高中物理--万有引力与天体运动--最全讲义及习题及答案详解
高中物理万有引力与天体运动专题讲解

物理总复习:万有引力定律在天体运动中的应用考点一、应用万有引力定律分析天体的运动1、基本方法把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供.公式为 2222224(2)Mm v F G m m r mr m f r r r Tπωπ===== 解决问题时可根据情况选择公式分析、计算。
2、黄金代换式 2GM gR =要点诠释:在地球表面的物体所受重力和地球对该物体的万有引力差别很小,在一般讨论和计算时,可以认为2Mm G mg R=,且有2GM gR =。
在应用万有引力定律分析天体运动问题时,常把天体的运动近似看成是做匀速圆周运动,其所需要的向心力由万有引力提供,我们便可以应用变换式2GM gR =来分析讨论天体的运动。
如分析第一宇宙速度:22Mm v G m r r =,v == ,r R =,代入后得v =【典型例题】类型一、比较分析卫星运行的轨道参量问题例1、(2015 重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为,距地面高度为,地球质量为,半径为,引力常量为,则飞船所在处的重力加速度大小为 A. 0 B. 2GM R h +() C. 2GMm R h +() D. 2GM h【解析】对飞船受力分析知,所受到的万有引力提供匀速圆周运动的向心力,等于飞船所在位置的重力,即2()Mm G mg R h =+,可得飞船的重力加速度为2GM g R h =+(),故选B 。
【变式1】(多选)现有两颗绕地球匀速圆周运动的人造地球卫星A 和B ,它们的轨道半径分别为A r 和B r 。
如果A B r r <,则 ( ) A. 卫星A 的运动周期比卫星B 的运动周期大B. 卫星A 的线速度比卫星B 的线速度大C. 卫星A 的角速度比卫星B 的角速度大D. 卫星A 的加速度比卫星B 的加速度大【答案】BCDm h M R G【解析】由222()Mm G m r r T π=得234r T GMπ=, 轨道半径 r 越大,T 越大。
高中物理--万有引力与天体运动--最全讲义及习题及答案详解

第四节万有引力与天体运动一.万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.2、公式:其中G=6.67×10-11 N·m2/kg2,称为引力常量.3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.二.万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力.⑴表面重力加速度:因则⑵轨道上的重力加速度:因则2、人造卫星⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.③轨道一定:所有同步卫星的轨道必在赤道平面内.④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,环绕方向与地球自转方向相同.3、三种宇宙速度⑴第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。
但却是绕地球做匀速圆周运动的各种卫星中的最大环绕速度。
当人造卫星进入地面附近的轨道速度大于7.9 km/s时,它绕地球运行的轨迹就不再是圆形,而是椭圆形.⑵第二宇宙速度:当卫星的速度等于或大于11.2 km/s 时,卫星就会脱离地球的引力不再绕地球运行,成为绕太阳运行的人造行星或飞到其他行星上去,我们把v2=11.2 km/s 称为第二宇宙速度,也称脱离速度。
高中物理 万有引力和天体运动(含答案)

万有引力和天体运动卫星运行规律1 【浙江省2018年下半年选考】20世纪人类最伟大的创举之一是开拓了太空的全新领域。
现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变量为Δv,和飞船受到的推力F(其它星球对它的引力可忽略)。
飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星球做周期为T的匀速圆周运动。
已知星球的半径为R,引力常量用G表示。
则宇宙飞船和星球的质量分别是()【答案】D2 在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
12已知星球M 的半径是星球N 的3倍,则( )A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC【解析】由a -x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:mg -kx =ma ,变形式为:k a g x m =-,该图象的斜率为k m-,纵轴截距为重力加速度g 。
根据图象的纵轴截距可知,两星球表面的重力加速度之比00331M N a g g a ==;又因为在某星球表面上的物体,所受重力和万有引力相等,即2Mm Gm g R ''=,即该星球的质量2gRM G =,又因为34π3M R ρ=,联立得34πg RG ρ=,故两星球的密度之比11N M M N N M R g g R ρρ=⋅=,故A 正确;当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg =kx ,即kxm g=,结合a -x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比00122P Q x x x x ==,故物体P 和物体Q 的质量之比16N P P Q Q M g m x m x g =⋅=,故B 错误;物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大,根据v 2=2ax ,结合a -x 图象面积的物理意义可知,物体P 的最大速度满足2000012332Pv a x a x =⋅⋅⋅=,物体Q 的最大速度满足2002Qv a x =,则两物体的最大动能之2k 2k 41Q Q Q PP PE m v E m v ==,C 正确;物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为x 0和2x 0,即物体P 所在弹簧最大压缩量为2x 0,物体Q 所在弹簧最大压缩量为4x 0,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误。
《万有引力与天体运动》习题及答案

地球abc 万有引力航天一、“中心天体-圆轨道”模型【应用知识】由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律列出圆周运动的动力学方程。
1、对中心天体可求质量和密度2、对环绕天体可求线速度、角速度、周期、向心加速度、向心力、轨道所在处的重力加速度3、可求第一宇宙速度例1.如图所示,a 、b 、c 是环绕地球在圆形轨道上运行的3颗人造卫星,它们质量关系是m a =m b <m c ,则: A .b 、c 的线速度大小相等,且大于a 的线速度 B .b 、c 的周期相等,且小于a 的周期C .b 、c 的向心加速度大小于相等,且大于a 的向心加速度D .b 所需向心力最小例2、我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面。
已知月球的质量约为地球质量的181 ,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为( D )A .0.4km/sB .1.8km/sC .11km/sD .36km/s二、“同步卫星”模型同步卫星具有四个一定1、 定轨道平面2、 定运行周期:T =24h3、 定运动高度:km R GMT h 4322106.34⨯=-=π4、 定运行速率:s km /0.3=υ例3.某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12h 内有多长时间该观察者看不见此卫星?已知地球半径为R ,地球表面处的重力加速度为g ,地球的自转周期为T ,不考虑大气对光的折射。
例4.地球赤道上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3.地球表面重力加速度为g ,第一宇宙速度为v ,假设三者质量相等.则( )A.F 1=F 2>F 3B.a 1=a 2=g >a 3 3122)4arcsin(gT R T t ππ=C.v 1=v 2=v >v 3D.ω1=ω3<ω2三、“天体相遇”模型 两天体相遇,实际上是指两天体相距最近,条件是)3,2,1(221 ==-n n t t πωω 两天体相距最远,条件是)3,2,1()12(21 =-=-n n t t πωω例5.A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h ,已知地球半径为R ,地球自转角速度ω0,地球表面的重力加速度为g ,O 为地球中心。
