七年级上册平行线经典题型及标准答案解析(经典)
初一数学平行线试题

初一数学平行线试题1.在同一平面内,两条不重合直线的位置关系可能是( )毛A.平行或相交B.垂直或相交;C.垂直或平行D.平行、垂直或相交【答案】A【解析】本题主要考查了平行线. 在同一平面内,两条不重合的直线的位置关系有相交、平行.故选A2.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个【答案】B【解析】本题主要考查了平行线.①在同一平面内,不相交的两条直线是平行线,故错误;②②在同一平面内,两条直线的位置关系有两种,正确;③在同一平面内,若线段AB与CD没有交点,则AB∥CD,故错误;④若a∥b,b∥c,则a与c不相交,正确;故选B3.过一点画已知直线的平行线,则( )A.有且只有一条B.有两条;C.不存在D.不存在或只有一条【答案】D【解析】本题主要考查了平行线. 根据分点在直线上和点在直线外两种情况解答.若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.故选D.4.在同一平面内,____________________________________叫做平行线.【答案】不相交的两条直线【解析】本题主要考查了平行线的定义。
在同一平面内, 不相交的两条直线叫做平行线5.在同一平面内,若两条直线相交,则公共点的个数是________;•若两条直线平-行,则公共点的个数是_________.【答案】1个 0个【解析】本题主要考查了平行线。
在同一平面内,若两条直线相交,只有一个公共点,若两条直线平-行, 没有公共点。
6.同一平面内的三条直线,其交点的个数可能为________.【答案】0个或1个或2个或3个【解析】本题主要考查了相交线和平行线。
当三条直线平行时,没有交点,三条直线交于一点时,有一个交点;两条平行线与一条直线相交时,有两个交点;三条直线两两相交时有三个交点.画出图形,即可得到正确结果.解:如图,同一平面内的三条直线,其交点个数为:0个;1个;2个;3个.7.直线L同侧有A,B,C三点,若过A,B的直线L1和过B,C的直线L2都与L平行,则A,•-B,C三点________,理论根据是___________________________.【答案】在一条直线上,过直线外一点有且只有一-条直线与已知直线平行【解析】本题主要考查了平行线。
初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
(完整)七年级上册平行线经典题型及答案解析(经典)

1、如图,∠1=∠2,∠3=110°,求∠4.2、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=37°,求∠D 的度数.3、如图,AB ,CD 是两根钉在木板上的平行木条,将一根橡皮筋固定在A ,C 两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A ,∠AEC ,∠C 之间具有怎样的关系并说明理由。
(提示:先画出示意图,再说明理由)提示:这是一道结论开放的探究性问题,由于E 点位置的不确定性,可引起对E 点不同位置的分类讨论。
本题可分为AB ,CD 之间或之外。
结论:①∠AEC =∠A +∠C ②∠AEC +∠A +∠C =360°③∠AEC =∠C -∠A④∠AEC =∠A -∠C ⑤∠AEC =∠A -∠C ⑥∠AEC =∠C -∠A .4、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A 、80B 、50C 、30D 、205、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A 、43°B 、47°C 、30°D 、60°6、如图,点A 、B 分别在直线CM 、DN 上,CM ∥DN .(1)如图1,连结AB ,则∠CAB +∠ABD = ;(2)如图2,点错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
.求证:错误!未找到引用源。
=360°;(3)如图3,点错误!未找到引用源。
、错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
.试求错误!未找到引用源。
的度数;(4)若按以上规律,猜想并直接写出错误!未找到引用源。
…错误!未找到引用源。
(完整版)平行线习题(含答案)

2019年4月16日初中数学作业学校: ______________ 姓名: _____________ 班级:_______________ 考号:______________一、单选题1. 如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2. 下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A. ab// cdB. A // BC. a// BD. a// b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4 .在同一平面内,下列说法正确的是()A .没有公共点的两条线段平行B .没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D .不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.详解】A. 在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B. 在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C. 在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D. 