计算机算法设计五大常用算法的分析及实例
常用算法举例

常用算法举例一、求面积、体积、方程的根,将公式的表达式用变量或常量表示出来,输出即可;二、累加、累乘(包括偶数和奇数的变换运算)三、典型算法举例:1、求两个数或三个数或多个数的最大值、最小值思路:用表判断的if语句就可完成,也可使用函数的调用;若是多个数,则采取从键盘上输入第一个数,并假定它是最大值存放在变量max中,以后每输入一个数便与max比较,若输入的数较大,则最大值是新的数值,存放到max中,数据输入完,最大值也就确定了。
main( ){int a,b,c,d;scanf(“%d,%d,%d”.&a,&b,&c);d=max(a,b,c);printf(“max=%d”,d);}int max(x,y,z)int x,y,z;{int p;p=x;if (p<y) p=y;if (p<z) p=z;return(p);}求10个数的最大值main( ){int I,k,max;scanf(“%d”,&max);for (I=2;I<11;I++){scanf(“%d”,&k);if (max<k) mzk=k;}printf(“max=%d\n”,max);}2、判断是否为闰年思路:闰年应满足条件之一:(a)能被4整除,但不能被100整除;(b)能被4整除又能被400整除main( ){int year,leap;scanf("%d",&year);if (year%4==0 ){ if (year%100==0){if (year%400==0)leap=1;else leap=0;}elseleap=1;}elseleap=0;if (leap)printf(“%d is “,year);elseprintf(“%d is not”,year);printf(“a leap year/n”);}此程序还可以简化用 (year%4==0 &&year%100!=0 || year%400==0)直接进行判断也可;此题还可求某范围内的闰年。
(整理版)几种常见的算法案例分析

几种常见的算法案例分析算法不仅是数学及其应用的重要的组成局部,也是计算机科学的重要根底,其中算法的重要思想在几种常见的算法例案中得以较好的表达。
本文从几种常见算法案例出发,来探究一下算法的内涵。
一、辗转相除法所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数,假设余数不为零,那么将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽,那么这时的较小的数就是原来两个数的最大公约数。
例1. 写出求两个正数,()a b a b >的最大公约数的一个算法。
算法设计:第一步:输入两个正整数,()a b a b >;第二步:把a b ÷的余数赋予r ;第三步:如果0r ≠,那么把b 赋予a ,把r 赋予b ,转到第二步;否那么转到第四步;第四步:输入最大公约数b 。
程序框图下列图所示:用伪代码表示:input “a=,b=〞;a,bdo r=mod(a,b)a=bb=rloop until r=0print bend二、更相减损术所谓更相减术,就是对于给定的两个数,以其中较大的数减去较小的数,然后将差和较小的数构成一对新数,再用较大的数减去较小的数,反复执行此步骤,直到差数和较小的数相等,此时相等的两个数就是原两个数的最大公约数。
在我国古代的<<九章算术>>中有这样的描述“约分术曰:可半者半之,不可半者会置分母分子之数,以少减多,更相损减,求其等也,以等数约之。
〞意思是说如果分母、分子都是偶数,那么先除以2;如果不全是偶数,便将分子与分母互减,以少减多,直到得出最大公约数为止,用最大公约数约分子与分母,便可使分数最简。
如果两个数都是偶数,也不除以2,直接求最大公约数。
这是一种多么奇妙的方法啊,我们古代人在许多方面都比西方先进,这是值得我们自豪的。
以上题为例,算法可以这样来设计:第一步:输入两个正整数,()a b a b >;第二步:假设a 不等于b ,那么执行第三步;否那么执行第五步;第三步:把a b -的差赋予r ;第四步:如果b r >,那么把b 的值赋予a ,否那么把r 的值赋予a ,执行第二步; 第五步:输出最大公约数b 。
常用算法举例范文

常用算法举例范文在计算机科学中,算法是解决问题的一系列有序步骤,它能够帮助我们解决各种各样的问题。
以下是一些常用的算法及其举例:1.排序算法:-冒泡排序:通过比较相邻元素并交换位置来将最大的元素逐渐移动到数组的末尾。
-快速排序:选择一个基准元素,将数组分为两部分,左边的元素小于基准,右边的元素大于基准,然后递归地对两部分进行快速排序。
-归并排序:将数组划分为两个子数组,对每个子数组分别进行归并排序,然后将两个有序子数组合并成一个有序数组。
2.查找算法:-二分查找:对于有序数组,通过与中间元素进行比较,将查找范围缩小一半,直到找到目标元素或确定不存在。
-哈希查找:通过将关键字映射到数组的索引位置来进行查找,可以在常数时间内找到目标元素。
3.图算法:-广度优先(BFS):从起始节点开始,逐层遍历图中的节点,直到找到目标节点。
-深度优先(DFS):从起始节点开始,沿着一条路径一直向下,直到找到目标节点或无法继续为止。
4.动态规划算法:-背包问题:给定一组物品和一个容量限制,选择一些物品放入背包中,使得总价值最大。
-最长公共子序列(LCS):给定两个字符串,找到它们的最长公共子序列的长度。
5.数学算法:-欧几里得算法:计算两个整数的最大公约数。
-快速幂算法:计算一个数的幂运算,通过将指数进行二进制拆分来减少计算次数。
6.字符串处理算法:-KMP算法:通过利用已匹配字符的信息来避免不必要的回溯,实现高效的字符串匹配。
- Boyer-Moore算法:利用模式串中的信息来进行快速的字符串匹配。
7.图像处理算法:-图像平滑算法:通过对图像进行滤波处理,去除图像中的噪声,使其更加平滑。
-图像边缘检测算法:通过检测图像中的边缘信息,突出物体的轮廓。
8.机器学习算法:-K均值聚类算法:将数据集划分为K个簇,使得同一个簇内的数据点之间的距离最小化。
-支持向量机(SVM):将数据集映射到高维空间,并通过找到最优的超平面来实现分类。
四个经典的算法案例