高中物理万有引力与航天解题技巧(超强)及练习题(含答案)及解析

高中物理万有引力与航天解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】22233LR M Gt=【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =,g =,在星球表面:2Mm G mg R =,解得:2M =3.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12Tl R T π⋅=. 所以12RT l T π==【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.4.在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其它已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2相距为r 的两个小球之间引力的大小为F ,求万有引力常量G ;(2)若已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.【答案】(1)万有引力常量为212Fr G m m =.(2)地球质量为2R gG,地球平均密度的表达式为34g RG ρπ=【解析】 【分析】根据万有引力定律122m m F Gr =,化简可得万有引力常量G ; 在地球表面附近的物体受到重力等于万有引力2MmG mg R =,可以解得地球的质量M ,地球的体积为343V R π=,根据密度的定义M Vρ=,代入数据可以计算出地球平均密度. 【详解】(1)根据万有引力定律有:122m m F Gr= 解得:212Fr G m m =(2)设地球质量为M ,在地球表面任一物体质量为m ,在地球表面附近满足:2MmGmg R = 得地球的质量为: 2R gM G=地球的体积为:343V R π=解得地球的密度为:34gRGρπ=答:(1)万有引力常量为212Fr G m m =.(2)地球质量2R gM G=,地球平均密度的表达式为34gRGρπ=.5.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR =(2)22324gR T h R π= 【解析】 【详解】(1)根据2v mg m R=得地球的第一宇宙速度为:v gR =(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =,解得:22324gR T h R π=.6.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
2021年高考物理一轮复习:万有引力与天体运动(附答案解析)

2021年高考物理一轮复习:万有引力与天体运动考点一 开普勒定律与万有引力定律1.开普勒行星运动定律图示2.万有引力定律(1)内容:自然界中任何两个物体都相互吸引,引力的大小与物体__质量的乘积__成正比,与它们之间__距离的平方__成反比.(2)公式:__F =G m 1m 2r 2__,式中G 为__引力常量__, G =__6.67×10-11N ·m 2/kg 2__.(3)适用条件:万有引力定律适用于两质点间万有引力大小的计算. 【理解巩固1】 判断下列说法的正误.(1)所有行星绕太阳运行的轨道都是椭圆.( )(2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大.( ) (3)只有天体之间才存在万有引力.( )(4)只要知道两个物体的质量和两个物体之间的距离,就可以由F =G m 1m 2r 2计算物体间的万有引力.( )(5)地面上的物体所受地球的引力方向一定指向地心.( ) (6)两物体间的距离趋近于零时,万有引力趋近于无穷大.( )(7)牛顿总结了前人的科研成果,在此基础上,经过研究得出了万有引力定律.( )(8)牛顿利用扭秤实验装置比较准确地测出了引力常量.( ) [答案] (1)√ (2)× (3)× (4)× (5)√ (6)× (7)√ (8)×开普勒定律1(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆.设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则()A.T卫<T月B.T卫>T月C.T卫<T地D.T卫=T地[解析] 因r月>r同>r卫,由开普勒第三定律r3T2=k可知,T月>T同>T卫,又同步卫星的周期T同=T地,故有T月>T地>T卫,选项A、C正确.[答案] AC万有引力定律2关于万有引力定律的适用范围,下列说法中正确的是()A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其他形状的物体C.适用于自然界中任意两个物体之间D.由万有引力定律可知,如果将一个物体放在地球的球心上,地球对它的万有引力是无穷大[解析] 万有引力定律既适用于天体,也适用于地面物体;故A错误;万有引力定律适用于其他形状的物体;故B错误;万有引力定律适用于宇宙万物任意两个物体之间;故C 正确;把地球分成无限份(可视为质点),各部分对物体的引力适用公式条件,由对称性可得地球对物体的万有引力为零;故D错误.[答案] C考点二万有引力与重力的关系1.万有引力与重力的关系(1)在赤道处:G MmR 2=mg 1+mω2R.(2)在两极处:G MmR2=mg 2.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即G MmR2=mg.2.星体表面及上空的重力加速度(1)在地球表面附近的重力加速度g(不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地心r =R +h 处的重力加速度g′:mg′=G Mm(R +h )2,得g′=GM(R +h )2,所以g g′=(R +h )2R 2.【理解巩固2】 已知地球两极的重力加速度大小为g 0,赤道上的重力加速度大小为g.若将地球视为质量均匀分布、半径为R 的球体,地球同步卫星的轨道半径为( )A .R ⎝⎛⎭⎫g 0g 0-g 13 B .R ⎝⎛⎭⎫gg 0-g 13C .R ⎝⎛⎭⎫g 0+g g 013 D .R ⎝⎛⎭⎫g 0+g g 13[解析] 设地球质量为M ,地球赤道上物体的质量为m ,地球同步卫星的轨道半径为h ,地球的自转周期为T ,则地球两极的物体受到引力等于其重力,即为G MmR 2=mg 0,而赤道上物体受到引力与支持力差值提供向心力,即为G MmR 2-mg =m 4π2T 2R ,同步卫星所受万有引力等于向心力G Mm r 2=m 4π2T 2r ,故地球同步卫星轨道半径为r =R ⎝⎛⎭⎫g 0g 0-g 13,故A 正确.[答案] A对应学生用书p 80不考虑“自转”情况下万有引力与重力的关系3 在浩瀚的宇宙中某恒星的质量是地球质量的p倍,该恒星的半径是地球半径的q 倍,那么该恒星表面的重力加速度与地球表面的重力加速度大小之比为________,恒星与地球的密度之比为________.[解析] (1)设天体表面某物体的质量为m ,恒星的质量为M 1、半径为R 1、体积为V 1、密度为ρ1、地球的质量为M 2、半径为R 2、体积为V 2、密度为ρ2,GM 1mR 21=mg 1 ① GM 2mR 22=mg 2 ② 两式相比得:g 1g 2=M 1R 22M 2R 21=p q 2 ρ=MV ③V =43πR 3 ④ρ1ρ2=M 1V 1M 2V 2⑤ 联立化简得:ρ1ρ2=pq 3[答案] g 1g 2=p q 2 ρ1ρ2=p q 3考虑“自转”情况下万有引力与重力的关系4 假设地球是质量分布均匀的球体,半径为R.已知某物体静止在两极时与静止在赤道上时对地面的压力差为ΔF ,则地球的自转周期为( )A .T =2πR m ΔFB .T =2πm ΔFR C .T =2πR ΔFmD .T =2πmRΔF[解析] 在赤道上:G Mm R 2=mg 1+m 4π2T 2R ①在两极:G MmR 2=mg 2 ②静止的物体有mg 1=F 1 ③ mg 2=F 2 ④ F 2-F 1=ΔF ⑤ 联立①②③④⑤得T =2πmR ΔF. [答案] D, 1.