在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过一点只能画一条直线与已知直线垂直D. 在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A 中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B. C. D 是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A •平行B.垂直C.共线 D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:n n无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行•故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键7 .下列结论正确的是()A .过一点有且只有一条直线与已知直线垂直B. 过一点有且只有一条直线与已知直线平行C. 在同一平面内,不相交的两条射线是平行线D. 如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8 .在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF()A •平行B.相交C. 重合D.三种情况都有可能【答案】B【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,•••在同一平面内,直线AB与CD相交于点O, AB // EF,••• CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9 .下列语句不正确的是()A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行B. 两直线被第三条直线所截,如果同位角相等,那么两直线平行C. 两点确定一条直线D. 内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10 .下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误. 故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11 .下列说法中正确的是()A .两条相交的直线叫做平行线B. 在直线外一点,只能画出一条直线与已知直线平行C. 如果a // b, b // c,贝U a不与b平行D. 两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.详解】解:两条不相交的直线叫做平行线,故A 错误,在直线外一点,只能画出一条直线与已知直线平行如果a// b , b // c ,则a // b,平行线的传递性,故C 错误, 射线一端固定,另一端无限延伸,故D 错误, 综上选B. 【点睛】,属于简单题,熟悉平行线的性质是解题关键【解析】【分析】 根据平行线的传递性即可解题 【详解】解:••• AB // CD ,CD // EF ,••• AB // EF ,(平行线的传递性)故选A. 【点睛】本题考查了平行线的传递性 ,属于简单题,熟悉平行线的性质是解题关键13 •一条直线与另两条平行直线的关系是 ( )A .一定与两条平行线平行B .可能与两条平行线的一条平行,一条相交C . 一定与两条平行线相交D .与两条平行线都平行或都相交【答案】D 【解析】 【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另 两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线中的一条平行,则它与另一条平行线也平行即可求出本题答案【详解】,正确,// EF ,那么AB 和EF 的位置关系是本题考查了平行线的性质C.垂直D.不能确定【答案】A•••在同一平面内,两条直线的位置关系有两种:平行和相交,•••如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键. 14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a// b, a // c,那么b // c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1) 过直线外一点有且只有一条直线与已知直线平行,故错误;(2) 根据平行公理的推论,正确;(3) 线段的长度是有限的,不相交也不一定平行,故错误;(4) 应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15 •已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画()A • 1条B. 0条 C. 1条或0条D.无数条【答案】C【解析】【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P在直线上,过点P画直线与AB的平行线可画0条,如果点P在直线外,过点P画直线与AB的平行线可画1条•故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键16 .下列说法中,正确的是()A •平面内,没有公共点的两条线段平行B. 平面内,没有公共点的两条射线平行C. 没有公共点的两条直线互相平行D. 互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断•【详解】对于A,如图所示,A错误;对于C,如果两条直线不在同一个平面内,不相交也可能不平行,则C错误;对于D,根据平行线的定义可知D正确•故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键•17 .