2019-2020学年辽宁省大连市中考数学二模试卷(有标准答案)

合集下载

辽宁省大连市2019-2020学年中考数学二模试卷含解析

辽宁省大连市2019-2020学年中考数学二模试卷含解析

辽宁省大连市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣72.数据”1,2,1,3,1”的众数是( )A.1 B.1.5 C.1.6 D.33.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等4.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定5.12的相反数是()A.12B2﹣1 C2D.﹣16.满足不等式组21010xx-≤⎧⎨+>⎩的整数解是()A.﹣2 B.﹣1 C.0 D.17.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上8.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是()A.2 B.5C.25D.59.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cm B.4cmC.5cm D.3cm10.已知x2-2x-3=0,则2x2-4x的值为()A.-6 B.6 C.-2或6 D.-2或3011.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本12.如果关于x的分式方程1311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:-3x2+3x=________.14.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.15.化简1111x x -+-的结果是_______________. 16.方程31x -=4x 的解是____. 17.如图,PA ,PB 分别为O e 的切线,切点分别为A 、B ,P 80∠=o ,则C ∠=______.18.已知 a 、b 是方程 x 2﹣2x ﹣1=0 的两个根,则 a 2﹣a+b 的值是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 点F ,连接BE .(1)求证:AC 平分∠DAB ;(2)求证:PC =PF ;(3)若tan ∠ABC =43,AB =14,求线段PC 的长.20.(6分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AD 平分∠CAE 交⊙O 于点D ,且AE ⊥CD ,垂足为点E .(1)求证:直线CE 是⊙O 的切线.(2)若BC =3,CD =2,求弦AD 的长.21.(6分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x 之间的函数表达式;求小张与小李相遇时x的值.22.(8分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.23.(8分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)24.(10分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线(参考数据:≈1.414,≈1.732)上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).25.(10分)综合与探究:如图1,抛物线y=﹣33x2+233x+3与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣3).(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x 轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t (t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E 为顶点的四边形为矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.26.(12分)计算:|﹣913)0﹣(12)﹣1.27.(12分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.2.A【解析】【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A.【点睛】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.3.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.4.B.【解析】试题解析:∵,∴根据点到圆心的距离等于半径,则知点在圆上.故选B .考点:1.点与圆的位置关系;2.坐标与图形性质.5.B【解析】【分析】根据相反数的的定义解答即可.【详解】根据a 的相反数为-a 即可得,11.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.6.C【解析】【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】210 10x x -≤⎧⎨+⎩①>② ∵解不等式①得:x≤0.5,解不等式②得:x >-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.7.C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.C【解析】【分析】作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.【详解】解:作OH⊥AB于H,OG⊥CD于G,连接OA,由相交弦定理得,CE•ED=EA•BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE•ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由题意得,四边形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=225+=,AH OH∴⊙O的直径为25,故选C.【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.9.A【解析】【分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选A.【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.10.B【解析】方程两边同时乘以2,再化出2x2-4x求值.解:x2-2x-3=02×(x2-2x-3)=02×(x2-2x)-6=02x2-4x=6故选B .11.C【解析】【分析】设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可.【详解】解:设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意,得:()()1254033006813xy xy x y =⎧⎨+-+=-+⎩, 解得:2515x y =⎧⎨=⎩, 答:甲种笔记本买了25本,乙种笔记本买了15本.故选C .【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x 、y 的二元二次方程组是解答此题的关键. 12.D【解析】 解:2()43412a x x x x ①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a ﹣3x ﹣3=1﹣x ,把a=﹣3代入整式方程得:﹣3x ﹣6=1﹣x ,即72x =-,符合题意;把a=﹣2代入整式方程得:﹣3x ﹣5=1﹣x ,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x ﹣4=1﹣x ,即52x =-,符合题意; 把a=0代入整式方程得:﹣3x ﹣3=1﹣x ,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x ﹣2=1﹣x ,即32x =-,符合题意; 把a=2代入整式方程得:﹣3x ﹣1=1﹣x ,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x ,即12x =-,符合题意; 把a=4代入整式方程得:﹣3x+1=1﹣x ,即x=0,不合题意,∴符合条件的整数a 取值为﹣3;﹣1;1;3,之积为1.故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-3x(x -1)【解析】【分析】原式提取公因式即可得到结果.【详解】解:原式=-3x (x-1),故答案为-3x (x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.1【解析】【分析】过点C 作CH ∥AB 交DE 的延长线于点H ,则1028DF t t ---==,证明DFG HCG ∆∆∽,可求出CH ,再证明ADE CHE ∆∆∽,由比例线段可求出t 的值.【详解】如下图,过点C 作CH ∥AB 交DE 的延长线于点H ,则21028BD t AE t DF t t ---=,=,==,∵DF ∥CH ,∴DFG HCG ∆∆∽, ∴12DF FC HC GC ==, ∴2162CH DF t ==-,同理ADE CHE ∆∆∽, ∴AD AE CH CE=, ∴102162102t t t t -=--,解得t =1,t =253(舍去), 故答案为:1.【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.15.221x -- 【解析】【分析】先将分式进行通分,即可进行运算.【详解】1111x x -+-=211x x ---211x x +-=221x -- 【点睛】此题主要考查分式的加减,解题的关键是先将它们通分.16.x=1【解析】【分析】观察可得方程最简公分母为x (x−1),去分母,转化为整式方程求解,结果要检验.【详解】方程两边同乘x (x−1)得:3x =1(x−1),整理、解得x =1.检验:把x =1代入x (x−1)≠2.∴x =1是原方程的解,故答案为x =1.【点睛】解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验.17.50°【解析】【分析】由PA 与PB 都为圆O 的切线,利用切线长定理得到PA PB =,再利用等边对等角得到一对角相等,由顶角P ∠的度数求出底角BAP ∠的度数,再利用弦切角等于夹弧所对的圆周角,可得出BAP C ∠∠=,由BAP ∠的度数即可求出C ∠的度数.【详解】解:PA Q ,PB 分别为O e 的切线,PA PB ∴=,AP CA ⊥,又P 80∠=o ,()1BAP 18080502o o o ∠∴=-=, 则C BAP 50∠∠==o .故答案为:50o【点睛】此题考查了切线长定理,切线的性质,以及等腰三角形的性质,熟练掌握定理及性质是解本题的关键. 18.1【解析】【分析】根据一元二次方程的解及根与系数的关系,可得出a 2-2a=1、a+b=2,将其代入a 2-a+b 中即可求出结论.【详解】∵a 、b 是方程x 2-2x-1=0的两个根,∴a 2-2a=1,a+b=2,∴a 2-a+b=a 2-2a+(a+b )=1+2=1.故答案为1.【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-b a 、两根之积等于c a是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(2)证明见解析;(3)1.【解析】【分析】(1)由PD 切⊙O 于点C ,AD 与过点C 的切线垂直,易证得OC ∥AD ,继而证得AC 平分∠DAB ; (2)由条件可得∠CAO=∠PCB ,结合条件可得∠PCF=∠PFC ,即可证得PC=PF ;(3)易证△PAC ∽△PCB ,由相似三角形的性质可得到PC AP PB PC= ,又因为tan ∠ABC=43 ,所以可得AC BC =43,进而可得到PC PB =43,设PC=4k ,PB=3k ,则在Rt △POC 中,利用勾股定理可得PC 2+OC 2=OP 2,进而可建立关于k 的方程,解方程求出k 的值即可求出PC 的长.【详解】(1)证明:∵PD 切⊙O 于点C ,∴OC ⊥PD ,又∵AD ⊥PD ,∴OC ∥AD ,∴∠A CO=∠DAC .∵OC=OA ,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=1.【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.20.(1)证明见解析(26【解析】【分析】(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得CD CB BDCA CD AD==,推出CD2=CB•CA,可得(32)2=3CA,推出CA=6,推出AB=CA﹣BC=3,32262BDAD==,设BD=2k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.【详解】(1)证明:连结OC,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴CD CB BD CA CD AD==,∴CD2=CB•CA,∴(2)2=3CA,∴CA=6,∴AB=CA﹣BC=3,32262BDAD==,设2k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=306, ∴AD=303. 21.(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解析】【分析】 (1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩ ∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.22.(1)证明见解析;(2)25 3.【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP=,∴BP=253.“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP∽△BCA是解决第(2)小题的关键.23.建筑物AB的高度约为5.9米【解析】【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度;【详解】在Rt △CED 中,∠CED=58°,∵tan58°=CD DE, ∴DE=2tan 58tan 58o o CD = , 在Rt △CFD 中,∠CFD=22°,∵tan22°=CD DF, ∴DF=2tan 22tan 22o o CD = , ∴EF=DF ﹣DE=2tan 22o -2tan 58o, 同理:EF=BE ﹣BF=tan 4570o oAB AB tam - , ∴tan 4570o o AB AB tam -=2tan 22o -2tan 58o , 解得:AB≈5.9(米),答:建筑物AB 的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.24.这棵树CD 的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB 的度数,得到BC 的长度,然后在直角△BDC 中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB ,∴∠ACB=∠CBD ﹣∠A=60°﹣30°=30°,∴∠A=∠ACB ,∴BC=AB=10(米).在直角△BCD 中,CD=BCsin ∠(米). 答:这棵树CD 的高度为8.7米.考点:解直角三角形的应用25.(1)A (﹣1,0),B (3,0),y=(2)①A′(32t ﹣1t );②A′BEF 为菱形,见解析;(3)存在,P点坐标为(53,433)或(73,﹣233).【解析】【分析】(1)通过解方程﹣3x2+233x+3=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=3得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH 即可得到A′的坐标;②把A′(32t−1,32t)代入y=−33x2+233x+3得−33(32t−1)2+233(32t−1)+3=32t,解方程得到t=2,此时A′点的坐标为(2,3),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到32t−1=3,解方程求出t得到A′(3,43),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.【详解】(1)当y=0时,﹣3x2+233x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),设直线l的解析式为y=kx+b,把A(﹣1,0),D(0,﹣3)代入得{3k bb-+==-,解得3{3kb=-=-,∴直线l的解析式为y=﹣3x﹣3;(2)①作A′H⊥x轴于H,如图,∵OA=1,OD=3,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵点A 关于直线l的对称点为A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=12EA′=12t,A′H=3EH=3t,∴OH=OE+EH=t﹣1+12t=32t﹣1,∴A′(32t﹣1,3t);②把A′(32t﹣1,3t)代入y=﹣3x2+23x+3得﹣3(32t﹣1)2+23(32t﹣1)+3=3t,解得t1=0(舍去),t2=2,∴当点A′落在抛物线上时,直线l的运动时间t的值为2;此时四边形A′BEF为菱形,理由如下:当t=2时,A′点的坐标为(2,3),E(1,0),∵∠OEF=60°∴OF=3OE=3,EF=2OE=2,∴F(0,3),∴A′F∥x轴,∵A′F=BE=2,A′F∥BE,∴四边形A′BEF为平行四边形,而EF=BE=2,∴四边形A′BEF为菱形;(3)存在,如图:当A′B⊥BE时,四边形A′BEP为矩形,则32t﹣1=3,解得t=83,则A′(3,433),∵OE=t﹣1=53,∴此时P点坐标为(53,433);当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴33332t,∴32t﹣1+32t=3,解得t=43,此时A′(123),E(13,0),点A′向左平移23个单位,向下平移23个单位得到点E,则点B(3,0)向左平移23个单位,向下平移23 3个单位得到点P,则P(73,﹣33),综上所述,满足条件的P点坐标为(53,33)或(73,﹣233).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.26.1【解析】试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.试题解析:解:|﹣1|+9﹣(1﹣3)0﹣(12)﹣1=1+3﹣1﹣2=1.点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.27.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】【分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.。

2020届辽宁省大连市中考数学二模试卷(有答案)(加精)

2020届辽宁省大连市中考数学二模试卷(有答案)(加精)