不考虑地球自转时,地球表面上的重力加速度g =GMR2.2.地球赤道上的物体随地球自转的向心力由万有引力与支持力的合力提供,而地球表面附近做匀速圆周运动的卫星由万有引力提供向心力.)考点三 人造卫星运行参量的分析与计算对应学生用书p 801.人造卫星 (1)卫星的轨道①赤道轨道:卫星的轨道在__赤道__平面内,同步卫星就是其中的一种.②极地轨道:卫星的轨道过南、北两极,即在__垂直于__赤道的平面内,如极地气象卫星.③其他轨道:除以上两种轨道外的卫星轨道. 所有卫星的轨道平面一定通过地球的__球心__. (2)向心力所有卫星都是由万有引力提供向心力做圆周运动,即:F 万=GMm r 2=m v 2r =mω2r =m 4π2T 2r.2.地球的同步卫星相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.同步卫星有以下“七个一定”的特点:(1)轨道平面一定:轨道平面与__赤道平面__共面.(2)周期一定:与地球自转周期__相同__,即T =__24__ h .(3)角速度一定:与地球自转的角速度__相同__.(4)高度一定:由G Mm(R +h )2=m 4π2(R +h )T 2得地球同步卫星离地面的高度h =3GMT 24π2-R ≈3.6×107 m . (5)速率一定:v =GMR +h≈3.1×103 m /s . (6)向心加速度一定:由GMm (R +h )2=ma n 得a n =GM(R +h )2=g h =0.23 m /s 2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向一致.【理解巩固3】 如图所示,在轨飞行两年多的“天宫二号”太空实验室目前状态稳定,已于2019年7月受控离轨.天宫二号绕地飞行一圈时间约为90 min ,而地球同步卫星绕地球一圈时间为24 h ,根据此两个数据不能求出的是( )A .天宫二号与地球同步卫星的角速度之比B .天宫二号与地球同步卫星的离地高度之比C .天宫二号与地球同步卫星的线速度之比D .天宫二号与地球同步卫星的向心加速度之比[解析] 由题可知二者的周期关系,由G mM r 2=m 4π2T 2r 得:T =2πrrGM,所以由题可以求出二者的轨道半径关系.卫星的角速度为ω=2πT=GMr 3,由二者的轨道半径关系即可求出天宫二号与地球同步卫星的角速度之比,故A 不符合题意;由T =2πrrGM ,则可以求出二者的轨道半径的关系,但由于地球的半径未知,所以不能求出二者距离地面的高度的比值,故B 符合题意;由万有引力提供向心力,得:G mM r 2=m v 2r,解得:v =GMr,由二者的轨道半径关系即可求出天宫二号与地球同步卫星的线速度之比,故C 不符合题意;向心加速度:a =GMr 2,由二者的轨道半径关系即可求出天宫二号与地球同步卫星的加速度之比,故D 不符合题意;本题选择不能求出的,故选B .[答案] B对应学生用书p 81人造卫星运行线速度、角速度、周期及向心加速度大小的计算5 2019年1月,我国在西昌卫星发射中心成功发射了“中星2D ”卫星.“中星2D ”是我国最新研制的通信广播卫星,可为全国提供广播电视及宽带多媒体等传输任务.“中星2D ”的质量为m 、运行轨道距离地面高度为h.已知地球的质量为M 、半径为R ,引力常量为G ,根据以上信息可知“中星2D ”在轨运行时( )A .速度的大小为GmR +h B .角速度大小为GM(R +h )2C .加速度大小为GM(R +h )2D .周期为2πRR GM[解析] “中星2D ”在轨运行时,由万有引力提供向心力,由牛顿第二定律得:G Mmr 2=m v 2r =mω2r =ma =m 4π2T2r ,根据题意有 r =R +h. v =GMR +h,A 错误; ω=GM(R +h )3,B 错误;a =GM (R +h )2,C 正确; T =2π(R +h)R +hGM,D 错误. [答案] C近地卫星、同步卫星和赤道上物体的运行问题6如图所示,a是静止在地球赤道地面上的一个物体,b是与赤道共面的某近地卫星,c、d均为地球的卫星,其中d是地球的同步卫星,以下关于a、b、c、d四者的线速度、角速度、周期,以及向心加速度的大小关系正确的是()A.v a>v b>v c>v d B.ωa>ωb>ωc>ωdC.T b<T d=T a D.a a>a b>a c>a d[审题指导] 赤道上物体a与同步卫星d的周期相同,以同步卫星d为“桥梁”进行比较.[解析] 对于b、c、d三个卫星来说,万有引力提供其做圆周运动的向心力根据上题的结论“高轨低速长周期”可知:v b>v c>v d,ωb>ωc>ωd,a n b>a n c>a n d,T b<T c<T d.对于a物体来说它属于地球的一部分,它转动的角速度以及周期与地球自转的相同,而地球自转的角速度、周期又与地球同步卫星的相同,即ωa=ω自=ωd,T a=T自=T d.故有:ωb>ωc>ωd=ωa,T b<T c<T d=T a,B错误、C正确.a n=ω2r,ωa=ωd=ω,r d>r a,得a n d>a n a,得a b>a c>a d>a a,D错误.v=ωr,ωa=ωd=ω,r d>r a,得v d>v a,得v b>v c>v d>v a,A错误.[答案] C, 1.比较同一个中心天体外围若干绕行天体之间的线速度、角速度、向心加速度以及周期的大小可以记住口诀:“高轨低速长周期”.即当绕行天体的轨道半径增大时其线速度、角速度、向心加速度减小,绕行周期变大.2.比较中心天体表面的建筑物与绕行天体各参数的大小时,不能直接进行比较,要借助同步卫星的“桥梁”作用,即建筑物与同步卫星具有共同大小的角速度与周期.)考点四 中心天体质量和密度的计算对应学生用书p 811.基本方法把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由__万有引力__提供. 2.解决天体圆周运动问题的两条思路(1)在地球表面的物体所受重力和地球对该物体的万有引力差别很小,在一般讨论和计算时,可以认为G MmR2=mg ,则有__GM =gR 2__.(2)天体做圆周运动的向心力由天体间的万有引力来提供,公式为G Mm r 2=m v 2r =mrω2=m ⎝⎛⎭⎫2πT 2r =m(2πf)2r. 3.天体质量M 、密度ρ的估算测出卫星绕中心天体做匀速圆周运动的半径r 和周期T ,由G Mm r 2=m⎝⎛⎭⎫2πT 2r 得M =4π2r 3GT 2,ρ=M V =M43πR 30=__3πr 3GT R 30__(R 0为中心天体的半径). 当卫星沿中心天体__表面__绕天体运动时,r =R 0,则ρ=__3πGT2__.【理解巩固4】 某人造地球卫星沿圆轨道运行,轨道半径r =6.8×103 km ,周期T =5.6×103 s ,已知万有引力常量G =6.67×10-11 N ·m 2/kg 2.根据这些数据可以求得的物理量为( )A .地球的质量B .地球的平均密度C .地球表面的重力加速度大小D .地球对该卫星的万有引力大小[解析] 根据万有引力提供向心力G mM r 2=m 4π2T 2r ,M =4π2r 3GT 2;代入数据可得:M =6×1024 kg ,故A 正确;由于没有给出地球的半径,所以不能求出地球的密度,故B 错误;由于没有给出地球的半径,所以不能根据万有引力定律求出地球表面的重力加速度大小,故C 错误;由于没有给出卫星的质量,所以不能根据万有引力定律求出地球对该卫星的万有引力大小.故D 错误.[答案] A对应学生用书p 82中心天体质量的计算7 (多选)天文爱好者观测卫星“高景一号”绕地球做匀速圆周运动时,发现该卫星每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度.已知引力常量为G ,则( )A .高景一号卫星的质量为t 2G θl 3B .高景一号卫星的角速度为θtC .高景一号卫星的线速度大小为2πltD .地球的质量为l 3G θt 2[解析] 高景一号卫星的质量不可求,选项A 错误;由题意知,卫星绕地球做匀速圆周运动的角速度ω=θt ,选项B 正确;卫星绕地球做匀速圆周运动线速度的大小v =lt ,选项C错误;由v =ωr 得r =l θ,该卫星做匀速圆周运动,万有引力提供向心力,由G Mmr 2=mω2r ,解得地球的质量M =l 3G θt 2,选项D 正确.[答案] BD中心天体密度的计算8 我国预计在2020年左右发射“嫦娥六号”卫星.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球中心与地球中心间距离r ,且把月球绕地球的运动近似看做是匀速圆周运动,试求出月球绕地球运动的周期为T ;(2)若宇航员随“嫦娥六号”登陆月球后,站在月球表面以初速度 v 0水平抛出一个小球,小球飞行一段时间 t 后恰好垂直地撞在倾角为θ=37°的的斜坡上,已知月球半径为R 0,月球质量分布均匀,引力常量为G ,试求月球的密度.