下面说法正确的是( )A .过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A .【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18 .下列说法错误的是( )A .对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A .根据对顶角的性质判定即可;B. 根据线段的性质判定即可;C. 根据补角的性质判定即可;D .根据平行公理判定即可 .【详解】A .对顶角相等,故选项正确;B. 两点之间连线中,线段最短,故选项正确;C•等角的补角相等,故选项正确;D .过直线外一点P,能画一条直线与已知直线平行,故选项错误•故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题 .二、填空题19 . L i, 12, 13为同一平面内的三条直线,如果11与12不平行,12与13不平行,则11与13的位置关系是_______________ .【答案】相交或平行【解析】【分析】根据关键语句“若?有?不平行,??与?不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若?不平行,??与?3不平行,则?3可能相交或平行,故答案为:相交或平行•【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交20 •小明列举生活中几个例子,你认为是平行线的是________________ (填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可•【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答21.如图,用符号表示下列两棱的位置关系.AB ___ A ' B AA ' __________ AB ; AD _____ B ' C【答案】// 丄 //【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB// A B', AA丄AB AD// B' C'【点睛】本题主要考查的是直线的位置关系•22 .如图,在正方体中,与线段AB平行的线段有________ 条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行. 【详解】解:与AB平行的线段是:DC EF;与CD平行的线段是:HG所以与AB线段平行的线段有:EF、HG DC.故答案是:EF、HG DC【点睛】本题考查了平行线•平行线的定义:在同一平面内,不相交的两条直线叫平行线.23 .如图所示,用直尺和三角尺作直线AB , CD,从图中可知,直线AB与直线CD的位置关系为 ________ .【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,C 亠丘D根据题意,/ 1与/ 2是三角尺的同一个角,所以/仁/2,所以,AB // CD (同位角相等,两直线平行)故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24 .在如图的长方体中,与棱AB平行的棱有 ________________________________________;与棱AA'平行的棱有DD , BB , CC解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD , AB', CD;与棱AA 平行的棱有DD ,BB ,CC .故答案为:CD , A B , C D ;DD , BB , CC .【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB 与直线CD 满足下列条件,则其对应的位置关系是(1)____________________________________________________________________ 若直线AB 与直线CD 没有公共点,则直线AB 与直线CD 的位置关系为 __________________________ ;(2)直线AB 与直线CD 有且只有一个公共点,则直线AB 与直线CD 的位置关系为_______________ 【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB 与CD 满足下列条件,则其对应的位置关系是:(1)若AB 与CD没有公共点,则AB与CD的位置关系是平行;(2 )若AB与CD有且只有一个公共点,则AB 与CD 的位置关系为相交.故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26 .把图中的互相平行的线段用符号“//”写出来,互相垂直的线段用符号“丄”写出来:【解析】根据平行线和垂直的定义即可解答.【详解】 解:如图所示,在长方体中 :互相平行的线段:AB// CD EF// GH MN PQ 互相垂直的线段:AB 丄 EF, AB 丄 GH CDL EF, CDL GH【点睛】本题考查了平行线和垂直的定义 ,理解定义是解题的关键•27 .如图,过点 0 '分别画 AB , CD 的平行线.【答案】详见解析•【解析】【分析】把三角板的一条直角边与已知直线重合, 用直尺靠紧三角板的另一条直角边, 沿直尺移 动三角板,使三角板的原来和已知直线重合的直角边和 O 点重合,过O 点沿三角板的直角边画直线即可.【详解】解:如图,本题考查了学生利用直尺和三角板作平行线的能力28 •如图,按要求完成作图⑴过点P 作AB 的平行线EF ;(2) 过点P 作CD 的平行线 MN ;(3) 过点P 作AB 的垂线段,垂足为 G.