辽宁省大连市中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0 B.﹣3.5 C.D.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×1053.下列几何体中,主视图是三角形的为()A.B.C.D.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5 B.y=2x2﹣5 C.y=2(x+5)2D.y=2(x﹣5)25.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<26.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9 B.11 C.13 D.168.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36= .10.在函数y=中,自变量x的取值范围是.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为m(精确到0.1m,参考数据≈1.73)14.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为.16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB 翻折,点O落在点O′处,则点O′的坐标为.三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A 0≤x<120 24B 120≤x<130 72C 130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为%;(2)本次共调查了名学生,其中跳绳次数在130≤x<140范围内的人数为人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为%;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC 相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为;问题(2)中AD的取值范围是;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC的解析式为y=kx+2.(1)抛物线的解析式为;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.辽宁省大连市中考数学二模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0 B.﹣3.5 C.D.【考点】26:无理数.【分析】由于无理数就是无限不循环小数.有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是有理数,故A选项错误;B、﹣3.5是有理数,故B选项错误;C、是无理数,故C选项正确;D、=3,是有理数,故D选项错误.故选:C.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:825100=8.251×105,故选D.3.下列几何体中,主视图是三角形的为()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据主视图的观察角度,从物体的正面观察,即可得出答案.【解答】解:A、其三视图是矩形,故此选项错误;B、其三视图是三角形,故此选项正确;C、其三视图是矩形,故此选项错误;D、其三视图是正方形形,故此选项错误;故选:B.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5 B.y=2x2﹣5 C.y=2(x+5)2D.y=2(x﹣5)2【考点】H6:二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移5个单位,那么新抛物线的顶点为(0,5),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+5.故选A.5.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2【考点】FD:一次函数与一元一次不等式.【分析】根据图象和A的坐标得出即可.【解答】解:∵直线y=kx+b和x轴的交点A的坐标为(﹣3,0),∴不等式kx+b>0的解集是x>﹣3,故选A.6.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选D.7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9 B.11 C.13 D.16【考点】W4:中位数.【分析】根据中位数的定义即可得.【解答】解:这组数据重新排列为:8、9、10、11、12、14、16、16、16、17,则其中位数为=13,故选:C.8.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的底面直径为4cm,高为cm,则底面半径=2cm,底面周长=4πcm,由勾股定理得,母线长=5cm,侧面面积=×4π×5=10πcm2.故选B.二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36= (x+6)(x﹣6).【考点】54:因式分解﹣运用公式法.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).10.在函数y=中,自变量x的取值范围是x≥﹣.【考点】E4:函数自变量的取值范围;72:二次根式有意义的条件.【分析】当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.【解答】解:依题意,得2x+1≥0,解得x≥﹣.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是18 .【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=160°n,解得n=18,故答案为:18.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为 6 .【考点】LB:矩形的性质.【分析】根据矩形的对角线相等且相互平分即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∵OA=3,∴BD=2OA=6,故答案为6.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为17.1 m(精确到0.1m,参考数据≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据题意:过点D作DE⊥AB,交AB与E;可得Rt△ADE,解之可得AE的大小;进而根据AB=BE+AE 可得旗杆AB的高.【解答】解:过点D作DE⊥AB,垂足为E.在直角△ADE中,有AE=DE×tan30°=9,那么旗杆AB的高为AE+EB=9+1.5≈17.1(m).故答案为17.114.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为 2 .【考点】G6:反比例函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】设A点向右移动的距离为a,由点B的坐标为(1,2)可知,B′(1+a,2),由点B′恰好在函数y=(x>0)的图象上求出a的值即可.【解答】解:设A点向右移动的距离为a,∵点B的坐标为(1,2),∴B′(1+a,2).∵点B′恰好在函数y=(x>0)的图象上,∴2(1+a)=6,解得a=2.故答案为:2.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为(4,﹣2).【考点】SC:位似变换;D5:坐标与图形性质.【分析】由以原点O为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O为位似中心,B(3,0)的对应点B′的坐标为(6,0),∴相似比为2,∵A(2,﹣1),∴点A′的对应点坐标为:(4,﹣2),故答案为:(4,﹣2).16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB 翻折,点O落在点O′处,则点O′的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;PB:翻折变换(折叠问题).【分析】根据已知条件得到OA=2,OB=1,根据折叠的性质得到AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,根据相似三角形的性质得到BC=,CO′=,得到OC=,AC=,根据O′D∥OC,得到△ADO′∽△AOC,根据相似三角形的性质即可得到结论.【解答】解:在y=﹣x+1中,令x=0,得y=1,令y=0,得x=2,∴A(2,0),B(0,1),∴OA=2,OB=1,∵将△AOB沿直线AB翻折,点O落在点O′处,∴AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,∴∠CO′B=∠AOC=90°,∵∠BCO′=∠ACO,∴△BCO′∽△ACO,∴,∴==,∴BC=,CO′=,∴OC=,AC=,∵O′D⊥OA,∴O′D∥OC,∴△ADO′∽△AOC,∴==,即==,∴DO′=,AD=,∴OD=,∴O′(,),故答案为:(,).三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用立方根和二次根式的性质、零指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=1+2﹣4+3=2.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘多项式、完全平方公式和合并同类项可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.【解答】解:m(m﹣2)﹣(m﹣1)2+m=m2﹣2m﹣m2+2m﹣1+m=m﹣1,当m═﹣时,原式==.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.【考点】L5:平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∵BC=5,CD=AB=3,∴DE=AD﹣AE=5﹣3=2.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A 0≤x<120 24B 120≤x<130 72C 130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为72 人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12 %;(2)本次共调查了200 名学生,其中跳绳次数在130≤x<140范围内的人数为59 人,跳绳次数在x ≥140范围内的人数占被调查人数的百分比为22.5 %;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.【考点】V7:频数(率)分布表;V5:用样本估计总体.【分析】(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;根据A组的人数是24,所占的百分比是12%即可求得调查的总人数,然后根据百分比的定义求得跳绳次数在0≤x<120范围内的人数占被调查人数的百分比;(2)利用总人数减去其它组的人数求得绳次数在x≥140范围内的人数占被调查人数的人数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;调查的总人数是24÷12%=200(人).则跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为=12%;故答案是:71,12;(2)调查的总人数是200人;跳绳次数在130≤x<140范围内的人数为200×29.5%=59(人),绳次数在x≥140范围内的人数占被调查人数的人数是200﹣24﹣72﹣59=45(人),则所长的百分比是=22.5%.故答案是:200,59,22.5;(3)估计该区七年级学生1分钟跳绳的次数不少于130个的人数是:4000×=2080(人).四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?【考点】B7:分式方程的应用.【分析】设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工 1.5x个零件,根据时间=,以此作为等量关系可列方程求解.【解答】解:设采用新工艺前每时加工x个零件.﹣10=,解得:x=50,经检验:x=50是原分式方程的解,且符合题意,答:采用新工艺之前每小时加工50个.22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?【考点】AD:一元二次方程的应用;FH:一次函数的应用.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据每天可获得600元的利润列出方程,解方程即可.【解答】解:(1)当30≤x≤80时,设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知,,解得,故y与x的函数关系式为y=﹣x+100;(2)∵y=﹣x+100,依题意得∴(x﹣30)(﹣x+100)=600,x2﹣280x+18700=0,解得x1=40,x2=90.∵30≤x≤80,∴取x=40.答:当每千克的销售价为40元时,获得的利润为600元.23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.【考点】MC:切线的性质;M6:圆内接四边形的性质.【分析】(1)根据圆周角定理即可得到结论;(2)根据全等三角形的性质得到AF=DE=4,CE=CF=2,根据切线的性质得到FC2=FB•AF,求得FB=1根据相似三角形的性质即可得到结论;【解答】解:(1)∵∠ABD=∠CBD=60°,∴∠CAD=∠CBD=60°,∠ACD=∠ABD=60°,∴△ACD是等边三角形;(2)在△ACF与△DCE中,∴△ACF≌△DCE,∴AF=DE=4,CE=CF=2,∵CF是⊙O的切线,∴FC2=FB•AF,∴22=FB•4,∴FB=1∴AB=AF﹣BF=4﹣1=3,∵∠ABE=∠DCE,∠BAE=∠CDE,∴△∠ABE∽∠DCE,∴===,∴=,解得:CD=3.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC 相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.【考点】FI:一次函数综合题.【分析】(1)作CM⊥x轴于点M,利用等腰直角三角形和矩形的性质可求得OM和CM的长,可求得C点坐标;(2)①当E在线段OB上时,连接OD,利用条件可证得△DOE∽△EBF,利用相似三角形的性质可得到m与n之间的关系;②当点E在线段BO的延长线上时,同样可证得△DOE∽△EBF,可得到m与n之间的关系.【解答】解:(1)作CM⊥x轴于点M,如图1,则∠CMB=∠AOM=90°,∴CM∥AO,∵AC∥x轴,∴四边形AOMC是矩形,∴CM=AO=3,AC=OM,∵∠OBC=45°,∴MB=MC=3,∴OM=7﹣3=4,∴C(4,3);(2)①当点E在线段OB上时,即当0<n<7时,如图2,连接OD,∵CD=1,∴AD=3=AO,∴∠AOD=∠ADO=45°=∠DOB=∠OBC,∵∠OEF=∠EFB+∠EBF,即∠OED+∠DEF=∠EFB+∠EBF,∴∠OED=∠EFB,∴△DOE∽△EBF,∴=,即=,∴m=﹣n2+n;②当点E在线段BO的延长线上时,即n<0时,连接OD,如图3,由(1)知∠DOB=∠OBC,∴∠DOE=∠EBF,∵∠DEF=45°=∠OBC,∴∠DEO+∠BEF=∠BFE+∠BEF,∴∠DEO=∠BFE,∴△DOE∽△EBF,∴=,即=,∴m=n2﹣n;综上可知m与n的函数关系式为m=.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为 3 ;问题(2)中AD的取值范围是1<AD<5 ;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).【考点】MR:圆的综合题.【分析】(1)由三角形中位线定理可得OD=BC,由此即可解决问题;(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.在△ABM中,理由三边关系定理可得6﹣4<AM <6+4,即2<2AD<10,1<AD<5;(3)①结论:EF=CE.如图4中,延长CD到M使得DM=CD,连接BM.由△ADC≌△BDM,推出BM=AC,∠M=∠ACD,由BM∥AC,推出△CEF∽△MBF,可得=,推出==,推出BF=mEF,推出BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,推出(m+1)EC=(m+1)EF,由此即可证明;结论: =.如图3中,作BM∥AC交CD的延长线于M.证明方法类似①;【解答】解:(1)如图1中,∵OD⊥AC,∴AD=DC,∵AO=OB,BC=6,∴OD=BC=3.(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.∵AD=DM,BD=CD,∴四边形ABMC是平行四边形,∴BM=AC=4,∵AB=6,∴6﹣4<AM<6+4,即2<2AD<10,∴1<AD<5.(3)①结论:EF=CE.理由:如图4中,延长CD到M使得DM=CD,连接BM.∵AD=DB,∠ADC=∠BDM,∴△ADC≌△BDM,∴BM=AC,∠M=∠ACD,∴BM∥AC,∴△CEF∽△MBF,∴=,∴==,∴BF=mEF,∴BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(m+1)EF,∴EF=CE.②结论: =.理由:如图3中,作BM∥AC交CD的延长线于M.由△ADC∽△BDM,可得==n,∴BM=,∵=,∴=,∵AC=mEC,∴BF=EF,∴BE=(1+)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(1+)EF,∴=.26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC的解析式为y=kx+2.(1)抛物线的解析式为y=x2﹣x+2 ;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.【考点】HF:二次函数综合题.【分析】(1)先利用一次函数解析式确定C(0,2),然后把C点坐标代入y=a(x﹣1)(x﹣4)中求出a即可;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,先解方程(x﹣1)(x﹣4)=0得A (1,0),B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,设E(m, m2﹣m+2),EF=n,则D(m﹣n,﹣ m+n+2),则DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,接着证明Rt△OCA∽Rt △FDE,利用相似比得到=2,则﹣m2+2m+n=2n,所以n=﹣m2+m,利用勾股定理得DE=﹣m2+m,然后根据二次函数的性质解决问题;(3)利用两点间的距离公式得到AC=,BC=2,再利用点D为BC的中点得到D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,接着求出直线DE的解析式为y=﹣2x+5,于是解方程组得E(3,﹣1),所以DE=,然后根据菱形的判定方法可判断四边形CAED为菱形.【解答】解:(1)当x=0时,y=kx+2=2,则C(0,2),把C(0,2)代入y=a(x﹣1)(x﹣4)得a•(﹣1)•(﹣4)=2,解得a=,∴抛物线解析式为y=(x﹣1)(x﹣4),即y=x2﹣x+2;故答案为y=x2﹣x+2;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,当y=0时,(x﹣1)(x﹣4)=0,解得x1=1,x2=4,则A(1,0),B(4,0),设直线BC的解析式为y=kx+b,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(m, m2﹣m+2),EF=n,则D(m﹣n,﹣ m+n+2),∴DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,∵OC∥DF,∴∠OCB=∠FDB,∵DE∥CA,∴∠ACB=∠EDB,∴∠OCA=∠FDE,∴Rt△OCA∽Rt△FDE,∴=,∴===2,∴﹣m2+2m+n=2n,∴n=﹣m2+m,在Rt△DEF中,DE==EF=n=﹣m2+m,∵DE=﹣(m﹣2)2+,∴当m=2时,DE的长有最大值,最大值为;(3)四边形CAED为菱形.理由如下:AC==,BC==2,∵点D为BC的中点,∴D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,设直线DE的解析式为y=﹣2x+p,把D(2,1)代入得1=﹣4+p,解得p=4,∴直线DE的解析式为y=﹣2x+5,解方程组得或,则E(3,﹣1),∴DE==,∴AC=DE,而AC∥DE,∴四边形CAED为平行四边形,∵CA=CD,∴四边形CAED为菱形.。