四个经典的算法案例案例1:辗转相除法,又名欧几里德算法,它是用来求两个正整数最大公因数的一种方法。
例:用辗转相除法求8251与6105的最大公约数∵ 8251÷6105=1 余 21466105÷2146=2 余 18132146÷1813=1 余 3331813÷ 333=5 余 148333 ÷ 148=2 余 37148 ÷ 37=4∴ 37是8251与6105的最大公约数程序框图如下:其中 r = mod(a, b) r表示a÷b的余数案例2:秦九韶算法,它是中国南宋时期数学家秦九韶提出的,用来解决多项式的求值问题,在西方被称作霍纳算法。
首先看一道例题:求多项式f(x)=2x5―5x4―4x3+3x2―6x+7当x=5时的值。
根据秦九韶算法:f(x)可表示为f(x)=({[(2x―5)x―4]x+3}x―6)x+7于是令 V0=5则 V1=2V0―5=2×5―5=5V2=V1X―4=5×5―4=21V3=V2X+3=21×5+3=108V4=V3X―6=108×5―6=534V5=V4X+7=534×5+7=2677∴ f(5) = 2677秦九韶算法只用到乘法、加法两个简单运算,不需要乘方运算,它是多项式求值的简化算法。
下面看程序框图,其中a0、a1、a2、a3、a4、a5是f (x) 从右向左的系数。
案例3:排序:是一种基本并且常用的算法,排序的算法很多,可以参阅课本,这里不再叙述。
案例4:进位制例:画程序框图,表示把k进制数a(共有n位),转化为十进制数b的过程框图如下:其中:t = GET a│i│ t表示a右数第i位利用上面的算法,把2进制数110011化为十进制的数即:1×20+1×21+0×22+0×23+1×24+1×25= 51以上是四个经典算法,大家可以从中体会算法的基本思想和算法的基本结构,并尝试用算法的基本语句描述它。
常用算法解析及其应用场景

常用算法解析及其应用场景算法是计算机科学中最基础的概念之一。
在日常生活中,我们无时无刻不在接触着各种算法,从谷歌搜索到智能手机里各种APP的推荐算法,都离不开算法的支持和应用。
在这篇文章中,我将为大家介绍常用的算法和它们的应用场景。
一、排序算法排序算法是程序中最常用的一种算法,其目的是将数据按一定方式进行排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、归并排序和快速排序。
1、冒泡排序冒泡排序是一种简单的排序算法,它的思路是从头到尾扫描一遍需要排序的数据,每一次将相邻两个元素进行比较并交换位置。
这个过程类似于水泡在水中上浮,一遍扫描结束后,最大的元素就会像水泡一样浮到最上面。
冒泡排序的时间复杂度为O(n²),如果需要排序的数据量很大,那么执行起来会比较慢。
不过它的优点在于代码简单易懂,并且实现起来很容易。
2、选择排序选择排序的思路是每次从数据中选择一个最小(或最大)的元素,并将其放置在序列的起始位置。
按照这样的方式,每次只需要找到一个元素,就可以将数据序列排列好。
选择排序的时间复杂度也为O(n²),但它比冒泡排序要稍微快一点。
3、插入排序插入排序的思路是将数据分为已排序区间和未排序区间两部分。
不断地将未排序区间的元素逐一与已排序区间的元素相比较,找到合适的位置插入。
重复执行这个过程,最终就能将整个数据序列排列好。
插入排序的时间复杂度也为O(n²),但它的执行速度相对于冒泡排序和选择排序要慢一些。
不过它的优点在于它在处理小数据量时非常高效,并且在排序过程中需要的额外内存很少。
4、归并排序归并排序的思路是将数据分成两个子序列,分别进行排序,最后将排序好的子序列进行合并。
在合并的过程中,需要使用到一个额外的数组来存储数据。
归并排序的时间复杂度为O(nlogn),执行效率相对较高。
尤其是在处理大数据量时,它表现得十分出色。
5、快速排序快速排序的思路不同于以上几种排序算法,它是一种分治法的排序算法。
什么是算法举例说明常见的算法