【答案】作图见解析【点睛】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,本题考查了平行线的作法和作垂线的步骤.29 •我们知道相交的两条直线的交点个数是 1 ;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是 1 ;依此类推(1) 请你画图说明平面内五条直线最多有几个交点.(2) 平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3) 在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,⑵五条直线可以有4个交点,⑶答案不唯一•【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,禾U用平行线的性质画出图形即可【详解】解:(1)平面内五条直线的交点最多有 10个,如图①.(2)五条直线可以有4个交点,如图②(a // b// c // d),图③(AD // BC , AB // DC),图④(a // b).團② 関③(3) 答案不唯一,如图, a / b / c / d / e , f // g // h , l // m.【点睛】此题考查平面内不重合直线的位置关系, 解答时要分各种情况解答, 的所有情形,不要遗漏,否则讨论的结果就不全面.30 •如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?⑵过点M 画AB 的平行线.⑶过点N 画GH 的平行线.37T~/ 、A7 D 、M / 7~■【答案】(1)AB // CD ; (2)画图见解析;⑶画图见解析【解析】【分析】(1) 根据图形可观察出互相平行的线段.(2) 过点M 画AB 的平行线.(3)过点N 画GH 的平行线.要考虑到可能出现【详解】(1)由图形可得:AB // CD .⑵(3)所画图形如下:【点睛】 本题考查了平行线的判定方法及过一点作平行线的知识, 的判定方法及作图的基本步骤.属于基础题, 主要掌握平行线。
(完整)七年级数学平行线的性质与判定的证明练习题及答案

平行线的性质与判定的证明温故而知新:1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:根据两直线平行,内错角相等及角平分线定义求解.(标注∠MND=∠AMN,∠DNP=∠EPN)答案:(标注∠MND=∠AMN=60°,∠DNP=∠EPN=80°)解:(1)∵AB∥CD∥EF,∴∠MND=∠AMN=60°,∠DNP=∠EPN=80°,∴∠MNP=∠MND+∠DNP=60°+80°=140°,又NQ平分∠MNP,∴∠MNQ=12∠MNP=12×140°=70°,∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步) (2)(标注∠MND=∠AMN,∠DNP=∠EPN)由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,∴∠MNQ=12∠MNP=12(∠AMN+∠EPN),∴∠DNQ=∠MNQ-∠MND=12(∠AMN+∠EPN)-∠AMN=12(∠EPN-∠AMN),即2∠DNQ=∠EPN-∠AMN.小结:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF)答案:(标注:∠1=∠2=∠DCB)证明:因为∠AGD=∠ACB,所以DG∥BC,所以∠1=∠DCB,又因为CD⊥AB,EF⊥AB,所以CD∥EF,所以∠2=∠DCB,所以∠1=∠2.小结:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.(1)解析:动画过点C作CF∥AB由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)答案:证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠1=∠ABC,∠2=∠CDE.∵∠BCD=∠1+∠2,∴∠ABC+∠CDE=∠BCD;(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.(标注∠ABC+∠1=180°,∠2+∠CDE=180°)答案:∠ABC+∠BCD+∠CDE=360°.证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠ABC+∠1=180°,∠2+∠CDE=180°.∵∠BCD=∠1+∠2,∴∠ABC+∠BCD+∠CDE=360°.小结:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:动画过点B作BD∥AE,答案:解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°∵∠A=120°,∠1+∠2=∠ABC=150°,∴∠2=30°,∴∠C=180°-30°=150°.小结:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°解析:∠AEG=180°-120°=60°,由外凸角和等于内凹角和有60°+30°+30°=x+48°,解得x=72°.答案:B.2.已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.解析:解:∵AB∥EF∥CD,∴∠B=∠BEF,∠DEF=∠D.∵∠B+∠BED+∠D=192°,即∠B+∠BEF+∠DEF+∠D=192°,∴2(∠B+∠D)=192°,即∠B+∠D=96°.∵∠B-∠D=24°,∴∠B=60°,即∠BEF=60°. ∵EG平分∠BEF,∴∠GEF=12∠BEF=30°.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.