【附5套中考模拟试卷】辽宁省大连市2019-2020学年中考数学模拟试题含解析

【附5套中考模拟试卷】辽宁省大连市2019-2020学年中考数学模拟试题含解析

辽宁省大连市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC2.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×1053.下列运算错误的是( )A .(m 2)3=m 6B .a 10÷a 9=a C .x 3•x 5=x 8 D .a 4+a 3=a 7 4.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e → B .3a =r C .a r 与e →方向相同 D .a r 与e →方向相反 5.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,若AD =3,BE =1,则DE =( )A .1B .2C .3D .46.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o7.如图是小明在物理实验课上用量筒和水测量铁块A 的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h 与铁块被提起的时间t 之间的函数关系的大致图象是( )A.B.C.D.8.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查9.已知函数y=1x的图象如图,当x≥﹣1时,y的取值范围是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥010.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径¼'AA的长为()A.πB.2πC.4πD.8π11.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A .4.5cmB .5.5cmC .6.5cmD .7cm12.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A .12B .14C .16D .116二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.14.如图,▱ABCD 中,对角线AC ,BD 相交于点O ,且AC ⊥BD ,请你添加一个适当的条件________,使ABCD 成为正方形.15.比较大小:512_____1(填“<”或“>”或“=”). 16.二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,则a 的值为______.17.关于x 的一元二次方程230x x c -+=有两个不相等的实数根,请你写出一个满足条件的c 值__________.18.已知关于x 的方程x 2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,大楼AB 的高为16m ,远处有一塔CD ,小李在楼底A 处测得塔顶D 处的仰角为 60°,在楼顶B 处测得塔顶D 处的仰角为45°,其中A 、C 两点分别位于B 、D 两点正下方,且A 、C 两点在同一水平线上,求塔CD 的高.3,结果保留一位小数.)20.(6分)在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.(1)如图1,当点E 在边DC 上自D 向C 移动,同时点F 在边CB 上自C 向B 移动时,连接AE 和DF 交于点P ,请你写出AE 与DF 的数量关系和位置关系,并说明理由;(2)如图2,当E ,F 分别在边CD ,BC 的延长线上移动时,连接AE ,DF ,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC ,请你直接写出△ACE 为等腰三角形时CE :CD 的值;(3)如图3,当E ,F 分别在直线DC ,CB 上移动时,连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若AD =2,试求出线段CP 的最大值.21.(6分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离” (1)求抛物线y =x 2﹣2x+3与x 轴的“亲近距离”;(2)在探究问题:求抛物线y =x 2﹣2x+3与直线y =x ﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x 轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y =x 2﹣2x+3与抛物线y =214x +c 的“亲近距离”为23,求c 的值. 22.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A 、B 、C 、D 、E 等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A 景点所对应的圆心角的度数是 ,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E 景点旅游?甲、乙两个旅行团在A 、B 、D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.24.(10分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =k x(x >0)的图象经过AO 的中点C ,交AB 于点D ,且AD =1.设点A 的坐标为(4,4)则点C 的坐标为 ;若点D 的坐标为(4,n). ①求反比例函数y =k x 的表达式; ②求经过C ,D 两点的直线所对应的函数解析式;在(2)的条件下,设点E 是线段CD 上的动点(不与点C ,D 重合),过点E 且平行y 轴的直线l 与反比例函数的图象交于点F ,求△OEF 面积的最大值.25.(10分)先化简,再求值:x (x+1)﹣(x+1)(x ﹣1),其中x=1.26.(12分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)036 27.(12分)(1)计算:0|28(2)2cos45π︒-+.(2)解方程:x2﹣4x+2=0参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.2.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.4.C【解析】【分析】由向量的方向直接判断即可.【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.5.B【解析】【分析】根据余角的性质,可得∠DCA 与∠CBE 的关系,根据AAS 可得△ACD 与△CBE 的关系,根据全等三角形的性质,可得AD 与CE 的关系,根据线段的和差,可得答案.【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE , 在△ACD 和△CBE 中,ACD CBE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.6.A【解析】解:△AOB 中,OA=OB ,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A .7.B【解析】根据题意,在实验中有3个阶段,①、铁块在液面以下,液面得高度不变;②、铁块的一部分露出液面,但未完全露出时,液面高度降低;③、铁块在液面以上,完全露出时,液面高度又维持不变;分析可得,B符合描述;故选B.8.D【解析】【分析】【详解】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.9.C【解析】试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题.解:根据反比例函数的性质和图象显示可知:此函数为减函数,x≥-1时,在第三象限内y的取值范围是y≤-1;在第一象限内y的取值范围是y>1.故选C.考点:本题考查了反比例函数的性质点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=kx的图象是双曲线,当k>1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k<1时,图象在二、四象限,在每个象限内,y随x的增大而增大10.B【解析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径¼'AA的长为:904180π⨯=2π.故选B.考点:弧长的计算;旋转的性质.11.A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质12.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.5【解析】在Rt△ABC中,225AC=AB+BC,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x .14.∠BAD=90°(不唯一)【解析】【分析】根据正方形的判定定理添加条件即可.【详解】解:∵平行四边形ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴四边形ABCD是菱形,当∠BAD=90°时,四边形ABCD为正方形.故答案为:∠BAD=90°.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角. 15.<【解析】【详解】∵12≈0.62,0.62<1,<1;故答案为<.16.-1【解析】【分析】将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.【详解】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值为-1.故答案为-1.【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.17.1【解析】【分析】先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.【详解】224(3)41940 b ac c c-=--⨯⨯=->解得94 c<所以可以取0c=故答案为:1.【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.18.﹣1【解析】【分析】根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.【详解】解:∵关于x的方程x2−2x+n=1没有实数根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2−n |-│1-n│=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.试题解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.则有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°AC.∵16+DE=DC,∴AC,解得:AC=83+8=DE .所以塔CD 的高度为(83+24)米≈37.9米, 答:塔CD 的高度为37.9米.20.(1)AE=DF ,AE ⊥DF ,理由见解析;(2)成立,2或2;(3) 51【解析】试题分析:(1)根据正方形的性质,由SAS 先证得△ADE ≌△DCF .由全等三角形的性质得AE=DF ,∠DAE=∠CDF ,再由等角的余角相等可得AE ⊥DF ;(2)有两种情况:①当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理求出2a 即可;②当AE=AC 时,设正方形的边长为a ,由勾股定理求出2a ,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a 即可;(3)由(1)(2)知:点P 的路径是一段以AD 为直径的圆,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最大,再由勾股定理可得QC 的长,再求CP 即可. 试题解析:(1)AE=DF ,AE ⊥DF , 理由是:∵四边形ABCD 是正方形, ∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动, ∴DE=CF ,在△ADE 和△DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩, ∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC , ∵∠ADE=90°,∴∠ADP+∠CDF=90°, ∴∠ADP+∠DAE=90°, ∴∠APD=180°-90°=90°, ∴AE ⊥DF ;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,222==+=,AC CE a a a则:2:2==;CE CD a a②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:222==+=,AC AE a a a∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即22;(3)∵点P在运动中保持∠APD=90°,∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P , 此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+=∴51CP QC QP =+=+,即线段CP 的最大值是51+.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大. 21.(1)2;(2)不同意他的看法,理由详见解析;(3)c =1. 【解析】 【分析】(1)把y=x 2﹣2x+3配成顶点式得到抛物线上的点到x 轴的最短距离,然后根据题意解决问题; (2)如图,P 点为抛物线y=x 2﹣2x+3任意一点,作PQ ∥y 轴交直线y=x ﹣1于Q ,设P(t ,t 2﹣2t+3),则Q(t ,t ﹣1),则PQ=t 2﹣2t+3﹣(t ﹣1),然后利用二次函数的性质得到抛物线y=x 2﹣2x+3与直线y=x ﹣1的“亲近距离”,然后对他的看法进行判断;(3)M 点为抛物线y=x 2﹣2x+3任意一点,作MN ∥y 轴交抛物线214y x c =+于N ,设M(t ,t 2﹣2t+3),则N(t ,14t 2+c),与(2)方法一样得到MN 的最小值为53﹣c ,从而得到抛物线y=x 2﹣2x+3与抛物线214y x c=+的“亲近距离”,所以5233c =﹣,然后解方程即可.【详解】(1)∵y=x 2﹣2x+3=(x ﹣1)2+2,∴抛物线上的点到x 轴的最短距离为2,∴抛物线y=x 2﹣2x+3与x 轴的“亲近距离”为:2; (2)不同意他的看法.理由如下:如图,P 点为抛物线y=x 2﹣2x+3任意一点,作PQ ∥y 轴交直线y=x ﹣1于Q ,设P(t ,t 2﹣2t+3),则Q(t ,t ﹣1),∴PQ=t 2﹣2t+3﹣(t ﹣1)=t 2﹣3t+4=(t ﹣32)2+74, 当t=32时,PQ 有最小值,最小值为74,∴抛物线y=x 2﹣2x+3与直线y=x ﹣1的“亲近距离”为74, 而过抛物线的顶点向x 轴作垂线与直线相交,抛物线顶点与交点之间的距离为2, ∴不同意他的看法;(3)M 点为抛物线y=x 2﹣2x+3任意一点,作MN ∥y 轴交抛物线214y x c =+于N ,设M(t ,t 2﹣2t+3),则N(t ,14t 2+c), ∴MN=t 2﹣2t+3﹣(14t 2+c)=34t 2﹣2t+3﹣c=34(t ﹣43)2+53﹣c , 当t=43时,MN 有最小值,最小值为53﹣c ,∴抛物线y=x 2﹣2x+3与抛物线214y x c =+的“亲近距离”为53﹣c ,∴5233c =﹣, ∴c=1. 【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键. 22.(1)13;(2)59.【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°, 所以2个“-2”所占的扇形圆心角为360°-2×120°=120°, ∴转动转盘一次,求转出的数字是-2的概率为120360︒︒=13; (2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为13,所有可能性如下表所示:第一次第二次1 -2 31 (1,1) (1,-2) (1,3)-2 (-2,1) (-2,-2) (-2,3)3 (3,1) (3,-2) (3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为9.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)50,108°,补图见解析;(2)9.6;(3)13.【解析】【分析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:650×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 =.【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.24.(1)C(2,2);(2)①反比例函数解析式为y=4x;②直线CD的解析式为y=﹣12x+1;(1)m=1时,S△OEF最大,最大值为1 4 .【解析】【分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【详解】(1)∵点C是OA的中点,A(4,4),O(0,0),∴C4040,22++⎛⎫⎪⎝⎭,∴C(2,2);故答案为(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵点C是OA的中点,∴C(2,32n+),∵点C,D(4,n)在双曲线kyx=上,∴3224nkk n+⎧=⨯⎪⎨⎪=⎩,∴14 nk=⎧⎨=⎩,∴反比例函数解析式为4yx =;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴22 41a ba b+=⎧⎨+=⎩,∴123ab⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为y=﹣12x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣12x+1,设点E(m,﹣12m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线4yx=于F,∴F(m,4m ),∴EF=﹣12m+1﹣4m,∴S△OEF=12(﹣12m+1﹣4m)×m=12(﹣12m2+1m﹣4)=﹣14(m﹣1)2+14,∵2<m<4,∴m=1时,S△OEF最大,最大值为1 4【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.25.x+1,2.【解析】【分析】先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.【详解】原式=x2+x﹣(x2﹣1)=x2+x﹣x2+1=x+1,当x=1时,原式=2.【点睛】本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.26.1 7. 2【解析】分析:按照实数的运算顺序进行运算即可.详解:原式11 416,22=⨯+-+1216,2=+-+17.2=点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.27.(1)-1;(2)x1=,x2=2【解析】【分析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程.【详解】(1﹣﹣=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=∴x1=,x2=2.【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