(sin 37°=0.6,cos 37°=0.8)[解析] (1)设地球的质量为M ,月球的轨道半径为r ,则根据万有引力提供向心力:G Mmr 2=m 4π2r T2在地球表面有: m ′g =G Mm′R 2由以上两式得T =2πrRr g.(2)设月球表面的重力加速度为g 月,由斜面平抛运动规律得: tan θ=v 0g 月t解得:g 月=v 0t tan θ.在月球表面有:m′g 月=G Mm′R 20由以上两式得: M 月=ρ43πR 30 解得月球的密度ρ=v 0Gt πR 0., 注意区别中心天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R只能是中心天体的半径.)考点五 卫星变轨问题对应学生用书p 821.速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v1>v3,故有v A>v1>v3>v B.2.加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.3.周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.4.机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.【理解巩固5】(多选)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1和2相切于Q点,轨道2和3相切于P点,设卫星在1轨道和3轨道正常运行的速度和加速度分别为v1、v3和a1、a3,在2轨道经过P点时的速度和加速度为v2和a2且当卫星分别在1、2、3轨道上正常运行时周期分别为T1、T2、T3,以下说法正确的是()A.v1>v2>v3B.v1>v3>v2C.a1>a2>a3D.T1<T2<T3[解析] 卫星在1轨道运行速度大于卫星在3轨道运行速度,在2轨道经过P点时的速度v2小于v3,选项A错误、B正确;卫星在1轨道和3轨道正常运行加速度a1>a3,在2轨道经过P点时的加速度a2=a3,选项C错误.根据开普勒定律,卫星在1、2、3轨道上正常运行时周期T1<T2<T3,选项D正确.[答案] BD对应学生用书p839如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动.则()A .飞船在轨道Ⅰ上的运行速度为14g 0RB .飞船在A 点处点火时,速度增加C .飞船在轨道Ⅰ上运行时通过A 点的加速度大于在轨道Ⅱ上运行时通过A 点的加速度D .飞船在轨道Ⅲ上绕月球运行一周所需的时间为2πR g 0[解析] 据题意,飞船在轨道Ⅰ上运动时有:G Mm (4R )2=m v 24R ,经过整理得:v =GM4R,而GM =g 0R 2,代入上式计算得v =g 0R4,所以A 选项错误;飞船在A 点处点火使速度减小,飞船做靠近圆心的运动,所以飞船速度减小,B 选项错误;据a =GM(4R )2可知,飞船在两条运行轨道的A 点距地心的距离均相等,所以加速度相等,所以C 选项错误;飞船在轨道Ⅲ上运行时有:G MmR 2=mR 4π2T2,经过整理得T =2πRg 0,所以D 选项正确. [答案] D考点六双星(或)多星问题对应学生用书p831.双星模型双星类问题要注意区分引力距离与运行半径.引力距离等于双星之间的距离,影响万有引力的大小.引力提供双星做匀速圆周运动的向心力,且双星具有相同的__角速度和周期__.双星运行的半径不等于引力距离的一半,更不等于双星之间的距离,而应先假设双星做匀速圆周运动的圆心,进而找到双星的运行半径与引力距离之间的关系.2.三星模型(1)三颗质量相同的星位于同一直线上.两颗星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).(2)三颗质量均为m的星体位于等边三角形的三个顶点上,围绕三角形的中心O做匀速圆周运动(如图乙所示).3.四星模型(1)其中一种是四颗质量相等的行星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).(2)另一种是三颗行星始终位于正三角形的三个顶点上.另一颗位于中心O,外围三颗星绕中心星做匀速圆周运动(如图丁所示).【理解巩固6】如图所示,银河系中有两黑洞A、B,它们以两者连线上的O点为圆心做匀速圆周运动,测得黑洞A、B到O点的距离分别2r和r.黑洞A和黑洞B均可看成质量分布均匀的球体,不考虑其他星体对黑洞的引力,两黑洞的半径均远小于他们之间的距离.下列说法正确的是()A.黑洞A、B的质量之比为2∶1B.黑洞A、B的线速度之比为2∶1C.黑洞A、B的周期之比为2∶1D .若从地球向黑洞A 发射一颗探测卫星,其发射速度只要大于7.9 km /s 就行[解析] 双星各自做匀速圆周运动的周期相同,则角速度相等,因为m 1r 1ω2=m 2r 2ω2,知半径之比等于质量之反比,故质量之比为1∶2,故A 错误.由v =rω,知线速度与半径成正比,为2∶1,故B 正确;双星的周期相同,与质量无关,故C 错误.要在地球上发射一颗探测该黑洞信息的探测器,必须要离开太阳的束缚,故发射速度必大于16.7 km /s ,故D 错误.[答案] B对应学生用书p 83双星系统10 两个中子星相互吸引旋转并靠近最终合并成黑洞,科学家预言在此过程中释放引力波.根据牛顿力学,在中子星靠近的过程中( )A .中子星间的引力变大B .中子星的线速度变小C .中子星的角速度变小D .中子星的加速度变小[审题指导] 两个中子星做匀速圆周运动具有相同的角速度,靠相互间的万有引力提供向心力,且两个中子星之间的距离在不断减小,根据万有引力提供向心力得出两个中子星的轨道半径关系,从而确定出两个中子星的半径如何变化,以及得出两个中子星的角速度、线速度、加速度和周期的变化.[解析] 根据万有引力定律:F =Gm 1m 2L 2,可知两中子星的距离L 减小时,中子星间的引力变大,A 正确.根据Gm 1m 2L 2=m 1v 21R 1,R 1=L m 1+m 2·m 2,解得v 1=Gm 22L (m 1+m 2),线速度增大,B 错误.由ω=v 1R 1,L 减小,R 1减小,v 1增大,所以角速度会增大,C 错误.根据Gm 1m 2L 2=m 1a 1=m 2a 2知,L 变小,则两星的向心加速度增大,D 错误.故选A . [答案] A多星系统11 宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对他们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行.设每个星体的质量均为m.(1)试求第一种形式下,星体运动的线速度和周期;(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?[解析] (1)对于第一种运动情况,以某个运动星体为研究对象,根据牛顿第二定律和万有引力定律,有F 1=G m 2R 2,F 2=G m 2(2R )2,F 1+F 2=m v 2R运动星体的线速度v =5GmR2R周期为T ,则有T =2πRv,T =4πR 35Gm(2)设第二种形式星体之间的距离为r ,则三个星体做圆周运动的半径为R′=r 2cos 30°由于星体做圆周运动所需要的向心力靠其他两个星体的万有引力的合力提供.由力的合成和牛顿运动定律,有 F 合=2G m 2r 2cos 30°F 合=m 4π2T2R ′由以上四式,得r =⎝⎛⎭⎫12513R, 1.解决此类问题的核心是“谁”提供向心力的问题. 2.“双星问题”的隐含条件是两者的向心力相同、周期相同、角速度相同;轨道半径与质量成反比;m 1+m 2=4π2L 3GT 2(m 1、m 2分别为两星的质量,L 为两星之间的距离,T 为两星运行的周期).3.多星问题中,每颗行星做圆周运动所需的向心力是由它们之间的万有引力的合力提供,即F 合=m v 2r,以此列向心力方程进行求解.)考点七 三种宇宙速度 经典时空观和相对论时空观对应学生用书p 841.三种宇宙速度(1)在经典力学中,物体的质量是不随__运动状态__而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是__相同__的.3.相对论时空观(1)在狭义相对论中,物体的质量是随物体的运动速度的增大而__增大__的.(2)在狭义相对论中,同一物理过程发生的位移和对应的时间的测量结果在不同的参考系中是__不同__的,表现为尺缩效应和延时效应.【理解巩固7】 (多选)美国“新地平线”号探测器借助“宇宙神—5”火箭,从佛罗里达州卡纳维拉尔角肯尼迪航天中心发射升空,开始长达9年的飞向冥王星的太空之旅.