解析:标注AB∥EF,BC∥ED答案:证明:∵AB∥EF,∴∠E=∠AGD.∵BC∥ED,∴∠B=∠AGD,∴∠B=∠E.例5如图2-6,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.解析:标注AB∥CD,∠1=∠2答案:方法一:(标注CF∥BE)解:需添加的条件为CF∥BE ,理由:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠EBC,∴∠1=∠2;方法二:(标注CF ,BE ,∠1=∠2=∠DCF=∠ABE )解:添加的条件为CF ,BE 分别为∠BCD ,∠CBA 的平分线.理由:∵AB ∥CD ,∴∠DCB=∠ABC.∵CF ,BE 分别为∠BCD ,∠CBA 的平分线,∴∠1=∠2.小结:解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.例6 如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。
(完整版)平行线的经典题型

平行线的经典题型一、平行线之间的基本图形1、如图已知,AB ∥CD .,AF CF 分别是EAB ∠、ECD ∠的角平分线,F 是两条角平分线的交点;求证:12F AEC ∠=∠.2、已知AB//CD ,此时A ∠、AEF ∠、EFC ∠和C ∠的关系如何?你能找出其中的规律吗?3、将题变为如下图:AB//CD ,此时A ∠、AEF ∠、EFD ∠和D ∠的关系又如何?你能找出其中的规律吗?4、如图,AB//CD ,那么AEC C A ∠∠∠与、有什么关系?ABCDEABCDEABCDEA BDCE二、 两组平行线的证明题【找出连接两组平行线的角】1.已知:如图,CD 平分∠ACB ,AC ∥DE ,∠DCE=∠FEB ,求证:EF 平分∠DEB .2、已知:如图,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图,已知EF ⊥AB ,∠3=∠B ,∠1=∠2,求证:CD ⊥AB 。
4、已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关系?试说明理由.DB CA F E AD F BE CA BEFDABE F CM N A D B C b 21a E 三、两组平行线构造平行四边形1.已知:如图,AB 是一条直线,∠C = ∠1,∠2和∠D 互余,BE ⊥FD 于G . 求证:AB ∥CD .2、如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D ,求证DF ∥AC .3、如图,M 、N 、T 和A 、B 、C 分别在同一直线上,且∠1=∠3,∠P=∠T ,求证:∠M=∠R 。
四、证特殊角1、AB ∥CD ,∠BAC 的平分线和∠ACD 的平分线交于点E ,则∠AEC 的度数是 .2、AB CD ∥,直线EF 与AB 、CD 分别相交于E 、F 两点,EP 平分∠AEF ,过点F 作PF EP 垂足为P ,若∠PEF =300,则∠PFC =_____.3、如图,已知:DE ∥AC ,CD 平分∠ACB ,EF 平分∠DEC ,∠1与∠2互余,求证:DG ∥EF.4.已知:如图,AB ∥DE ,CM 平分∠BCE ,CN ⊥CM .求证:∠B =2∠DCN .5.如图已知直线a ∥b ,AB 平分∠MAD ,AC 平分∠NAD ,DE ⊥AC 于E ,求证:∠1=∠2.6、求证:三角形内角之和等于180°.五、寻找角之间的关系1、如图,已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD ∥BC.A B C D EF 1423 21GFEDB CAE 2、已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。
浙教版数学七年级上册第1章《平行线》测试卷含答案解析和双向细目表-七下1

浙教版数学七年级上册第1章《平行线》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 如图,过直线l1外一点P作直线l2,使l2∥l1,其依据是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线平行D. 经过直线外一点,有且只有一条直线与这条直线平行(第1题图)(第2题图)2. 下列各对角中,为内错角的是()A. ∠1和∠2B. ∠2和∠4C. ∠1和∠3D. ∠3和∠43. 下列说法:①不相交的两条直线互相平行;②经过一点,有且只有一条直线与已知直线平行;③若a∥b,b∥c,则a与c不相交;④若线段AB与线段CD没有交点,则AB∥CD;其中,正确的个数有()A. 0B. 1C. 2D. 34. 如图,以下条件中,不能判断AB∥CD的是()A. ∠2+∠3=180°B. ∠2=∠4C. ∠1=∠AD. ∠1=∠2(第4题图)(第5题图)5. 下列图形中,哪个是由上图平移得到的()A. B. C. D.6. 如图,直线L1是由直线L2平移得到的,如果∠2=130°,则∠1的度数为()A. 30°B. 40°C. 50°D. 70°(第6题图)(第7题图)7. 如图,小船从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时航行的方向为()A. 北偏东80°B. 北偏东30°C. 北偏西50°D. 北偏西80°8. 如图,∠1+∠2=180°,∠4=85°,则∠3的度数是()A. 80°B. 85°C. 95°D. 105°9. 如图是一汽车探照灯纵剖面,从位于O点的灯泡发出的两束光线OB,OC经过灯碗反射以后平行射出,如果∠ABO=α,∠DCO=β,则∠BOC的度数是()A. α+βB. 12(α+β)C. 180°-αD. 90°+(α+β)10.一辆汽车在公路上行驶,两次拐弯后,仍然在原来的方向同向行驶,那么这两个拐弯的角度可能是()A. 先向左转30°,后向右转60°B. 先向左转30°,后向右转150°C. 先向左转150°,后向左转30°D. 先向左转150°,后向右转150°二.填空题:本大题有6个小题,每小题4分,共24分。