2019年辽宁省大连市中考数学二模试卷答案及解析(28页)

2019年辽宁省大连市中考数学二模试卷答案及解析(28页)

2019年辽宁省大连市中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.-3的相反数是()A. 3B. C. D. 2.如图是由五个完全相同的正方体组成的几何体,这个几何体的俯视图是()A. B. C. D. 3.计算(x3)2的结果是()A. B. C. D. 4.袋中有3个红球,4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出1个球,则摸出白球的概率是()A. B. C. D. 5.下列调查中,适合采取全面调查方式的是()A. 了解某城市的空气质量的情况B. 了解全国中学生的视力情况C. 了解某企业对应聘人员进行面试的情况D. 了解某池塘中鱼的数量的情况6.在平面直角坐标系中,将点P(-3,2)向右平移4个单位长度得到点P',则点P'所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限1297. 如图,点A ,B ,C 在⊙O 上,∠OAB =65°,则∠ACB 的度数为( )A. B. C. D. 8. 在△ABC 中,∠ACB =90°,AC =1,BC =2,则sin B 的值为(的值为( )A. B. C. D. 9. 某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,设原计划平均每天生产x 个零件,根据题意可列方程为(根据题意可列方程为( )A. B. C. D. 10. 如图,在△ABC 中,∠ACB =90°,AC =BC =4,点D 在AC上,点E 在AB 上,将△ADE 沿直线DE 翻折,点A 的对称点A '落在BC 上,在CD =1,则A 'B '的长是(的长是( )A. 1B. C. D. 二、填空题(本大题共6小题,共18.0分)11. 计算:-5+3= ______ .12. 不等式组不等式组 的解集为______.13. 如图,点O 在直线AB 上,OC ⊥OD ,若∠AOD =24°,则∠COB 的度数为______°.14.我国古代数学著作中有这样一道题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:远远望见一座7层高的雄伟壮丽的佛塔,每层塔点着的红灯数,下层比上层成倍增加,共381盏.则塔尖有______盏灯.盏灯.15.如图,菱形ABCD中,对角线AC与BD相交于点O,AE⊥BC,垂足为E.若AC=4,BD=6,则BE的长为______.16.在平面直角坐标系中,直线y=-x+2与x轴相交于点A,与y轴相交于点B,以点B为圆心,线段OA的长为半径画弧,与直线y=x-1位于第一象限的部分相交于点C,则点C的坐标为______.三、计算题(本大题共1小题,共6.0分)17.计算 .四、解答题(本大题共9小题,共72.0分)18.计算计算 .19.如图,正方形ABCD中,点E在CD上,点F在CB的延长线上,且AE⊥AF.求证:AE=AF.20.某学校为了解高二年级男生定点投篮的情况,随机选取该校高二年级部分男生进行测试,每人投篮五次,以下是根据每人投中次数绘制的统计图的一部分.分.根据以上信息解答下列问题:根据以上信息解答下列问题:(1)被调查的男生中,投中次数为2次的有______人,投中次数为1次的男生人数占被调查男生总数的百分比为______%;(2)被调查男生的总数为______人,扇形统计图中投中次数为3次的圆心角的度数为______°;(3)若该校高二年级男生有200人,根据调查结果,估计该年级男生投中次的人数.次数不少于3次的人数.21.某工厂2016年的年产值是100万元,2018年的年产值是144万元.假设2016年到2018年该厂年产值的年增长率相同.求该工厂2016年到2018年的年平均增长率.均增长率.22.如图,在平面直角坐标系xOy中,函数y=(其中k<0,x<0)的图象经过平行四边形ABOC的顶点A,函数y=(其中x>0)的图象经过顶点C,点B在x轴上,若点C的横坐标为1,△AOC的面积为的值;(1)求k的值;的解析式.(2)求直线AB的解析式.23.如图,点A、B、C、D是⊙O上的四个点,AC是⊙O的直径,∠DAC=2∠BAC,过点B的直线与AC的延长线、DC的延长线分别相交于点E、F,且EF=CF.的切线;(1)求证:BE是⊙O的切线;的长.(2)若⊙O的半径为5,CE=3,求CD的长.24.如图,抛物线与x轴相交于点A、B,与y轴相交于点C,过点C作CD∥AB,与抛物线相交于点D.点P从点B出发,在折线段BO-OC上以每秒2个单位长度向终点C匀速运动,点Q从点B出发,在线段BD上以每秒1个单位长度向终点D匀速运动.两点同时出发,当其中PQ Qt (s ),线段PQ 的长度的平方为d ,即PQ 2=d (单位长度2).). (1)求线段BD 的长;的长;(2)求d 关于t 的函数解析式,并直接写出自变量t 的取值范围.的取值范围.25. 如图,在锐角△ABC 中,高AD 与高BE 相交于点F ,∠EBC 的平分线BG 与AC 相交于G ,与AD 相交于点H ,且点H 是BG 的中点.的中点.(1)图中与∠DAC 相等的角是______;(2)求证:EG =2DH ;(3)若DH =1,AH =kBH ,求CG 的长(用含k 的代数式表示).的代数式表示).26.在平面直角坐标系中,直线l1: 与直线l2: 且 相交于点A,直线l1与x轴相交于点B,直线x=-1与直线l1、l2分别相交于点C、D,点P是线段CD的中点,以点P为顶点的抛物线y=ax2+bx+c经过点A.(1)①点B的坐标是______;②点P的坐标是______(用含m、n的代数式表示);的代数式表示);(2)求a的值(用含m、n的代数式表示);的代数式表示);(3)若n=1,当-2≤x≤1时,ax 2+bx+c≤1,求m的取值范围.的取值范围.答案和解析1.【答案】A【解析】解:-3的相反数是3.故选:A.根据相反数的意义,只有符号不同的数为相反数.根据相反数的意义,只有符号不同的数为相反数.本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.【答案】B可知这个几何体的俯视图B 根据俯视图是从上面看所得到的图形,可知这个几何体的俯视图【解析】解:根据俯视图是从上面看所得到的图形,中的图形,中的图形,故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是解题的关键.关键.3.【答案】D【解析】解:(x3)2=x6,故选:D.根据幂的乘方运算性质,运算后直接选取答案.根据幂的乘方运算性质,运算后直接选取答案.本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.关键.4.【答案】C【解析】【分析】【解析】【分析】本题考查的是概率公式,熟记概率公式的计算方法是解答此题的关键,即P(A)=事件可能出现的结果数所有可能出现的结果数.先求出白球与红球的总数,再利用概率公式求出摸出白球的概率.的概率.【解答】【解答】解:∵袋中有3个红球,4个白球,这些球的形状、大小、质地等完全相同,个白球,这些球的形状、大小、质地等完全相同, ∴红球和白球的总数为:3+4=7个,个,∴随机地从袋中摸出1个球,则摸出白球的概率是:.故选C.5.【答案】C【解析】解:A、了解某城市的空气质量的情况,范围广,适于采用抽样调查,故此选项错误;故此选项错误;B、了解全国中学生的视力情况,人数众多,适于采用抽样调查,故此选项错误;故此选项错误;C、了解某企业对应聘人员进行面试的情况,意义重大,适于采用普查,故此选项正确;项正确;D、了解某池塘中鱼的数量的情况,数量众多,适于采用抽样调查,故此选项错误;误;故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.重大的调查往往选用普查.6.【答案】A【解析】解:将点P(-3,2)向右平移4个单位长度得到点P'的坐标是(-3+4,2),即(1,2),),在第一象限,所以P'在第一象限,故选:A.根据向右平移,横坐标加,求出点P′的坐标,再根据各象限内点的特征解答.本题考查了坐标与图形的变化-平移,熟记平移中点的变化规律是:横坐标右移′的坐标是解题的关键.加,左移减;纵坐标上移加,下移减求出点P′的坐标是解题的关键.7.【答案】C【解析】解:∵OA=OB,∴∠OBA=∠OAB=65°,∴∠AOB=50°,由圆周角定理得,∠ACB=∠AOB=25°,故选:C.根据等腰三角形的性质和三角形内角和定理求出∠AOB,根据圆周角定理计算即可.可.本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.周角相等,都等于这条弧所对的圆心角的一半是解题的关键.8.【答案】A【解析】解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,∴AB= =,∴sin B= ==,故选:A.的值,再利用正弦函数的定义计算即可.先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可.本题考查了锐角三角函数的定义,勾股定理.解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义.是在直角三角形中,此外还有熟记三角函数的定义.9.【答案】C【解析】解:由题意可得,【解析】解:由题意可得, ,故选:C.根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,可以列出相应的分式方程,本题得以解决.列出相应的分式方程,本题得以解决.本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.的方程.10.【答案】D【解析】解:∵AC=4,CD=1,∴AD=AC-CD=3.∵将△ADE沿直线DE翻折,点A的对称点A'落在BC上,上,∴A′D=AD=3.在Rt△A′CD中,∵∠C=90°,∴A′C= ′ = =2,∴A′B=BC-A′C=4-2.故选:D.根据折叠的性质得出A′D=AD=3.在Rt△A′CD中,利用勾股定理求出A′C= ′ =2,那么A′B=BC-A′C=4-2.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.11.【答案】-2 【解析】解:-5+3=-(5-3)=-2.故答案为:-2.根据绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值计算.去较小的绝对值计算.本题考查了有理数加法.在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.符号,后绝对值”.12.【答案】-1<x<0 【解析】解:解不等式①得:x >-1,解不等式②得:x <0, ∴不等式组的解集为-1<x <0,故答案为:-1<x <0.先求出每个不等式的解集,再求出公共部分即可.先求出每个不等式的解集,再求出公共部分即可.本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.解集是解此题的关键.13.【答案】66 【解析】解:∵OC ⊥OD ,∴∠DOC =90°,∴∠AOD +∠BOC =90°,又∵∠AOD =24°,∴∠COB =90°=90°-24°-24°-24°=66°=66°.故答案为:66.根据垂直的定义得到∠DOC =90°,再根据余角的性质计算即可.,再根据余角的性质计算即可.本题考查的是余角和补角的概念,解题时注意:两个角的和为90°,则这两个角互余.互余.14.【答案】3 【解析】解:设塔的顶层装x 盏灯,盏灯,则从塔顶向下,每一层灯的数量依次是2x 、4x 、8x 、16x 、32x 、64x ,所以x +2x +4x +8x +16x +32x +64x =381  127x =381 x =381÷=381÷127 127 x =3 答:塔的顶层装3盏灯.盏灯.故答案为:3.