拥有3级发动机的“宇宙神—5”重型火箭将以每小时5.76万公里的惊人速度把“新地平线”号送离地球,这个冥王星探测器将成为人类有史以来发射速度最大的飞行器.这一速度( )A .大于第一宇宙速度B .等于第二宇宙速度C .大于第三宇宙速度D .小于并接近于第三宇宙速度[解析] 地球的第二宇宙速度为v 2=11.2 km /s =4.032×104 km /h ,第三宇宙速度v 3=16.7 km /s =6.012×104 km /h ,速度5.76×104 km /h 大于第二宇宙速度,接近第三宇宙速度.故AD 正确,BC 错误.[答案] AD对应学生用书p 84三种宇宙速度12 (多选)据悉,我国的火星探测计划将于2020年展开.2020年左右我国将进行第一次火星探测,向火星发射轨道探测器和火星巡视器.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( ) A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度且小于第三宇宙速度D .火星探测器环绕火星运行的最大速度约为地球的第一宇宙速度的23[解析] 要将火星探测器发射到火星上去,必须脱离地球引力,即发射速度要大于第二宇宙速度,火星探测器仍在太阳系内运转,因此从地球上发射时,发射速度要小于第三宇宙速度,选项A 、B 错误,C 正确;由第一宇宙速度的概念,得G Mm R 2=m v 21R ,得v 1=GMR,故火星探测器环绕火星运行的最大速度与地球的第一宇宙速度的比值约为29=23,选项D 正确.[答案] CD相对论时空观13 关于经典力学的适用范围和局限性,下列说法正确的是( )A .经典力学过时了,应该被量子力学所取代B .由于超音速飞机的速度太大,其运动不能用经典力学来解释C .人造卫星的运动不适合用经典力学来描述D .当物体速度接近光速时,其运动规律不适合用经典力学来描述[解析] 经典力学在低速宏观物理过程中适用,量子力学不可替代,故A 错误;超音速飞机的速度远低于光速,其运动能用经典力学来解释,故B 错误;人造卫星的运动速度远低于光速,适合用经典力学来描述,故C 错误;当物体速度接近光速时,其运动规律不适合用经典力学来描述,故D 正确.[答案] D。
高中物理专题卷 天体运动全解全析 有答案(详解)

物理专项题13天体运动全解全析热点题型一 开普勒定律 万有引力定律的理解与应用 1.开普勒行星运动定律(1)行星绕太阳的运动通常按圆轨道处理.(2)开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.(3)开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.2.万有引力定律公式F =G m 1m 2r 2适用于质点、均匀介质球体或球壳之间万有引力的计算.当两物体为匀质球体或球壳时,可以认为匀质球体或球壳的质量集中于球心,r 为两球心的距离,引力的方向沿两球心的连线.【例1】为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为( ) A .2∶1 B .4∶1 C .8∶1 D .16∶1 【答案】 C【解析】 由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T 2P T 2Q =r 3Pr 3Q .因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.【变式1】(2017·高考全国卷Ⅱ)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 【答案】CD【解析】在海王星从P 到Q 的运动过程中,由于引力与速度的夹角大于90°,因此引力做负功,根据动能定理可知,速率越来越小,C 项正确;海王星从P 到M 的时间小于从M 到Q 的时间,因此从P 到M 的时间小于T 04,A 项错误;由于海王星运动过程中只受到太阳引力作用,引力做功不改变海王星的机械能,即从Q 到N 的运动过程中海王星的机械能守恒,B 项错误;从M 到Q 的运动过程中引力与速度的夹角大于90°,因此引力做负功,从Q 到N 的过程中,引力与速度的夹角小于90°,因此引力做正功,即海王星从M 到N 的过程中万有引力先做负功后做正功,D 项正确.热点题型二 万有引力与重力的关系 1.地球表面的重力与万有引力地面上的物体所受地球的吸引力产生两个效果,其中一个分力提供了物体绕地轴做圆周运动的向心力,另一个分力等于重力.(1)在两极,向心力等于零,重力等于万有引力;(2)除两极外,物体的重力都比万有引力小;(3)在赤道处,物体的万有引力分解为两个分力F 向和mg 刚好在一条直线上,则有F =F 向+mg ,所以mg =F -F 向=GMmR 2-mRω2自. 2.星体表面上的重力加速度(1)在地球表面附近的重力加速度g (不考虑地球自转);mg =G mM R 2,得g =GM R2.(2)在地球上空距离地心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2 所以g g ′=(R +h )2R 2.【例2】近期天文学界有很多新发现,若某一新发现的星体质量为m 、半径为R 、自转周期为T 、引力常量为G .下列说法正确的是( ) A .如果该星体的自转周期T <2π R 3Gm,则该星体会解体 B .如果该星体的自转周期T >2πR 3Gm,则该星体会解体 C .该星体表面的引力加速度为Gm RD .如果有卫星靠近该星体表面做匀速圆周运动,则该卫星的速度大小为Gm R【答案】 AD【解析】 如果在该星体“赤道”表面有一物体,质量为m ′,当它受到的万有引力大于跟随星体自转所需的向心力时,即G mm ′R 2>m ′R 4π2T 2时,有T >2πR 3Gm,此时,星体处于稳定状态不会解体,而当该星体的自转周期T <2πR 3Gm时,星体会解体,故选项A 正确,B 错误;在该星体表面,有G mm ′R 2=m ′g ′,所以g ′=G mR2,故选项C错误;如果有质量为m ″的卫星靠近该星体表面做匀速圆周运动,有G mm ″R 2=m ″v 2R,解得v =GmR,故选项D 正确. 【变式2】(2019·安徽皖南八校联考)一颗在赤道上空做匀速圆周运动运行的人造卫星,其轨半径上对应的重力加速度为地球表面重力加速度的四分之一,则某一时刻该卫星观测到地面赤道最大弧长为(已知地球半径为R ) ( )A.23πRB.12πRC.13πRD.14πR 【答案】 A【解析】 卫星所在高度处G Mm r 2=mg ′,而地球表面处G Mm R 2=mg ,因为g ′=14g ,解得r =2R ,则某一时刻该卫星观测到地面赤道的弧度数为2π3,则观测到地面赤道最大弧长为23πR ,故选A.热点题型三 中心天体质量和密度的估算 应用公式时注意区分“两个半径”和“两个周期”(1)天体半径和卫星的轨道半径,通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径. (2)自转周期和公转周期,自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.【例3】为了研究某彗星,人类先后发射了两颗人造卫星.卫星A 在彗星表面附近做匀速圆周运动,运行速度为v ,周期为T ;卫星B 绕彗星做匀速圆周运动的半径是彗星半径的n 倍.万有引力常量为G ,则下列计算不正确的是 ( )A .彗星的半径为vT 2πB .彗星的质量为v 3T4πGC .彗星的密度为3πGT 2D .卫星B 的运行角速度为2πT n 3【答案】 B【解析】 由题意可知,卫星A 绕彗星表面做匀速圆周运动,则彗星的半径满足:R =vT2π,故A正确;根据G Mm R 2=m v 2R ,解得M =v 3T 2πG ,故B 错误;彗星的密度为ρ=M V =M 43πR 3=3πGT2,故C 正确;根据G Mm r 2=mω2r ,GMm R 2=mR 4π2T 2,r =nR ,则卫星B 的运行角速度为2πT n 3,故D 正确. 【变式3】我国计划于2019年发射“嫦娥五号”探测器,假设探测器在近月轨道上绕月球做匀速圆周运动,经过时间t (小于绕行周期),运动的弧长为s ,探测器与月球中心连线扫过的角度为θ(弧度),引力常量为G ,则( )A .探测器的轨道半径为 θtB .探测器的环绕周期为 πtθC .月球的质量为 s 3Gt 2θD .月球的密度为 3θ24Gt【答案】C【解析】利用s =θr ,可得轨道半径r =s θ,选项A 错误;由题意可知,角速度ω=θt ,故探测器的环绕周期T =2πω=2πθt=2πt θ,选项B 错误;根据万有引力提供向心力可知,G mM r 2=m v 2r,再结合v=s t 可以求出M =v 2r G =Gst s θ⋅⎪⎭⎫ ⎝⎛2=s 3Gt 2θ,选项C 正确;由于不知月球的半径,所以无法求出月球的密度,选项D 错误.