七年级数学平行线练习题(附详细答案)

初中数学平行组卷一、选择题(共12小题)1.三条直线两两相交,交点不在同一点,那么可得对顶角()A.3对B.4对C.5对D.6对2.如图所示,直线AB和CD相交于点O,则∠AOC与∠BOD的关系是()A.∠AOC=∠BOD B.∠AOC<∠BOD C.∠AOC>∠BOD D.不确定3.下列语句中正确的是()A.对顶角必相等B.相等的角是对顶角C.不是对顶角的角不相等D.有公共顶点的角是对顶角4.如图,直线AB、CD交于点O,OE平分∠AOD,∠AOE=65°,则∠AOC=()A.20°B.40°C.50°D.80°5.如图,直角三角形ABC中,∠ACB=90°,CD⊥AB,则点A到直线CD的距离是线段()的长.A.AB B.CD C.AC D.AD6.如图,已知直线AB,OA平分∠COD,OC⊥OE于点O,∠COD=80°,则∠BOE 的度数等于()A.40°B.50°C.80°D.90°7.如图,直线AB,CD,EF相交于点O,则∠COF的一个邻补角是()A.∠BOF B.∠DOF C.∠AOE D.∠DOE8.如图所示,AB与CD交于点O,且AC⊥AB,BD⊥AB,下列说法不正确的是()A.∠1=∠2 B.∠3与∠1互补C.∠2与∠3互补D.AB⊥CD二、填空题(共9小题)9.如图,直线AB,CD相交于点O,若∠BOD=∠BOD+18°,则∠AOD= .10.如图所示,A0⊥OB,垂足为O,∠AOC=120°,射线OD平分∠AOB,则∠COD= .11.已知同一个平面内5条直线交于一点,那么一共有对对顶角.12.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC= ,∠COB= .13.直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF,若∠AOF=140°,则∠BOD的度数为.14.如图,直线a,b相交,∠2+∠3=100°,则∠1= 度.15.如图,直线AB,CD相交于点O,OE平分∠BOD,∠COB与它的邻补角的差为40°,则∠AOE= 度.16.如图所示,直线a,b,c两两相交,∠1=60°,∠2=∠4,则∠3= 度,∠5= 度.17.如图所示,AB、CD相交于点O.OB平分∠DOE,若∠DOE=63°12′,则∠AOC 的度数是.2017年10月12日135****9626的初中数学平行组卷参考答案与试题解析一、选择题(共12小题)1.三条直线两两相交,交点不在同一点,那么可得对顶角()A.3对B.4对C.5对D.6对【分析】根据对顶角的定义,每一个顶点处有两对对顶角解答.【解答】解:如图,一个交点处有2对对顶角,所以,共有3×2=6对对顶角.故选D.【点评】本题考查了对顶角的定义,熟记概念是解题的关键,作出图形更形象直观.2.如图所示,直线AB和CD相交于点O,则∠AOC与∠BOD的关系是()A.∠AOC=∠BOD B.∠AOC<∠BOD C.∠AOC>∠BOD D.不确定【分析】根据对顶角相等的性质解答.【解答】解:由图可知,∠AOC与∠BOD是对顶角,所以,∠AOC=∠BOD.故选A.【点评】本题主要考查了对顶角相等的性质,比较简单,准确识图判断出∠AOC 和∠BOD是对顶角是解题的关键.3.下列语句中正确的是()A.对顶角必相等B.相等的角是对顶角C.不是对顶角的角不相等D.有公共顶点的角是对顶角【分析】根据对顶角的定义与性质对各选项分析判断后利用排除法求解.【解答】解:A、对顶角必相等正确,故本选项正确;B、相等的角是对顶角,错误,如角平分线分成两个相等的角,故本选项错误;C、不是对顶角的角不相等,错误,故本选项错误;D、有公共顶点的角是对顶角,错误,故本选项错误.故选A.【点评】本题考查了对顶角的定义与对顶角相等的性质,是基础题.4.如图,直线AB、CD交于点O,OE平分∠AOD,∠AOE=65°,则∠AOC=()A.20°B.40°C.50°D.80°【分析】根据角平分线的定义求出∠AOD的度数,根据邻补角的性质计算即可.【解答】解:∵OE平分∠AOD,∠AOE=65°,∴∠AOD=2∠AOE=130°,∴∠AOC=180°﹣∠AOD=50°.故选:C.【点评】本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.5.如图,直角三角形ABC中,∠ACB=90°,CD⊥AB,则点A到直线CD的距离是线段()的长.A.AB B.CD C.AC D.AD【分析】根据点到直线的距离的概念:直线外一点到这条直线的垂线段的长度即为该点到这条直线的距离作答.【解答】解:点A到直线CD的距离就是过点A作直线CD的垂线,其垂线段AD 的长度可表示距离.故选D.【点评】熟练掌握点到直线的距离的概念是解题的关键.6.如图,已知直线AB,OA平分∠COD,OC⊥OE于点O,∠COD=80°,则∠BOE 的度数等于()A.40°B.50°C.80°D.90°【分析】可根据已知,先求∠AOC,∠COE的度数,再用平角的定义求解.【解答】解:∵OA平分∠COD,∠COD=80°,∴∠AOC=40°,∵OC⊥OE于点O,∴∠COE=90°∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣40°﹣90°=50°.故选B.【点评】此题主要考查角平分线和垂线的定义的应用.7.如图,直线AB,CD,EF相交于点O,则∠COF的一个邻补角是()A.∠BOF B.∠DOF C.∠AOE D.∠DOE【分析】根据邻补角的定义找出即可.【解答】解:∠COF的一个邻补角是∠COE,∠DOF.故选:B.【点评】本题考查了邻补角的定义,是基础题,熟记概念是解题的关键.8.