设塔的顶层装x 盏灯,则根据每下一层灯的盏数都是上一层的2倍,分别求出每一层灯的数量,然后求和,根据它们的和是381解答即可.解答即可.此题主要考查了一元一次方程的应用,解答此题的关键是理解把握每下一层灯的盏数都是上一层的2倍.倍.15.【答案】 【解析】解:∵四边形ABCD 是菱形,是菱形,∴AO = AC =2,BO = BD =3,AC ⊥BD ,∴BC =AB = = = , ∵AE ⊥BC ,∴S 菱形ABCD = ×BD ×AC =BC ×AE ,∴AE = = , ∴BE = = = ; 故答案为: .由菱形的性质得出AO = AC =2,BO = BD =3,AC ⊥BD ,由勾股定理得出BC =AB = ,由S 菱形ABCD = ×BD ×AC =BC ×AE ,求出AE = ,再由勾股定理即可得出BE 的长.的长.本题考查了菱形的性质、勾股定理、菱形面积公式;熟练掌握菱形的性质和勾的长是解题的关键.股定理,求出AE的长是解题的关键.16.【答案】( , )【解析】解:∵直线y=-x+2与x轴相交于点A,与y轴相交于点B,∴A(2,0),B(0,2),),连接BC,则BC=2,∵过C作CD⊥y轴于D,CE⊥x轴于E,设C(a,a-1)则OD=CE=a-1,CD=a,∴BD=2-(a-1)=3-a,∵BC2=BD2+CD2,∴12=(3-a)2+a2,∴a= ,(负值舍去),,(负值舍去),∴C( , ),),).故答案为:( , ).根据函数关系式y=-x+2得到A(2,0),B(0,2),连接BC,则BC=2,过C作CD⊥y轴于D,CE⊥x轴于E,设C(a,a-1)得到OD=CE=a-1,CD=a,根据勾股定理列方程即可得到结论.股定理列方程即可得到结论.本题考查了两直线相交或平行,一次函数的性质,正确的作出图形是解题的关键.键.17.【答案】解:原式= = = =- .【解析】根据分式的除法和减法可以解答本题.【解析】根据分式的除法和减法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.18.【答案】解:原式=2-1-3+2=2-2.【解析】利用平方差公式、负整数指数幂的意义计算.【解析】利用平方差公式、负整数指数幂的意义计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.【答案】证明:∵四边形ABCD是正方形,是正方形,∴AB=AD,∠D=∠BAD=∠ABC=90°.∴∠ABF=90°=90°==∠D.∵AE⊥AF,∴∠EAF=90°.∴∠FAB=90°=90°--∠BAE=∠EAD.在△ABF和△ADE中,中, ,∴△ABF≌△ADE(ASA).).∴AE =AF .【解析】由四边形ABCD 为正方形,得出AB =AD ,∠ABF =∠D =∠BAD =90°,证出∠FAB =∠EAD ,由SAS 证得△ABF ≌△ADE ,即可得出结论.,即可得出结论.本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解决问题的关键.等三角形的判定与性质是解决问题的关键.20.【答案】12 12 12 12 50 50 108 【解析】解:(1)根据统计图可知,被调查的男生中,投中次数为2次的有12人,投中次数为1次的男生人数占被调查男生总数的百分比为12, 故答案为12,12;(2)被调查男生的总数12÷12÷24%=5024%=50(人),(人),扇形统计图中投中次数为3次的圆心角的度数360°360°×× =108°, 故答案为:50,108;(3) . 答:估计该年级男生投中次数不少于3次的人数为120人.人.(1)根据统计图可知,被调查的男生中,投中次数为2次的有12人,人,投中次数投中次数为1次的男生人数占被调查男生总数的百分比为12;(2)被调查男生的总数12÷12÷24%=5024%=50(人),扇形统计图中投中次数为3次的圆心角的度数360°360°×× =108°, (3) .本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【答案】解:设2016年到2018年该工厂年产值的年平均增长率为x , 则100(x +1)2=144 解得:x 1=0.2,x 2=-2.2.(不符合题意,舍去)..(不符合题意,舍去).答:2016年到2018年该工厂年产值的年平均增长率为20%.【解析】设该工厂从2016年至2018年的年平均增长率为x ,根据该工厂2016年及2018年年产值,即可得出关于x 的一元二次方程,解之取其正值即可得出结论结论本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.二次方程.22.【答案】解:(1)设AC 与y 轴相交于点D .把x =1代入,得y =2, ∴点C 的坐标为(1,2),), ∵四边形ABOC 是平行四边形,是平行四边形, ∴AC ∥OB ,∴∠CDO =∠DOB =90°, ∴OD =2,DC =1, ∵△AOC 的面积为, ∴ AC •OD =, ∴AC =,∴点A 的坐标为(, ),), ∴k =-1;是平行四边形,(2)∵四边形ABOC是平行四边形,∴ ,),∴点B的坐标为(,),设直线AB的解析式为y=ax+b∴ 解得解得 ,∴直线AB解析式为y=2x+3.【解析】(1)设AC与y轴相交于点D.把x=1代入,得y=2,得到点C 的坐标为(1,2),根据平行四边形的性质得到AC∥OB,求得∠CDO=∠DOB=90°,根据△AOC的面积为,得到AC=,于是得到点A的坐标为(,),即可得到结论;得到结论;(2)根据平行四边形的性质得到 ,得到点B的坐标为(,),解方程组即可得到结论.设直线AB的解析式为y=ax+b解方程组即可得到结论.本题考查了反比例函数系数k的几何意义,待定系数法求函数的解析式,平行四边形的性质,三角形打麻将的计算,正确的理解题意是解题的关键.23.【答案】解:(1)连接OB.则∠BOC=2∠BAC.∵∠DAC=2∠BAC,∴∠BOC=∠DAC,∵EF=CF,∴∠FEC=∠FCE,∵∠FCE=∠ACD,∴∠FEC=∠ACD,∵AC是⊙O的直径,的直径,∴∠ADC=90°,∴∠DAC+∠ACD=90°,∴∠BOC+∠ACD=90°,∴∠OBE=180°=180°--(∠BOE+∠FEC)=90°,∴BE⊥OB,∴BE是⊙O的切线;的切线;(2)在Rt△OBE中, ,由(1)知,∠BOE=∠DAC,∠OBE=∠ADC,∴△ADC∽△OBE,∴ ,即 ,∴ .【解析】(1)连接OB.由圆周角定理得到∠BOC=2∠BAC.等量代换得到∠BOC=∠DAC,求得∠FEC=∠ACD,由AC是⊙O的直径,得到∠ADC=90°,求得∠BOC+∠ACD=90°,推出BE⊥OB,于是得到BE是⊙O的切线;的切线;(2)根据勾股定理得到 ,根据相似三角形的性质即可得到结论.的性质即可得到结论.本题考查了切线的判定和性质,要走了定理,勾股定理,相似三角形的判定和性质,熟练正确切线大排档定理是解题的关键,性质,熟练正确切线大排档定理是解题的关键,24.【答案】解:(1)当y=0时,,解得x1=-4,x2=6.当y=3,,解得x3=0,x4=2.当x=0时,则y=3.所以点B(6,0),点C(0,3),点D(2,3).).过点D作DE⊥x轴于点E,如图1,则∠DEB=90°,DE=3,BD=6-2=4.∴BD= ,(2)如图1,当(0≤t≤3)时,)时,过点Q作QF⊥x轴于点F,则∠BFQ=∠PFQ=90°,由(1)得,sin∠EBD= ,cos∠EBD= .∴BQ=t,BP=2t,QF=BQ sin∠EBD=,BF=BQ cos∠EBD=.∴PF= .∴ ,如图2,当3<t≤4.5时,时,过点Q作QG⊥y轴于点G,则∠OGQ=∠GOF=∠OFQ=90°,∴四边形OFQG是矩形.是矩形.∴OG=QF=,OP=2t-6.PG = ,GQ =OF =综上,综上, <.【解析】(1)求出点B (6,0),点C (0,3),点D (2,3),过点D 作DE ⊥x 轴于点E ,如图1,则∠DEB =90°,DE =3,BD =6-2=4.则BD = ;(2)分0≤t ≤3、3<t ≤4.5两种情况,分别求解即可两种情况,分别求解即可本题考查的是二次函数综合运用,涉及到解直角三角形、矩形基本性质等知识点,其中(2),要注意分类求解、避免遗漏.),要注意分类求解、避免遗漏. 25.【答案】∠CBE【解析】解:(1)∵BE ⊥AC ,AD ⊥BC , ∴∠AEF =∠BDF =90°,∵∠EAF +∠AFE =90°,∠CBE +∠BFD =90°,∠AFE =∠BFD , ∴∠CBE =∠EAF . 故答案为∠CBE .(2)证明:∵AD ⊥BC ,BE ⊥AC , ∴∠ADB =∠BEC =90°. ∵BG 平分∠EBC , ∴∠EBG =∠GBC . ∴△BDH ∽△BEG .∴ ∵点H是BG的中点,的中点,∴ .∴EG=2DH.(3)如图,过点G作GP⊥BC,垂足为P.连接EH.∵∠EBG=∠GBC,BE⊥AC,GP⊥BC,∴GP=EG=2DH=2.∵BH=HG,∠BEC=90°,∴EH=BH=HG.∴∠HEG=HGE,∵∠EGH+∠EBG=∠BHD+∠GBC=90°,∠EBG=∠GBC,∴∠EGH=∠BHD,∵∠AHG=∠BHD,∴∠AHG=∠AGH=∠HEG,∴AH=AG,△AHG∽△HEG,∴ .即∴HG=2k.∴AH=AG=2k2,∵∠GPB =∠ADB =90°, ∴GP ∥AD , ∴△CGP ∽△CAD . ∴ , 即 ,∴ .(1)根据等角的余角相等解决问题即可.)根据等角的余角相等解决问题即可. (2)证明△BDH ∽△BEG .可得 ,解决问题即可.,解决问题即可.(3)如图,过点G 作GP ⊥BC ,垂足为P .连接EH .由△AHG ∽△HEG ,可得.即推出HG =2k .推出AH =AG =2k 2,由△CGP ∽△CAD .推出 ,构建方程即可解决问题.,构建方程即可解决问题.本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.题,学会利用参数构建方程解决问题,属于中考常考题型. 26.【答案】(-2,0) (-1, )【解析】解:(1)①令y =0,x =-2, ∴B 点坐标(-2,0);); 故答案为(-2,0););②令x =-1,C (-1,),D (-1,-n ),), ∵点P 是线段CD 的中点,的中点, ∴P (-1,););故答案为(-1, ););(2)设抛物线的解析式为)设抛物线的解析式为 .∵直线直线: 与直线l 2:y =nx 交于点A ,∴  ,解得,解得.∴点A 的坐标为的坐标为 , ,∴ .解得;(3)当n =1时,.∴抛物线解析式可以转化为y =a (x +1)2-a =ax 2+2ax . ∴点P 的坐标可以表示为(-1,-a ).). 当a <0时,抛物线开口向下,时,抛物线开口向下,∴当x =-1时,ax 2+bx +c 有最大值,最大值为-a . ∴-a ≤1.解得a ≥-1.∴-1≤a <0.即 < . 解得2<m ≤6;当a >0时,抛物线开口向上,时,抛物线开口向上,∴当x =1时,ax 2+bx +c 有最大值,最大值为a +2a =3a . ∴3a ≤1.解得. ∴ <,即 < .解得< .综上所述,m 的取值范围是< 或2<m ≤6; (1)①令y =0,x =-2,可求B 点坐标(-2,0););②令x =-1,C (-1,),D (-1,-n ),由点P 是线段CD 的中点,求出P (-1,););(2)设抛物线的解析式为)设抛物线的解析式为 .联立直线.联立直线 : 与直线l2:y=nx,可求点A的坐标为, ,即可求;(3)当n=1时, .抛物线解析式可以转化为y=a(x+1)2-a=ax2+2ax.所以点P的坐标可以表示为(-1,-a).).当a<0时,当x=-1时,ax 2+bx+c有最大值,最大值为-a.可得-1≤a<0.即<.求m的范围;的范围;当a>0时,抛物线开口向上,当x=1时,ax 2+bx+c有最大值,最大值为a+2a=3a.可得<,即< .求出m的范围;的范围;本题考查二次函数的图象及性质;熟练掌握二次函数的性质,分a>0和a<0讨论最值的情况是解题的关键.讨论最值的情况是解题的关键.。