热点题型四 同步卫星的运行规律分析 4.解决天体圆周运动问题的两条思路(1)在中心天体表面或附近而又不涉及中心天体自转运动时,万有引力等于重力,即G MmR 2=mg ,整理得GM =gR 2,称为黄金代换.(g 表示天体表面的重力加速度) (2)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=m v 2r =mrω2=m 4π2r T2=ma n . 【例4】.(2016·高考全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A .1 h B .4 h C .8 h D .16 h 【答案】B【解析】设地球半径为R ,画出仅用三颗地球同步卫星使地球赤道上任意两点之间保持无线电通讯时同步卫星的最小轨道半径示意图,如图所示.由图中几何关系可得,同步卫星的最小轨道半径r =2R .设地球自转周期的最小值为T ,则由开普勒第三定律可得,(6.6R )3(2R )3=(24 h )2T 2,解得T ≈4 h ,选项B 正确.【变式4-1】(2019·合肥调研)2018年7月27日,发生了“火星冲日”现象,火星运行至距离地球最近的位置,火星冲日是指火星、地球和太阳几乎排列成一条直线,地球位于太阳与火星之间,此时火星被太阳照亮的一面完全朝向地球,所以明亮易于观察,地球和火星绕太阳公转的方向相同,轨道都近似为圆,火星公转轨道半径为地球的1.5倍,则下列说法正确( )A .地球与火星的公转角速度大小之比为2∶3B .地球与火星的公转线速度大小之比为3∶2C .地球与火星的公转周期之比为8∶27D .地球与火星的向心加速度大小之比为27∶8【答案】 C【解析】 根据G Mm r 2=m v 2r =mω2r =m 4π2r T 2=ma ,解得ω=GMr 3,则地球与火星的公转角速度大小之比为364,选项A 错误;v =GM r ,则地球与火星的公转线速度大小之比为62,选项B 错误;T =2πr 3GM ,则地球与火星的公转周期之比为8∶27 ,选项C 正确;a =GMr2,则地球与火星的向心加速度大小之比为9∶4,选项D 错误.【变式4-2】(2019·广东省揭阳市期末)如图所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )A .卫星a 的角速度小于c 的角速度B .卫星a 的加速度大于b 的加速度C .卫星a 的运行速度大于第一宇宙速度D .卫星b 的周期大于24 h 【答案】 A【解析】 根据公式G Mmr2=mω2r 可得ω=GMr 3,运动半径越大,角速度越小,故卫星a 的角速度小于c 的角速度,A 正确;根据公式G Mm r 2=ma 可得a =GMr 2,由于a 、b 的轨道半径相同,所以两者的向心加速度大小相同,B 错误;第一宇宙速度是近地轨道卫星做圆周运动的最大环绕速度,根据公式G Mm r 2=m v 2r可得v =GMr,半径越大,线速度越小,所以卫星a 的运行速度小于第一宇宙速度,C 错误;根据公式G Mm r 2=m 4π2T 2r 可得T =2πr 3GM,故轨道半径相同,周期相同,所以卫星b 的周期等于24 h ,D 错误.热点题型五 宇宙速度的理解与计算 1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 21R得v 1=GMR=7.9×103 m/s. 方法二:由mg =m v 21R得v 1=gR =7.9×103 m/s.第一宇宙速度是发射地球人造卫星的最小速度,也是地球人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面附近做匀速圆周运动. (2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间. 【例5】(多选)(2019·河南新乡模拟)美国国家科学基金会宣布,天文学家发现一颗迄今为止与地球最类似的行星,该行星绕太阳系外的红矮星Gliese581做匀速圆周运动.这颗行星距离地球约20光年,公转周期约为37天,它的半径大约是地球的1.9倍,表面重力加速度与地球相近.下列说法正确的是 ( ) A .该行星的公转角速度比地球大 B .该行星的质量约为地球质量的3.6倍 C .该行星第一宇宙速度为7.9 km/sD .要在地球上发射航天器到达该星球,发射速度只需达到地球的第二宇宙速度即可 【答案】 AB【解析】该行星的公转周期约为37天,而地球的公转周期为365天,根据ω=2πT可知该行星的公转角速度比地球大,选项A 正确;忽略星球自转的影响,根据万有引力等于重力列出等式:G Mm R 2=mg ,解得:g =GMR 2,这颗行星的重力加速度与地球相近,它的半径大约是地球的1.9倍,所以它的质量是地球的3.6倍,故B 正确;要在该行星表面发射人造卫星,发射的速度最小为第一宇宙速度,第一宇宙速度v =GMR,R 为星球半径,M 为星球质量,所以这颗行星的第一宇宙速度大约是地球的2倍,而地球的第一宇宙速度为7.9 km/s ,故该星球的第一宇宙速度为2×7.9 km/s =11.2 km/s ,故C 错误;由于这颗行星在太阳系外,所以航天器的发射速度至少要达到第三宇宙速度,故D 错误. 【变式5】.(多选)(2019·安徽师大附中期中)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星的公转视为匀速圆周运动.忽略行星自转影响,火星和地球相比 ( )行星 半径/m 质量/kg 公转轨道半径/m地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×1011A.火星的“第一宇宙速度”约为地球的第一宇宙速度的0.45倍 B .火星的“第一宇宙速度”约为地球的第一宇宙速度的1.4倍 C .火星公转的向心加速度约为地球公转的向心加速度的0.43倍D .火星公转的向心加速度约为地球公转的向心加速度的0.28倍 【答案】AC【解析】根据第一宇宙速度公式v =GMR (M 指中心天体火星或地球的质量)得v 火v 地=M 火R 地M 地R 火=0.45,故A 正确,B 错误;根据向心加速度公式a =GM r 2(M 指中心天体太阳的质量)得a 火a 地=r 2地r 2火=1.522.32=0.43,故C 正确,D 错误.热点题型六 近地卫星、赤道上的物体及同步卫星的运行问题 【例6】(多选)(2019·大庆中学模拟)如图所示,A 表示地球同步卫星,B 为运行轨道比A 低的一颗卫星,C为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是 ( )A .vB >v A >vC B .ωA >ωB >ωC C .F A >F B >F CD .T A =T C >T B 【答案】 AD【解析】 A 、C 的角速度相等,由v =ωr ,可知v C <v A ,由人造卫星的速度公式:v =GMr,可知v A <v B ,因而v B >v A >v C ,故A 正确; A 、C 的角速度相等,根据ω=GMr 3知A 的角速度小于B 的角速度,故ωA =ωC <ωB ,故B 错误;由万有引力公式可知,F =GMmr 2,即半径越大,万有引力越小,故F A <F B <F C ,故C 错误;卫星A 为同步卫星,周期与C 物体周期相等,又万有引力提供向心力,即:GMm r 2=m (2πT)2r ,T =2πr 3GM,所以A 的周期大于B 的周期,故T A =T C >T B ,故D 正确.【变式6】.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的半径为R ,第一宇宙速度为v 2,则下列比例关系中正确的是 ( ) A.a 1a 2=r R B.a 1a 2=(r R )2 C.v 1v 2=r R D.v 1v 2=Rr【答案】AD【解析】设地球质量为M ,同步卫星的质量为m 1,地球赤道上物体的质量为m ,根据向心加速度和角速度的关系有a 1=ω21r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R,选项A 正确;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm R 2=m v 22R ,解得v 1v 2=Rr,选项D 正确.热点题型七 双星 【例7】(2018·全国卷Ⅰ·20)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A .质量之积 B .质量之和 C .