如图所示,AB与CD交于点O,且AC⊥AB,BD⊥AB,下列说法不正确的是()A.∠1=∠2 B.∠3与∠1互补C.∠2与∠3互补D.AB⊥CD【分析】根据对顶角、邻补角的定义,垂线的定义对各选项分析判断即可得解.【解答】解:∠1=∠2(对顶角相等),∠3与∠1互补,∠2与∠3互补正确;AB⊥CD错误,所以说法不正确的是D.故选D.【点评】本题考查了垂线的定义,对顶角,邻补角的定义,是基础题,熟记概念是解题的关键.二、填空题(共9小题)9.如图,直线AB,CD相交于点O,若∠BOD=∠BOD+18°,则∠AOD= 144°.【分析】先根据∠BOD=∠BOD+18°,得出∠BOD=36°,再根据邻补角即可解答.【解答】解:∵∠BOD=∠BOD+18°,∴∠BOD=36°,∴∠AOD=180°﹣∠BOD=180°﹣36°=144°,故答案为:144°.【点评】本题考查了邻补角,解决本题的关键是熟记邻补角的定义.10.如图所示,A0⊥OB,垂足为O,∠AOC=120°,射线OD平分∠AOB,则∠COD= 165°.【分析】根据图中的垂线得到∠AOB=90°.然后由图中的角平分线的定义和角与角间的和差关系即可求得∠COD=165°.【解答】解:如图,∵A0⊥OB,∴∠AOB=90°.∵射线OD平分∠AOB,∴∠AOD=∠AOB=45°,∴∠COD=∠AOC+∠AOD=120°+45°=165°.故答案是:165°.【点评】本题利用垂直的定义,角平分线的性质计算,要注意领会由垂直得直角这一要点.11.已知同一个平面内5条直线交于一点,那么一共有20 对对顶角.【分析】利用公式n(n﹣1)代入数据进行计算即可求解.【解答】解:∵n(n﹣1)=5×(5﹣1)=20,∴一共有20对对顶角.故答案为:20.【点评】本题考查了对顶角的计算,熟记公式是解题的关键.12.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC= 64°,∠COB= 116°.【分析】根据垂直定义求出∠BOE,即可求出∠BOD,根据对顶角相等求出∠AOC,根据邻补角求出∠BOC.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠EOD=26°,∴∠AOC=∠BOD=90°﹣26°=64°,∴∠BOC=180°﹣∠AOC=180°﹣64°=116°,故答案为:64°,116°.【点评】本题考查了垂直,对顶角,邻补角的应用,主要考查学生的计算能力.13.直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF,若∠AOF=140°,则∠BOD的度数为20°.【分析】先由角平分线的定义求出∠AOC=70°,再根据垂直的定义得出∠AOB=90°,然后利用平角的定义即可求出∠BOD的度数.【解答】解:∵OC平分∠AOF,∠AOF=140°,∴∠AOC=70°,∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°﹣∠AOB﹣∠AOC=180°﹣90°﹣70°=20°.故答案为20°【点评】本题考查了角平分线的定义,垂直的定义,平角的定义,根据平角的定义得出∠BOD=180°﹣∠AOB﹣∠AOC是解题的关键.14.如图,直线a,b相交,∠2+∠3=100°,则∠1= 130 度.【分析】根据对顶角相等可得∠2=∠3,然后求出∠2的度数,再根据邻补角的和等于180°列式进行计算即可得解.【解答】解:∵∠2+∠3=100°,∠2=∠3(对顶角相等),∴∠2=×100°=50°,∴∠1=180°﹣∠2=180°﹣50°=130°.故答案为:130.【点评】本题主要考查了对顶角相等,邻补角的和等于180°的性质,熟记性质并求出∠2的度数是解题的关键.15.如图,直线AB,CD相交于点O,OE平分∠BOD,∠COB与它的邻补角的差为40°,则∠AOE= 145 度.【分析】直线AB,CD相交于点O,由∠COB与∠DOB互为邻补角,即∠COB+∠DOB=180°及∠COB﹣∠DOB=40°,可求∠BOD,又OE平分∠BOD,可求∠BOE,利用∠AOE与∠BOE的互补关系求∠AOE.【解答】解:∵直线AB,CD相交于点O,∠COB与∠DOB互为邻补角,∴∠COB+∠DOB=180°,①已知∠COB﹣∠DOB=40°,②由①、②解得∠DOB=70°.∵OE平分∠BOD,∴∠BOE=∠DOB÷2=70°÷2=35°,∴∠AOE=180°﹣∠BOE=180°﹣35°=145°.故答案为:145.【点评】本题考查了利用互为邻补角的性质,即互为邻补角的两角之和是180°,以及角平分线的性质解题.16.如图所示,直线a,b,c两两相交,∠1=60°,∠2=∠4,则∠3= 120 度,∠5= 90 度.【分析】已知∠1=60°,∠2与∠1是对顶角及∠2=∠4,可求∠4;∠3与∠1是邻补角,可求∠3;∠5与∠4互为邻补角,可求∠5.【解答】解:∵∠1与∠3是邻补角,∠1=60°,∴∠3=180°﹣∠1=180°﹣60°=120°;又∵∠1与∠2是对顶角,∴∠2=∠1=60°,把∠2=60°代入∠2=∠4中,得∠4=90°,∵∠4与∠5是邻补角,∴∠5=180°﹣∠4=90°【点评】本题主要考查邻补角、对顶角定义,能够找出题中角的位置关系是解题的关键.17.如图所示,AB、CD相交于点O.OB平分∠DOE,若∠DOE=63°12′,则∠AOC 的度数是31°36′.【分析】首先根据角平分线的性质可得∠BOD=∠DOE,再根据对顶角相等可得∠AOC=∠BOD.【解答】解:∵OB平分∠DOE,∴∠BOD=∠DOE,∵∠DOE=63°12′,∴∠BOD=31°36′,∴∠AOC=∠BOD=31°36′,故答案为:31°36′.【点评】此题主要考查了对顶角和角平分线的性质,关键是掌握对顶角相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,∠1=∠2,∠3=110°,求∠4.