2019-2020学年辽宁省大连市中山区中考数学模拟试卷((有标准答案))

2019-2020学年辽宁省大连市中山区中考数学模拟试卷((有标准答案))

辽宁省大连市中山区中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a34.计算:=()A.1 B.2 C.1+D.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,406.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为11.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=km.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.(9分)解方程:x2﹣5x+3=0.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE =CF.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q 处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.辽宁省大连市中山区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤0【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.计算:=()A.1 B.2 C.1+D.【分析】按同分母分式的减法法则计算即可.【解答】解:法一、===1.故选:A.法二、=+﹣=1.故选:A.【点评】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,40【分析】已知给出了一个内角是40°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为40°时,另外两个内角=(180°﹣40°)÷2=70°;(2)若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°﹣40°﹣40°=100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分【分析】根据题目中的数据和加权平均数的计算方法可以解答本题.【解答】解:70×+80×+60×=14+32+24=70(分),故选:B.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到黑球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次都摸到黑球的有1种情况,∴两次都摸到黑球的概率是,故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④【分析】根据角平分线、高、等腰直角三角形的性质依次判断即可得出答案.【解答】解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠1=∠3,②∵∠1=∠2=22.5°,∴∠ABD=∠BAD,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵AB=BC,∴BD+DH=AB,③无法证明,④可以证明,故选:C.【点评】本题主要考查了角平分线、高、等腰直角三角形的性质,比较综合,难度适中.二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为﹣5 .【分析】根据题意得出x+2+2x+10=﹣2+(﹣1)+(2x+10),进而求出答案.【解答】解:由题意可得:x+2+2x+10=﹣2+(﹣1)+(2x+10),整理得:3x+12=2x+7,解得:x=﹣5,故答案为:﹣5.【点评】此题主要考查了有理数的加法,正确得出关于x的等式是解题关键.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.11.如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy =k可得k=﹣2m2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为10 .【分析】作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=BE,再根据BD=BF+DF求BD.【解答】解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC﹣CE=2,在Rt△BEF中,∵∠B=60°,∴BF=BE=1,∴BD=BF+DF=1+4=5,由垂径定理,得AB=2BD=10.故答案为:10【点评】本题考查了垂径定理,等边三角形的性质.关键是通过作辅助线,得出等边三角形,30°的直角三角形,利用垂径定理求AB .13.已知关于x 的二次函数y =ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0),若3<m <4,则a 的取值范围是 <a <或﹣4<a <﹣3 .【分析】先用a 表示出抛物线与x 轴的交点,再分a >0与a <0两种情况进行讨论即可.【解答】解:∵y =ax 2+(a 2﹣1)x ﹣a =(ax ﹣1)(x +a ),∴当y =0时,x 1=,x 2=﹣a ,∴抛物线与x 轴的交点为(,0)和(﹣a ,0).∵抛物线与x 轴的一个交点的坐标为(m ,0)且3<m <4,∴当a >0时,3<<4,解得<a <;当a <0时,3<﹣a <4,解得﹣4<a <﹣3.故答案为:<a <或﹣4<a <﹣3.【点评】本题考查的是抛物线与x 轴的交点,关键是在解答此题时要注意进行分类讨论,不要漏解.14.如图,在一笔直的东西走向的沿湖道路上有A ,B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4km ,则BC = 2 km .【分析】作CD ⊥AB 于点D ,在Rt △ACD 中利用三角函数求得CD 的长,然后在Rt △BCD 中求得BC 的长.【解答】解:作CD ⊥AB 于点B .∵在Rt △ACD 中,∠CAD =90°﹣60°=30°,∴CD =AC •sin ∠CAD =4×=2(km ),∵Rt △BCD 中,∠CBD =90°,∴BC=CD=2(km),故答案是:2.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于8π.【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【解答】解:侧面积=4×4π÷2=8π.故答案为8π.【点评】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0 .【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(9分)解方程:x2﹣5x+3=0.【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣5,c=3,∵△=25﹣12=13,∴x=,则x1=,x2=.【点评】此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般形式,找出a,b及c的值,然后当根的判别式大于等于0时,代入求根公式即可求出解.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE =CF.【分析】由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF全等,利用全等三角形的对应边相等即可得证.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AED=∠CFB,∴△ADE≌△CBF,∴AE=CF.【点评】此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.【分析】(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据工作时间=工作总量÷工作效率结合甲车主单独完成运输任务比乙车主单独完成任务要多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率及总费用=每日所需费用×运输天数,分别求出甲车主单独完成、乙车主单独完成及甲、乙两车主合作完成所需时间及总费用,比较后即可得出结论.【解答】解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)分别求出三种外包方案所需时间及总费用.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.【分析】(1)根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;(2)作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.【解答】解:(1)∵点A(m,6)和点B(﹣3,n)在双曲线,∴6m=6,﹣3n=6,m=1,n=﹣2.∴点A(1,6),点B(﹣3,﹣2).…(2分)将点A、B代入直线y=kx+b,得,解得…(4分)∴直线AB的表达式为:y=2x+4.…(5分)(2)分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N.…(6分)则∠AMO=∠BNO=90°,AM=1,BN=3,…(7分)∴AM∥BN,…(8分)∴.…(10分)【点评】本题是一次函数和反比例函数的综合问题,考查了反比例函数和一次函数的交点问题,将点的坐标代入解析式中可得交点坐标,对于交点问题:可利用方程组的解来求两函数的交点坐标;本题还考查了平行线分线段成比例定理.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.【分析】(1)连接OC,如图,利用圆周角定理得∠2+∠3=90°,再证明∠1=∠3,则∠1+∠2=90°,然后根据切线的判定定理可得到PC与⊙O相切;(2)先利用勾股定理得到PC=8,再证明△PAC∽△PCB,利用相似比得=,然后在Rt△ABC中,利用勾股定理得到BC2+BC2=122,从而解BC的方程即可.【解答】(1)证明:连接OC,如图,∵AB为⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵∠1=∠B,∠3=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠PCO=90°,∴OC⊥PC,∴PC与⊙O相切;(2)解:在Rt△POC中,PC===8,∵∠CPA=∠BPC,∠1=∠B,∴△PAC∽△PCB,∴===,在Rt△ABC中,∵AC2+BC2=AB2,∴BC2+BC2=122,∴BC=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.【分析】(1)正方形的证明题有时用计算方法证明比几何方法简单,此题设正方形边长为a,DE为x,则根据折叠知道DM=,EM=EA=a﹣x,然后在Rt△DEM中就可以求出x,这样DE,DN,EM就都用a表示了,就可以求出它们的比值了;(2)△CMG的周长与点M的位置无关.设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,然后利用正方形的性质和折叠可以证明△DEM∽△CMG,利用相似三角形的对应边成比例可以把CG,MG分别用x,y分别表示,△CMG的周长也用x,y表示,然后在Rt△DEM中根据勾股定理可以得到4ax﹣x2=4ay,结合△CMG 的周长,就可以判断△CMG的周长与点M的位置无关.【解答】(1)证明:设正方形边长为a,DE为x,则DM=,EM=EA=a﹣x在Rt△DEM中,∠D=90°,∴DE2+DM2=EM2x2+()2=(a﹣x)2x=EM=DE:DM:EM=3:4:5;(2)解:△CMG的周长与点M的位置无关.证明:设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,∵∠EMG=90°,∴∠DME+∠CMG=90度.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,又∵∠D=∠C=90°△DEM∽△CMG,∴即∴CG=△CMG的周长为CM+CG+MG=在Rt△DEM中,DM2+DE2=EM2即(2a﹣x)2+y2=(2a﹣y)2整理得4ax﹣x2=4ay∴CM+MG+CG===4a.所以△CMG的周长为4a,与点M的位置无关.【点评】正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q 处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.【分析】(1)根据同交的余角相等证明∠AFE=∠BEG,则可以根据两角对应相等的两个三角形相似即可证得;(2)根据tan∠AEF=可得AF:AE=3:4,则设AF=3x,AE=4x,则EF=DF=5x,根据AD=6即可求得x的值.则BE即可求得,然后根据△AEF∽△BGE,求得△EBG的边长,从而求解.【解答】解:(1)由折叠可知:∠FEQ=∠D=90°,EF=DF∵∠AEF+∠AFE=90°,∠AEF+∠BEG=90°∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE;(2)在Rt△AEF中,tan∠AEF=∴AF:AE=3:4设AF=3x,AE=4x,则EF=DF=5x∴3x+5x=6∴∴AF=,AE=3,EF=.∵△AEF∽△BGE,∴即,∴BG=4,GE=5.∴△EBG的周长为3+4+5=12.【点评】本题考查了图形的折叠与相似三角形的判定与性质,以及三角函数的定义,正确求得x的值是本题的关键.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C=AM+MN+AN=AC+AN=3+.△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.找出S△APC。