速率之和 D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示每秒转动12圈,角速度已知中子星运动时,由万有引力提供向心力得Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解.【变式7】双星系统由两颗绕着它们中心连线上的某点旋转的恒星组成.假设两颗恒星质量相等,理论计算它们绕连线中点做圆周运动,理论周期与实际观测周期有出入,且T 理论T 观测=n1(n >1),科学家推测,在以两星球中心连线为直径的球体空间中均匀分布着暗物质,设两星球中心连线长度为L ,两星球质量均为m ,据此推测,暗物质的质量为 ( ) A .(n -1)m B .(2n -1)m C.n -14mD.n -28m【答案】C【解析】双星运动过程中万有引力提供向心力:G m 2L 2=m L 2(2πT 理论)2,解得T 理论=2π2L 3Gm;设暗物质的质量为M ′,对星球由万有引力提供向心力G m 2L 2+G M ′m (L 2)2=m L 2(2πT 观测)2,解得T观测=2π2L 3G (m +4M ′).根据T 理论T 观测=n 1,联立以上可得:M ′=n -14m ,选项C 正确.热点题型八 卫星的变轨问题人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ. 2.物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .因在A 点加速,则v A >v 1,因在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B . (2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B 点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律a 3T2=k 可知T 1<T 2<T 3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3. 卫星参数变化分析【例8】(多选)如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是 ( )A .卫星在轨道3上的速率小于在轨道1上的速率B .卫星在轨道3上的角速度大于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度 【答案】 AD【解析】 由万有引力提供向心力得:v =GMr,则半径大的速率小,则A 正确;由万有引力提供向心力得:ω=GMr 3,则半径大的角速度小,则B 错误;在同一点所受的地球的引力相等,则加速度相等,故C 错误,D 正确. 【方法技巧】(1)卫星的变轨问题要用到圆周运动中“离心运动”和 “近心运动”的知识去分析;(2)卫星在太空中某点的加速度a =GMr 2,与卫星的运动轨迹无关,仅由卫星的位置决定.【变式8】(2017·高考全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( ) A .周期变大 B .速率变大 C .动能变大 D .向心加速度变大 【答案】C【解析】组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2R,可得v =GMR,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πRv ,则周期T 不变,A项错误;质量变大、速率不变,动能变大,C 项正确;向心加速度a =GMR 2,不变,D 项错误.卫星变轨的能量分析 【例9】(2019·陕西省宝鸡市质检二)如图所示,质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭圆轨道Ⅱ的变轨过程进入半径为R 3的圆形轨道Ⅲ继续绕地球运动,其中P 点为Ⅰ轨道与Ⅱ轨道的切点,Q 点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是( )A .卫星在轨道Ⅰ上的动能为G Mm2R 1B .卫星在轨道Ⅲ上的机械能等于-G Mm2R 3C .卫星在Ⅱ轨道经过Q 点时的加速度小于在Ⅲ轨道上经过Q 点时的加速度D .卫星在Ⅰ轨道上经过P 点时的速率大于在Ⅱ轨道上经过P 点时的速率 【答案】 AB【解析】 在轨道Ⅰ上,有:G Mm R 12=m v 12R 1,解得:v 1=GM R 1,则动能为E k1=12mv 12=GMm2R 1,故A 正确;在轨道Ⅲ上,有:G Mm R 32=m v 32R 3,解得:v 3=GM R 3,则动能为E k3=12mv 32=GMm 2R 3,引力势能为E p =-GMm R 3,则机械能为E =E k3+E p =-GMm 2R 3,故B 正确;由G Mm R Q 2=ma 得:a =GMR Q 2,两个轨道上Q 点到地心的距离不变,故向心加速度的大小不变,故C 错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P 点时必须点火加速,即卫星在Ⅰ轨道上经过P 点时的速率小于在Ⅱ轨道上经过P 点时的速率,故D 错误. 【变式9】(2019·河北省唐山市上学期期末)登陆火星需经历如图所示的变轨过程,已知引力常量为G ,则下列说法正确的是( )A .飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T ⅠB .飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能C .飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气D .若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度 【答案】 ACD【解析】 根据开普勒第三定律a 3T 2=k 可知,飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T Ⅰ,选项A 正确;飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气,从而使飞船减速到达轨道Ⅰ,则在轨道Ⅰ上机械能小于在轨道Ⅱ的机械能,选项B 错误,C 正确;根据G MmR 2=mω2R以及M =43πR 3ρ,解得ρ=3ω24πG,即若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度,选项D 正确.热点题型九 卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻.【例10】在赤道平面内有三颗在同一轨道上运行的卫星,三颗卫星在此轨道均匀分布,其轨道距地心的距离为地球半径的3.3倍,三颗卫星自西向东环绕地球转动.某时刻其中一颗人造卫星处于A 城市的正上方,已知地球的自转周期为T ,地球同步卫星的轨道半径约为地球半径的6.6倍,则A 城市正上方出现下一颗人造卫星至少间隔的时间约为 ( )A .0.18TB .0.24TC .0.32TD .0.48T 【答案】 A【解析】 地球的自转周期为T ,即地球同步卫星的周期为T ,根据开普勒第三定律得: (6.6r )3T 2=(3.3r )3T 21 解得:T 1=18T 下一颗人造卫星出现在A 城市的正上方,相对A 城市转过的角度为2π3,则有(2πT 1-2πT )t =2π3解得:t ≈0.18T ,故应选A. 【方法技巧】对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【变式10】.(2019·河南洛阳尖子生一联)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上,这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”,假设地球公转轨道半径为R ,“金星凌日”每隔t 0年出现一次,则金星的公转轨道半径为( )A.t 01+t 0R B .R(t 01+t 0)3 C .R3(1+t 0t 0)2D .R3(t 01+t 0)2 【答案】D【解析】根据开普勒第三定律有R 3金R 3=T 2金T 2地,“金星凌日”每隔t 0年出现一次,故(2πT 金-2πT 地)t 0=2π,已知T 地=1年,联立解得R 金R =3(t 01+t 0)2,因此金星的公转轨道半径R 金=R 3(t 01+t 0)2,故D 正确.【题型演练】 1.(2019·湖北武汉调研)如图为人造地球卫星的轨道示意图,LEO 是近地轨道,MEO 是中地球轨道,GEO 是地球同步轨道,GTO 是地球同步转移轨道.