2、如图,AB ∥C D,AE 交CD 于点C,DE ⊥AE,垂足为E,∠A=37°,求∠D 的度数.
3、如图,AB ,C D是两根钉在木板上的平行木条,将一根橡皮筋固定在A ,C 两点,点E 是橡皮筋上的一点,拽动E 点
将橡皮筋拉紧后,请你探索∠A,∠AE C,∠C之间具有怎样的关系并说明理由。
(提示:先画出示意图,再说明理由)提示:这是一道结论开放的探究性问题,由于E 点位置的不确定性,可引起对E 点不同位置的分类讨论。
本题可分为AB ,C D之间或之外。
结论:①∠AE C=∠A +∠C ②∠AEC +∠A +∠C =360°③∠AE C=∠C -∠A
④∠AEC =∠A -∠C ⑤∠AEC =∠A -∠C ⑥∠AEC =∠C-∠A .
4、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )
ﻩA 、80 ﻩB 、50ﻩC 、30ﻩﻩD、20
5、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )
A 、43°ﻩﻩ
B 、47° ﻩ
C 、30°
D 、60°
6、如图,点A 、B 分别在直线C M、DN 上,CM ∥D N.
(1)如图1,连结AB ,则∠CAB +∠ABD =
;
(2)如图2,点1P 是直线CM 、D N内部的一个点,连结1AP 、1BP .求证:BD P B AP CAP 111∠+∠+∠=360°;
(3)如图3,点1P 、2P 是直线C M、DN 内部的一个点,连结1AP 、21P P 、B P 2.
试求BD P B P P P AP CAP 221211∠+∠+∠+∠的度数;
(4)若按以上规律,猜想并直接写出+∠+∠211P AP CAP …BD P
5∠+的度数(不必写出过程).
7、如图,已知直线l 1∥l 2,且l 3和l1、l 2分别交于A 、B 两点,点P 在AB 上. (1)试找出∠1、∠2、∠3之间的关系并说出理由; (2)如果点P 在A 、B 两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?
A M
B
C N
D P 1 A M B C N D 图2 P 1 P 2 A M B C N D 图3
(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P 和A 、B 不重合)
8、如图,直线A C∥B D,连接AB ,直线AC ,BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB ,构成∠PAC ,∠A PB,∠P BD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P 落在第①部分时,求证:∠AP B=∠PAC+∠PB D;
(2)当动点P 落在第②部分时,∠APB=∠P AC +∠PBD 是否成立?(直接回答成立或不成立)
(3)当动点P 在第③部分时,全面探究∠PA C,∠AP B,∠PBD 之间的关系,并写出动点P 的具体位置和相应的结论.选择其中一种结论加以证明.
9、如图,AB ∥CD,则∠2+∠4﹣(∠1+∠3+∠5)=
.
10、如图,直线a ∥b,那么∠x 的度数是 .
11、如图,AB ∥CD,∠A BF=∠D CE 。
试说明:∠BFE=∠FEC 。
A
B C D F
E
12、如图,直线A B、CD 与EF 相交于点G、H,且∠EGB=∠EHD.
(1)说明: AB ∥CD
(2)若G M是∠E GB的平分线,FN 是∠EHD 的平分线,则GM 与H N平行吗?说明理由。