辽宁省大连市2019-2020学年中考中招适应性测试卷数学试题(2)含解析

辽宁省大连市2019-2020学年中考中招适应性测试卷数学试题(2)含解析

辽宁省大连市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程3x2-6x+4=0根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根 D.没有实数根2.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是()A.无法求出B.8 C.8πD.16π3.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为()A.135×107B.1.35×109C.13.5×108D.1.35×10144.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B (4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()7.不等式组73357x xx-+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( )A.B.C.D.8.下列图形中,属于中心对称图形的是()A.B.C.D.9.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A.12 B.14 C.16 D.1810.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1 2 3 5方案2 3 2 5方案3 2.5 2.5 5则最省钱的方案为()A.方案1 B.方案2C.方案3 D.三个方案费用相同11.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为()A.10⨯D.139.510km⨯0.9510km⨯C.12⨯B.1295010km9510km12.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.213二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.A B C D E的五个小客车收费出口,假定各收费出口每20分15.高速公路某收费站出城方向有编号为,,,,钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号,A B,B C,C D,D E,E A通过小客车数量(辆)260 330 300 360 240 在,,,,A B C D E五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.17.因式分解:x2﹣10x+24=_____.18.在△ABC中,若∠A,∠B满足|cosA-12|+(sinB-22)2=0,则∠C=_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=12 AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,BECD= ;②当θ=180°时,BECD= .(2)拓展探究试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.20.(6分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).21.(6分)在Rt △ABC 中,∠BAC=,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE的延长线于点F .(1)求证:△AEF ≌△DEB ; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积. 22.(8分)解方程:x 2-4x -5=023.(8分)如图1,正方形ABCD 的边长为4,把三角板的直角顶点放置BC 中点E 处,三角板绕点E 旋转,三角板的两边分别交边AB 、CD 于点G 、F . (1)求证:△GBE ∽△GEF .(2)设AG=x ,GF=y ,求Y 关于X 的函数表达式,并写出自变量取值范围.(3)如图2,连接AC 交GF 于点Q ,交EF 于点P .当△AGQ 与△CEP 相似,求线段AG 的长.24.(10分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步? 25.(10分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.26.(12分)已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB围成的封闭图形记作G . (1)求此抛物线的解析式;(2)点P 为图形G 中的抛物线上一点,且点P 的横坐标为m ,过点P 作//PQ y 轴,交线段AB 于点Q .当APQ V 为等腰直角三角形时,求m 的值;(3)点C 是直线AB 上一点,且点C 的横坐标为n ,以线段AC 为边作正方形ACDE ,且使正方形ACDE 与图形G 在直线AB 的同侧,当D ,E 两点中只有一个点在图形G 的内部时,请直接写出n 的取值范围.27.(12分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 2.D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB 于小圆切于点C , ∴OC ⊥AB , ∴BC=AC=12AB=12×8=4cm . ∵圆环(阴影)的面积=π•OB 2-π•OC 2=π(OB 2-OC 2) 又∵直角△OBC 中,OB 2=OC 2+BC 2∴圆环(阴影)的面积=π•OB 2-π•OC 2=π(OB 2-OC 2)=π•BC 2=16π. 故选D .考点:1.垂径定理的应用;2.切线的性质. 3.B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】将1350000000用科学记数法表示为:1350000000=1.35×109, 故选B . 【点睛】本题考查科学记数法的表示方法. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值及n 的值. 4.C 【解析】试题解析:∵抛物线的顶点坐标A (1,3), ∴抛物线的对称轴为直线x=-2ba=1, ∴2a+b=0,所以①正确; ∵抛物线开口向下, ∴a <0, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.5.C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,+=16,∵OC2+AO2=22AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.6.D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.B【解析】【分析】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.故选B.【点睛】本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合. 9.C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.10.A【解析】【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为235a b+,方案2混合糖果的单价为225a b+,方案3混合糖果的单价为2.5 2.552a b a b++=.∵a>b,∴2232525a b a b a b+++<<,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.11.C【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将9500000000000km 用科学记数法表示为129.510⨯.故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.D【解析】∵⊙O 的半径OD ⊥弦AB 于点C ,AB=8,∴AC=AB=1.设⊙O 的半径为r ,则OC=r -2,在Rt △AOC 中,∵AC=1,OC=r -2,∴OA 2=AC 2+OC 2,即r 2=12+(r ﹣2)2,解得r=2.∴AE=2r=3.连接BE ,∵AE 是⊙O 的直径,∴∠ABE=90°.在Rt △ABE 中,∵AE=3,AB=8,∴2222BE AE AB 1086=--=.在Rt △BCE 中,∵BE=6,BC=1,∴2222CE BE BC 64213=+=+=D . 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE 的长.【详解】由题意可得, DE=DB=CD=12AB ,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴∴故答案为.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.6.4【解析】【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.15.B【解析】【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A 、E 两个安全出口,与同时开放D 、E 两个安全出口,20分钟的通过数量发现得到D 疏散乘客比A 快;同理同时开放BC 与 CD 进行对比,可知B 疏散乘客比D 快;同理同时开放BC 与 AB 进行对比,可知C 疏散乘客比A 快;同理同时开放DE 与 CD 进行对比,可知E 疏散乘客比C 快;同理同时开放AB 与 AE 进行对比,可知B 疏散乘客比E 快;所以B 口的速度最快故答案为B .【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.16.21 【解析】试题分析:这四个数中,奇数为1和3,则P (抽出的数字是奇数)=2÷4=12. 考点:概率的计算.17.(x ﹣4)(x ﹣6)【解析】【分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可. 【详解】x 2﹣10x+24= x 2﹣10x+(-4)×(-6)=(x ﹣4)(x ﹣6)【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.18.75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA 及sinB 的值,从而得出∠A 及∠B 的度数,利用三角形的内角和定理可得出∠C 的度数.【详解】∵|cosA -12|+(sinB -2)2=0,∴cosA=12,sinB=2, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°. 【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA 及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①22,②;(2)无变化,证明见解析;(3)①22+23,② +1或3﹣1.【解析】【分析】(1)①先判断出DE ∥CB ,进而得出比例式,代值即可得出结论;②先得出DE ∥BC ,即可得出,AE AD AB AC=,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE ,进而判断出△ADC ∽△AEB 即可得出结论;(3)分点D 在BE 的延长线上和点D 在BE 上,先利用勾股定理求出BD ,再借助(2)结论即可得出CD .【详解】解:(1)①当θ=0°时,在Rt △ABC 中,AC=BC=2,∴∠A=∠B=45°,AB=22,∵AD=DE=12AB=2, ∴∠AED=∠A=45°,∴∠ADE=90°,∴DE ∥CB ,∴CD BE AC AB=, ∴222CD =, ∴2BE CD=, 故答案为2,②当θ=180°时,如图1,∵DE∥BC,∴AE AD AB AC=,∴AE AB AD AC AB AC++=,即:BE CD AB AC=,∴222 BE ABCD AC===,故答案为2;(2)当0°≤θ<360°时,BECD的大小没有变化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵AD AE AC AB=,∴△ADC∽△AEB,∴2222BE ABCD AC==;(3)①当点E在BA的延长线时,BE最大,在Rt△ADE中,AE=2AD=2,∴BE最大=AB+AE=22+2;②如图2,当点E在BD上时,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,2,2,根据勾股定理得,22-AB AD6,∴62,由(2)知,2BE CD =, ∴CD=62322BE +==+1, 如图3,当点D 在BE 的延长线上时,在Rt △ADB 中,AD=2,AB=22,根据勾股定理得,BD=22-AB AD =6,∴BE=BD ﹣DE=6﹣2,由(2)知,2BE CD=, ∴CD=62322-==﹣1. 故答案为3 +1或3﹣1.【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE ∥BC ,解(2)的关键是判断出△ADC ∽△AEB ,解(3)关键是作出图形求出BD ,是一道中等难度的题目.20.见解析【解析】【分析】根据题意作∠CBA=∠CAP 即可使得△ABC ~△PAC.【详解】如图,作∠CBA=∠CAP ,P 点为所求.【点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.21.(1)证明详见解析;(2)证明详见解析;(3)1.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5,∵四边形ADCF 是菱形,∴S菱形ADCF=12AC▪DF=12×4×5=1.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.22.x1 ="-1," x2 =5【解析】根据十字相乘法因式分解解方程即可.23.(1)见解析;(2)y=4﹣x+44x-(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4﹣233.【解析】【分析】(1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;(2)先判断出△BEG∽△CFE进而得出CF=4 4x -,即可得出结论;(3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.【详解】(1)如图1,延长FE交AB的延长线于F',∵点E是BC的中点,∴BE=CE=2,∵四边形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=44x -,由(1)知,BF'=CF=44x -,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+4 4x -当CF=4时,即:44x-=4,∴x=3,(0≤x≤3),即:y关于x的函数表达式为y=4﹣x+44x-(0≤x≤3);(3)∵AC是正方形ABCD的对角线,∴∠BAC=∠BCA=45°,∵△AGQ与△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=23,∴AG=AB﹣BG=4﹣233,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴,∴,∴BG=2,∴AG=AB﹣BG=2,即:当△AGQ与△CEP相似,线段AG的长为2或4233.【点睛】本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.24.12【解析】【分析】设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x =60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.25.(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】【分析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BO BG AO=,可求出P 的坐标. (3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE=2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5.【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++, (2)()2211941222y x x x =-++=--+, ∴对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G ,∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO , ∴PG BO BG AO=, ∴121BG =, ∴12BG =, 72OG =, ∴P (1,72), (3)设新抛物线的表达式为2142y x x m =-++- 则()0,4D m -,()2,4E m -,DE=2过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF∴2=1DE EO DO FH OF OH ==, ∴FH=1.点D 在y 轴的正半轴上,则51,2F m ⎛⎫-- ⎪⎝⎭, ∴52OH m =-, ∴42512DO m OH m -==-, ∴m=3,点D 在y 轴的负半轴上,则91,2F m ⎛⎫- ⎪⎝⎭, ∴92OH m =-, ∴42912DO m OH m -==-, ∴m=5,∴综上所述m 的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键. 26.(1)23y x x =+-;(2)-2或-1;(3)-1≤n<1或1<n≤3. 【解析】【分析】(1)把点(1,1)A -,(3,3)B -代入抛物线23y ax bx =+-得关于a,b 的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得:319333a b a b +-=-⎧⎨--=⎩ 解得:11a b =⎧⎨=⎩∴此抛物线的解析式23y x x =+- ;(2)设直线AB 的解析式为y=kx+b,依题意得:133k b k b +=-⎧⎨-+=⎩解得:10k b =-⎧⎨=⎩∴直线AB 的解析式为y=-x.∵点P 的横坐标为m ,且在抛物线上,∴点P 的坐标为(m, 23m m +-)∵//PQ y 轴,且点Q 有线段AB 上,∴点Q 的坐标为(m,-m )① 当PQ=AP 时,如图,∵∠APQ=90°,//PQ y 轴,∴2213m m m -=--解得,m=-2或m=1(舍去)② 当AQ=AP 时,如图,过点A 作AC ⊥PQ 于C ,∵APQ V 为等腰直角三角形,∴2AC=PQ222(1)3m m m -=--即m=1(舍去)或m=-1.综上所述,当APQ V 为等腰直角三角形时,求m 的值是-2惑-1.;(3)①如图,当n<1时,依题意可知C,D 的横坐标相同,CE=2(1-n )∴点E 的坐标为(n,n-2)当点E 恰好在抛物线上时,232n n n +-=-解得,n=-1.∴此时n 的取值范围-1≤n<1.②如图,当n>1时,依题可知点E 的坐标为(2-n,-n )当点E 在抛物线上时,2(2)3(2)n n n +--=--解得,n=3或n=1.∵n>1.∴n=3.∴此时n的取值范围1<n≤3.综上所述,n的取值范围为-1≤n<1或1<n≤3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.27.(1)点的坐标为;(2);(3)或.【解析】【分析】(1)点A在反比例函数上,轴,,求坐标;(2)梯形面积,求出B点坐标,将点代入即可;(3)结合图象直接可求解;【详解】解:(1)∵点在的图像上,轴,.∴,∴∴点的坐标为;(2)∵梯形的面积是3,∴,解得,∴点的坐标为,把点与代入得解得:,.∴一次函数的解析式为.(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的另一个交点为E,联立,得点E的坐标为即的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或.【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键.。

辽宁省大连市2020届初三二模数学答案(中山区)(2020.6.24)

辽宁省大连市2020届初三二模数学答案(中山区)(2020.6.24)
当 x=5.5 时,调价前后运费一样高-----------------------9 分
O 3 6 7 x(km)
当 x>5.5 时,调价前运费高-----------------------------10 分
五、解答题(本题共 3 小题,其中 24、25 题各 11 分, 26 题 12 分,共 34 分)
22.(1)连结 OC,
∵直线 CE 与⊙O 相切于点 C,
∴OC⊥CE,-----------------1 分 ∵AD⊥CE
1 2
A
D C
3
O FB
E
∴∠ADC=∠OCE=90゜
∴OC∥AD,-----------------------2 分
∴∠1=∠3,
∵OA=OC,
∴∠2=∠3,
∴∠1=∠2,--------------------------3 分 ∵CF⊥AB ∴∠AFC=90゜=∠ADC-------------------4 分
∴在△ADC 和△AFC 中
ìÐADC = ÐAFC ïíÐ1 = Ð2 ïîAC = AC
∴△ADC≌△AFC
∴AD=AF---------------------------5 分
D C
G
A
O
FB
E
(2)连结 OC,
∵OC∥AD, ∴∠ADG=∠GOC ∠DAG=∠GCO-----------------6 分
∴△OCG∽△DAG,
∴ = CG = 3 ,----------------------7 分 AG 5
∵AB=12,
∴OC=6 ∴AD=10----------------------8 分 ∴AF=10 ∴OF=4---------------------------9 分

2019-2020学年辽宁省大连市中考数学模拟试题(有标准答案)(word版)

2019-2020学年辽宁省大连市中考数学模拟试题(有标准答案)(word版)

