就是时间序列 平稳性的单位根检验。
PPT文档演模板
现代时间序列分析模型
• 一般检验模型
•从△GDPP(1)的参数值看, 其统计量的值 大于临界值 (单尾),不 能拒绝存在单 位根的零假设。 至此,可断定 △GDPP时间 序列是非平稳 的。
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—△2GDPP
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—△2GDPP
PPT文档演模板
•从GDPP(-1) 的参数值看, 其t统计量的值 大于临界值 (单尾),不 能拒绝存在单 位根的零假设。 同时,由于时 间项T的t统计 量也小于ADF 分布表中的临 界值(双尾), 因此不能拒绝 不存在趋势项 的零假设。需 进一步检验模 型2 。
现代时间序列分析模型
ADF检验在Eviews中的实现—GDPP
• 由于t统计量的向下偏倚性,它呈现围绕小于零均 值的偏态分布。
PPT文档演模板
现代时间序列分析模型
• 如果t<临界值,则拒绝零假设H0: =0,认为 时间序列不存在单位根,是平稳的。
•单尾检验
PPT文档演模板
现代时间序列分析模型
2、ADF检验(Augment Dickey-Fuller test)
PPT文档演模板
现代时间序列分析模型
• 经试验,模型1中滞后项取2阶:
•LM检验表明模型残差项不存在自相关性,因此模型的设定 是正确的。
GDPt-1参数值的t统计量为正值,大于临界值,不 能拒绝存在单位根的零假设。
•可以断定中国支出法GDP时间序列是非平稳的。
•为了判断它的单整阶数,需要对它的差分序列进 行检验
现代时间序列分析模型
PPT文档演模板
2020/11/23
现代时间序列分析模型
• 经典时间序列分析模型:
– MA、AR、ARMA – 平稳时间序列模型 – 分析时间序列自身的变化规律
• 现代时间序列分析模型:
– 分析时间序列之间的关系 – 单位根检验、协整检验 – 现代宏观计量经济学
PPT文档演模板
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现
PPT文档演模板
现代时间序列分析模型
ADF检验在Eviews中的实现—GDPP
PPT文档演模板
现代时间序列分析模型
相关文档
最新文档