什么是算法举例说明常见的算法在计算机科学和数学领域,算法是一套有序的步骤,用于解决问题或获取某个结果。
它可以被看作是一种计算机程序的逻辑描述,能够通过输入得到所需的输出。
算法广泛应用于计算机科学、人工智能、数据处理等领域。
本文将举例说明一些常见的算法,帮助读者更好地理解什么是算法以及它们在实际应用中的作用。
一、排序算法排序算法是将一组数据按照特定的规则进行排序的算法。
常见的排序算法有冒泡排序、选择排序、插入排序、归并排序、快速排序等。
下面举例说明一种常见的排序算法——冒泡排序。
冒泡排序算法的基本思想是重复地遍历待排序的元素,比较相邻两个元素的大小,如果顺序错误就交换它们,直到所有元素都排好序为止。
举例说明:假设有一个整数数组arr = [5, 2, 8, 6, 3],现在我们要对它进行冒泡排序。
第一轮比较:5 > 2,交换两个元素位置,arr = [2, 5, 8, 6, 3]5 < 8,不用交换8 > 6,交换两个元素位置,arr = [2, 5, 6, 8, 3]8 > 3,交换两个元素位置,arr = [2, 5, 6, 3, 8]第一轮比较结束后,最大的元素8已经排在最后。
第二轮比较:2 < 5,不用交换5 > 6,交换两个元素位置,arr = [2, 5, 6, 3, 8]6 > 3,交换两个元素位置,arr = [2, 5, 3, 6, 8]第二轮比较结束后,第二大的元素6已经排在倒数第二。
继续进行下一轮比较,直到所有元素都排好序。
排序结束后,结果为arr = [2, 3, 5, 6, 8],数组中的元素按照从小到大的顺序排列。
二、查找算法查找算法是在给定的数据集合中寻找特定元素的算法。
常见的查找算法有线性查找、二分查找等。
下面举例说明一种常见的查找算法——二分查找。
二分查找是一种高效的查找算法,但要求要查找的数据集必须是有序的。
举例说明:假设有一个有序整数数组arr = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19],现在我们要在其中查找数字9。
计算机五大算法

计算机五大算法
计算机五大算法指的是分治算法、动态规划算法、贪心算法、回溯算法和分支定界算法。
这些算法在计算机科学中被广泛使用,可以解决各种问题,从排序和搜索到最优化和最大化问题。
分治算法是一种递归算法,它将问题分解成更小的子问题,然后将子问题的解组合成原问题的解。
它常用于排序算法,如归并排序和快速排序。
动态规划算法也是一种递归算法,但它通常用于解决最优化问题。
动态规划将问题分解成更小的子问题,并将子问题的最优解保存下来以便后续使用。
它通常用于计算最短路径、最长公共子序列等问题。
贪心算法是一种启发式算法,它基于贪心策略,在每个步骤中选择当前最优解,希望达到全局最优解。
贪心算法通常用于优化问题,如霍夫曼编码和最小生成树问题。
回溯算法是一种搜索算法,它尝试找到所有可能的解,并选择其中符合条件的解。
回溯算法通常用于解决组合问题,如八皇后和组合求和问题。
分支定界算法是一种搜索算法,它通过将搜索空间分解成更小的子集来减少搜索次数。
分支定界算法通常用于解决最大化问题,如背包问题和最大流问题。
这五种算法在不同的场景下都有其独特的优势和应用,它们共同构成了计算机科学中的基础算法之一。
- 1 -。
五大常用算法资料课件

• 适用场景:Dijkstra算法适用于解决单源最短路径问题,例如在地图导航、物流配送等领域有广泛应用。 • 注意事项:在使用Dijkstra算法时,需要注意处理负权重的边,因为Dijkstra算法只能处理非负权重的问题。
THANKS
要点一
总结词
二分查找是一种在有序数组中查找特定元素的搜索算法, 它将数组分成两半,比较中间元素与目标值,如果中间元 素等于目标值则查找成功,如果目标值小于中间元素则在 前半部分数组中继续查找,如果目标值大于中间元素则在 后半部分数组中继续查找。
要点二
详细描述
二分查找的主要思想是将数组分成两半,比较中间元素与 目标值,如果中间元素等于目标值则查找成功,如果目标 值小于中间元素则在前半部分数组中继续查找,如果目标 值大于中间元素则在后半部分数组中继续查找。这个过程 递归进行,直到找到目标值或搜索区间为空。二分查找的 时间复杂度为O(logn),是一种高效的搜索算法。
Floyd-Warshall算法
01
02
03
04
Floyd-Warshall算法是一种 用于解决所有节点对之间最
短路径问题的图算法。
Floyd-Warshall算法的基本 思想是通过动态规划的方式 逐步计算出所有节点对之间 的最短路径。该算法的时间 复杂度为O(V^3),其中V是
节点数。
适用场景:Floyd-Warshall 算法适用于解决所有节点对 之间最短路径问题,例如在 社交网络分析、交通网络规
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。
其中最常见的五中基本算法是递归与分治法、动态规划、贪心算法、回溯法、分支限界法。
本文通过这种算法的分析以及实例的讲解,让读者对算法有更深刻的认识,同时对这五种算法有更清楚认识
关键词:算法,递归与分治法、动态规划、贪心算法、回溯法、分支限界法
1。