大连市初中毕业升学考试数学一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.-3的相反数是( ) A.31 B.31- C.3 D.-3 2.在平面直角坐标系中,点(1,5)所在的象限是( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.方程2x+3=7的解A. x=5B. x=4C. x=3.5D. x=2 4.如图,直线AB ∥CD ,AE 平分∠CAB ,AE 与CD 相交于点E , ∠ACD=40°则∠BAE 的度数是( )A. 40°B. 70°C. 80°D. 140° 5.不等式组⎩⎨⎧++2322x x xx <>的解集是( )A. x >-2B. x <1C. -1<x <2D.-2<x <16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,、2、3、4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球的标号的积小于4的概率是( ) A.61 B. 125 C. 31 D. 21 7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x ,则该文具店五月份销售铅笔的支数( )A. 100(1+x )B. 100(1+x )2C. 100(1+x 2) D. 100(1+2x ) 8. 如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm ) A. 40πcm 2B. 65πcm 2C. 80πcm 2D. 105πcm 2二、填空题(本题共8小题,每小题3分,共24分) 9.因式分解:x 2-3x=______________________ 10.若反比例函数xky =的图象经过点(1,-6),则k 的值为_________________ 11.如图,将△ABC 绕A 顺时针旋转得到△ADE ,点C 和点E 是对应点, 若∠CAE=90°,AB=1,则BD=_________ 12.下表是某校女子排球队队员的年龄分布13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是_________________(第8题)(第11题)14.若关于x 的方程2x 2+x-a=0有两个不相等的实数根,则实数a 的取值范围是_____________15.如图,一艘渔船位于灯塔P 的北偏东30°方向距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为___________海里(结果取整数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省大连市中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0 B.﹣3.5 C.D.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×1053.下列几何体中,主视图是三角形的为()A.B.C.D.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5 B.y=2x2﹣5 C.y=2(x+5)2D.y=2(x﹣5)25.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<26.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9 B.11 C.13 D.168.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36= .10.在函数y=中,自变量x的取值范围是.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为m(精确到0.1m,参考数据≈1.73)14.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为.16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB 翻折,点O落在点O′处,则点O′的坐标为.三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A 0≤x<120 24B 120≤x<130 72C 130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为%;(2)本次共调查了名学生,其中跳绳次数在130≤x<140范围内的人数为人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为%;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC 相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为;问题(2)中AD的取值范围是;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC的解析式为y=kx+2.(1)抛物线的解析式为;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.辽宁省大连市中考数学二模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0 B.﹣3.5 C.D.【考点】26:无理数.【分析】由于无理数就是无限不循环小数.有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是有理数,故A选项错误;B、﹣3.5是有理数,故B选项错误;C、是无理数,故C选项正确;D、=3,是有理数,故D选项错误.故选:C.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:825100=8.251×105,故选D.3.下列几何体中,主视图是三角形的为()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据主视图的观察角度,从物体的正面观察,即可得出答案.【解答】解:A、其三视图是矩形,故此选项错误;B、其三视图是三角形,故此选项正确;C、其三视图是矩形,故此选项错误;D、其三视图是正方形形,故此选项错误;故选:B.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5 B.y=2x2﹣5 C.y=2(x+5)2D.y=2(x﹣5)2【考点】H6:二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移5个单位,那么新抛物线的顶点为(0,5),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+5.故选A.5.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2【考点】FD:一次函数与一元一次不等式.【分析】根据图象和A的坐标得出即可.【解答】解:∵直线y=kx+b和x轴的交点A的坐标为(﹣3,0),∴不等式kx+b>0的解集是x>﹣3,故选A.6.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选D.7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9 B.11 C.13 D.16【考点】W4:中位数.【分析】根据中位数的定义即可得.【解答】解:这组数据重新排列为:8、9、10、11、12、14、16、16、16、17,则其中位数为=13,故选:C.8.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的底面直径为4cm,高为cm,则底面半径=2cm,底面周长=4πcm,由勾股定理得,母线长=5cm,侧面面积=×4π×5=10πcm2.故选B.二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36= (x+6)(x﹣6).【考点】54:因式分解﹣运用公式法.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).10.在函数y=中,自变量x的取值范围是x≥﹣.【考点】E4:函数自变量的取值范围;72:二次根式有意义的条件.【分析】当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.【解答】解:依题意,得2x+1≥0,解得x≥﹣.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是18 .【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=160°n,解得n=18,故答案为:18.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为 6 .【考点】LB:矩形的性质.【分析】根据矩形的对角线相等且相互平分即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∵OA=3,∴BD=2OA=6,故答案为6.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为17.1 m(精确到0.1m,参考数据≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据题意:过点D作DE⊥AB,交AB与E;可得Rt△ADE,解之可得AE的大小;进而根据AB=BE+AE 可得旗杆AB的高.【解答】解:过点D作DE⊥AB,垂足为E.在直角△ADE中,有AE=DE×tan30°=9,那么旗杆AB的高为AE+EB=9+1.5≈17.1(m).故答案为17.114.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为 2 .【考点】G6:反比例函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】设A点向右移动的距离为a,由点B的坐标为(1,2)可知,B′(1+a,2),由点B′恰好在函数y=(x>0)的图象上求出a的值即可.【解答】解:设A点向右移动的距离为a,∵点B的坐标为(1,2),∴B′(1+a,2).∵点B′恰好在函数y=(x>0)的图象上,∴2(1+a)=6,解得a=2.故答案为:2.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为(4,﹣2).【考点】SC:位似变换;D5:坐标与图形性质.【分析】由以原点O为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O为位似中心,B(3,0)的对应点B′的坐标为(6,0),∴相似比为2,∵A(2,﹣1),∴点A′的对应点坐标为:(4,﹣2),故答案为:(4,﹣2).16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB 翻折,点O落在点O′处,则点O′的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;PB:翻折变换(折叠问题).【分析】根据已知条件得到OA=2,OB=1,根据折叠的性质得到AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,根据相似三角形的性质得到BC=,CO′=,得到OC=,AC=,根据O′D∥OC,得到△ADO′∽△AOC,根据相似三角形的性质即可得到结论.【解答】解:在y=﹣x+1中,令x=0,得y=1,令y=0,得x=2,∴A(2,0),B(0,1),∴OA=2,OB=1,∵将△AOB沿直线AB翻折,点O落在点O′处,∴AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,∴∠CO′B=∠AOC=90°,∵∠BCO′=∠ACO,∴△BCO′∽△ACO,∴,∴==,∴BC=,CO′=,∴OC=,AC=,∵O′D⊥OA,∴O′D∥OC,∴△ADO′∽△AOC,∴==,即==,∴DO′=,AD=,∴OD=,∴O′(,),故答案为:(,).三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用立方根和二次根式的性质、零指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=1+2﹣4+3=2.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘多项式、完全平方公式和合并同类项可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.【解答】解:m(m﹣2)﹣(m﹣1)2+m=m2﹣2m﹣m2+2m﹣1+m=m﹣1,当m═﹣时,原式==.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.【考点】L5:平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∵BC=5,CD=AB=3,∴DE=AD﹣AE=5﹣3=2.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A 0≤x<120 24B 120≤x<130 72C 130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为72 人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12 %;(2)本次共调查了200 名学生,其中跳绳次数在130≤x<140范围内的人数为59 人,跳绳次数在x ≥140范围内的人数占被调查人数的百分比为22.5 %;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.【考点】V7:频数(率)分布表;V5:用样本估计总体.【分析】(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;根据A组的人数是24,所占的百分比是12%即可求得调查的总人数,然后根据百分比的定义求得跳绳次数在0≤x<120范围内的人数占被调查人数的百分比;(2)利用总人数减去其它组的人数求得绳次数在x≥140范围内的人数占被调查人数的人数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;调查的总人数是24÷12%=200(人).则跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为=12%;故答案是:71,12;(2)调查的总人数是200人;跳绳次数在130≤x<140范围内的人数为200×29.5%=59(人),绳次数在x≥140范围内的人数占被调查人数的人数是200﹣24﹣72﹣59=45(人),则所长的百分比是=22.5%.故答案是:200,59,22.5;(3)估计该区七年级学生1分钟跳绳的次数不少于130个的人数是:4000×=2080(人).四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?【考点】B7:分式方程的应用.【分析】设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工 1.5x个零件,根据时间=,以此作为等量关系可列方程求解.【解答】解:设采用新工艺前每时加工x个零件.﹣10=,解得:x=50,经检验:x=50是原分式方程的解,且符合题意,答:采用新工艺之前每小时加工50个.22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?【考点】AD:一元二次方程的应用;FH:一次函数的应用.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据每天可获得600元的利润列出方程,解方程即可.【解答】解:(1)当30≤x≤80时,设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知,,解得,故y与x的函数关系式为y=﹣x+100;(2)∵y=﹣x+100,依题意得∴(x﹣30)(﹣x+100)=600,x2﹣280x+18700=0,解得x1=40,x2=90.∵30≤x≤80,∴取x=40.答:当每千克的销售价为40元时,获得的利润为600元.23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.【考点】MC:切线的性质;M6:圆内接四边形的性质.【分析】(1)根据圆周角定理即可得到结论;(2)根据全等三角形的性质得到AF=DE=4,CE=CF=2,根据切线的性质得到FC2=FB•AF,求得FB=1根据相似三角形的性质即可得到结论;【解答】解:(1)∵∠ABD=∠CBD=60°,∴∠CAD=∠CBD=60°,∠ACD=∠ABD=60°,∴△ACD是等边三角形;(2)在△ACF与△DCE中,∴△ACF≌△DCE,∴AF=DE=4,CE=CF=2,∵CF是⊙O的切线,∴FC2=FB•AF,∴22=FB•4,∴FB=1∴AB=AF﹣BF=4﹣1=3,∵∠ABE=∠DCE,∠BAE=∠CDE,∴△∠ABE∽∠DCE,∴===,∴=,解得:CD=3.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC 相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.【考点】FI:一次函数综合题.【分析】(1)作CM⊥x轴于点M,利用等腰直角三角形和矩形的性质可求得OM和CM的长,可求得C点坐标;(2)①当E在线段OB上时,连接OD,利用条件可证得△DOE∽△EBF,利用相似三角形的性质可得到m与n之间的关系;②当点E在线段BO的延长线上时,同样可证得△DOE∽△EBF,可得到m与n之间的关系.【解答】解:(1)作CM⊥x轴于点M,如图1,则∠CMB=∠AOM=90°,∴CM∥AO,∵AC∥x轴,∴四边形AOMC是矩形,∴CM=AO=3,AC=OM,∵∠OBC=45°,∴MB=MC=3,∴OM=7﹣3=4,∴C(4,3);(2)①当点E在线段OB上时,即当0<n<7时,如图2,连接OD,∵CD=1,∴AD=3=AO,∴∠AOD=∠ADO=45°=∠DOB=∠OBC,∵∠OEF=∠EFB+∠EBF,即∠OED+∠DEF=∠EFB+∠EBF,∴∠OED=∠EFB,∴△DOE∽△EBF,∴=,即=,∴m=﹣n2+n;②当点E在线段BO的延长线上时,即n<0时,连接OD,如图3,由(1)知∠DOB=∠OBC,∴∠DOE=∠EBF,∵∠DEF=45°=∠OBC,∴∠DEO+∠BEF=∠BFE+∠BEF,∴∠DEO=∠BFE,∴△DOE∽△EBF,∴=,即=,∴m=n2﹣n;综上可知m与n的函数关系式为m=.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为 3 ;问题(2)中AD的取值范围是1<AD<5 ;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).【考点】MR:圆的综合题.【分析】(1)由三角形中位线定理可得OD=BC,由此即可解决问题;(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.在△ABM中,理由三边关系定理可得6﹣4<AM <6+4,即2<2AD<10,1<AD<5;(3)①结论:EF=CE.如图4中,延长CD到M使得DM=CD,连接BM.由△ADC≌△BDM,推出BM=AC,∠M=∠ACD,由BM∥AC,推出△CEF∽△MBF,可得=,推出==,推出BF=mEF,推出BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,推出(m+1)EC=(m+1)EF,由此即可证明;结论: =.如图3中,作BM∥AC交CD的延长线于M.证明方法类似①;【解答】解:(1)如图1中,∵OD⊥AC,∴AD=DC,∵AO=OB,BC=6,∴OD=BC=3.(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.∵AD=DM,BD=CD,∴四边形ABMC是平行四边形,∴BM=AC=4,∵AB=6,∴6﹣4<AM<6+4,即2<2AD<10,∴1<AD<5.(3)①结论:EF=CE.理由:如图4中,延长CD到M使得DM=CD,连接BM.∵AD=DB,∠ADC=∠BDM,∴△ADC≌△BDM,∴BM=AC,∠M=∠ACD,∴BM∥AC,∴△CEF∽△MBF,∴=,∴==,∴BF=mEF,∴BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(m+1)EF,∴EF=CE.②结论: =.理由:如图3中,作BM∥AC交CD的延长线于M.由△ADC∽△BDM,可得==n,∴BM=,∵=,∴=,∵AC=mEC,∴BF=EF,∴BE=(1+)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(1+)EF,∴=.26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC的解析式为y=kx+2.(1)抛物线的解析式为y=x2﹣x+2 ;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.【考点】HF:二次函数综合题.【分析】(1)先利用一次函数解析式确定C(0,2),然后把C点坐标代入y=a(x﹣1)(x﹣4)中求出a即可;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,先解方程(x﹣1)(x﹣4)=0得A (1,0),B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,设E(m, m2﹣m+2),EF=n,则D(m﹣n,﹣ m+n+2),则DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,接着证明Rt△OCA∽Rt △FDE,利用相似比得到=2,则﹣m2+2m+n=2n,所以n=﹣m2+m,利用勾股定理得DE=﹣m2+m,然后根据二次函数的性质解决问题;(3)利用两点间的距离公式得到AC=,BC=2,再利用点D为BC的中点得到D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,接着求出直线DE的解析式为y=﹣2x+5,于是解方程组得E(3,﹣1),所以DE=,然后根据菱形的判定方法可判断四边形CAED为菱形.【解答】解:(1)当x=0时,y=kx+2=2,则C(0,2),把C(0,2)代入y=a(x﹣1)(x﹣4)得a•(﹣1)•(﹣4)=2,解得a=,∴抛物线解析式为y=(x﹣1)(x﹣4),即y=x2﹣x+2;故答案为y=x2﹣x+2;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,当y=0时,(x﹣1)(x﹣4)=0,解得x1=1,x2=4,则A(1,0),B(4,0),设直线BC的解析式为y=kx+b,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(m, m2﹣m+2),EF=n,则D(m﹣n,﹣ m+n+2),∴DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,∵OC∥DF,∴∠OCB=∠FDB,∵DE∥CA,∴∠ACB=∠EDB,∴∠OCA=∠FDE,∴Rt△OCA∽Rt△FDE,∴=,∴===2,∴﹣m2+2m+n=2n,∴n=﹣m2+m,在Rt△DEF中,DE==EF=n=﹣m2+m,∵DE=﹣(m﹣2)2+,∴当m=2时,DE的长有最大值,最大值为;(3)四边形CAED为菱形.理由如下:AC==,BC==2,∵点D为BC的中点,∴D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,设直线DE的解析式为y=﹣2x+p,把D(2,1)代入得1=﹣4+p,解得p=4,∴直线DE的解析式为y=﹣2x+5,解方程组得或,则E(3,﹣1),∴DE==,∴AC=DE,而AC∥DE,∴四边形CAED为平行四边形,∵CA=CD,∴四边形CAED为菱形.。

相关文档
最新文档