已知地球的半径R =6 400 km ,该图中MEO 卫星的周期约为(图中数据为卫星近地点、远地点离地面的高度)( )A .3 hB .8 hC .15 hD .20 h 【答案】A【解析】根据题图中MEO 卫星距离地面高度为4 200 km ,可知轨道半径约为R 1=10 600 km ,同步轨道上GEO 卫星距离地面高度为36 000 km ,可知轨道半径约为R 2=42 400 km ,为MEO 卫星轨道半径的4倍,即R 2=4R 1.地球同步卫星的周期为T 2=24 h ,运用开普勒第三定律,R 13R 23=T 12T 22,解得T 1=3 h ,选项A 正确.2.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为L 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( )A.πL 3GrT 2B.3πL GrT 2C.16πL 3GrT 2 D .3πL 16GrT 2 【答案】B【解析】据题意,已知月球上单摆的周期为T ,据单摆周期公式有T =2πLg,可以求出月球表面重力加速度为g =4π2L T 2;根据月球表面物体重力等于月球对它万有引力,有G MmR 2=mg ,月球平均密度设为ρ,M =ρV =43πr 3ρ,联立以上关系可以求得ρ=3πLGrT 2,故选项B 正确.3.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙飞船所在处的地球引力加速度,F N 表示人对秤的压力,下面说法中正确的是( )A .g ′=r 2R 2gB .g ′=R 2r 2gC .F N =m r R gD .F N =m Rrg【答案】B【解析】做匀速圆周运动的飞船及其上的人均处于完全失重状态,台秤无法测出其重力,故F N =0,C 、D 错误;对地球表面的物体,G Mm R 2=mg ,宇宙飞船所在处,G Mm r 2=mg ′,可得g ′=R 2r 2g ,A 错误,B 正确.4.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍.那么,一个在地球表面能举起64 kg 物体的人,在这个行星表面能举起的物体的质量约为(地球表面重力加速度g 取10 m/s 2)( ) A .40 kg B .50 kg C .60 kg D .30 kg 【答案】A【解析】在地球表面,万有引力近似等于重力GMm R 2=mg ,得g =GMR 2,因为行星质量约为地球质量的6.4倍,其半径约为地球半径的2倍,则行星表面重力加速度是地球表面重力加速度的1.6倍,而人的举力可认为是不变的,则人在行星表面所举起的物体的质量为m =m 01.6=641.6kg =40 kg ,故A 正确. 5(2019·河北石家庄模拟)如图所示,人造卫星A 、B 在同一平面内绕地心O 做匀速圆周运动,已知AB 连线与AO 连线间的夹角最大为θ,则卫星A 、B 的线速度之比为( )A .sin θ B.1sin θC.sin θD.1sin θ【答案】C【解析】由题图可知,当AB 连线与B 所在的圆周相切时,AB 连线与AO 连线的夹角θ最大,由几何关系可知,sin θ=r B r A ;根据G Mm r 2=m v 2r可知,v =GM r ,故v Av B=r Br A=sin θ,选项C 正确. 6.(2019·河北沧州一中高三月考)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动;b是近地轨道地球卫星;c是地球的同步卫星;d 是高空探测卫星.它们均做匀速圆周运动,各卫星排列位置如图所示,则( )。
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT Tπππ-=解得87Rtgπ=2.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况)若A星体的质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力的大小F A;(2)B星体所受合力的大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.【答案】(1)2223Gma(227Gm(37(4)3πaTGm=【解析】【分析】【详解】(1)由万有引力定律,A星体所受B、C星体引力大小为24222A BR CAm m mF G G Fr a===,则合力大小为223AmF Ga=(2)同上,B星体所受A、C星体引力大小分别为2222222A BABC BCBm m mF G Gr am m mF G Gr a====则合力大小为22cos 602Bx AB CB m F F F G a =︒+=22sin 603By AB m F F G a=︒=.可得22227B BxBym F F F G a=+=(3)通过分析可知,圆心O 在中垂线AD 的中点,22317424C R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ (4)三星体运动周期相同,对C 星体,由22227C B C m F F G m R a T π⎛⎫=== ⎪⎝⎭可得22a T Gmπ=3.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m m F Gr 万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-p m m E Gr,其中m 1、m 2为两个物体的质量, r 为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G 为引力常量.设有一个质量分布均匀的星球,质量为M ,半径为R . (1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q (该带电实心球可看作电荷集中在球心处的点电荷),半径为R ,P 为球外一点,与球心间的距离为r ,静电力常量为k .现将一个点电荷-q (该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p 点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1v =2)2=M E G R '引;(3)2v =4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R=解得:1v =; (2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr 引 质点所在处的引力场强度=F E m引引 得2=M E Gr引 该星球表面处的引力场强度'2=ME GR 引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mM mv G R-=解得:2v =; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.4.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.双星系统模型的三大规律: (1)双星系统的周期、角速度相同. (2)轨道半径之比与质量成反比. (3)双星系统的周期的平方与双星间距离的三次方之比只与双星的总质量有关,而与双星 个体的质量无关.
7
追梦教育微信公众号“v 梦想启航”免费学习资源为你助力高考
例题精讲
1. 对万有引力定律的理解
(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的 质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。
(2)公式表示:F=
Gm1m2 r2
。
(3)引力常量 G:①适用于任何两物体。 ②意义:它在数值上等于两个质量都是 1kg 的物 体(可看成质点)相距 1m 时的相互作用力。 ③G 的通常取值为 G=6。67×10-11Nm2/kg2。 是英国物理学家卡文迪许用实验测得。④一个重要物理常量的意义:根据万有引力定律和牛
辐射) s 球冠=2 Rh
s= r2 (光的垂直有效面接收,球体推进
轨道上正常转:
Mm
v2
F 引=G r 2 = F 心= ma 心= m R
m
2
R=
m
4 2 T2
R m4 2 n2 R
地面附近:
Mm G R 2 = mg
GM=gR2 (黄金代换式)
v2
mg = m
v
R
gR =v 第一宇宙
=7.9km/s 题目中常隐含:(地球表面重力加速度为 g);这时可能要用到上式与其它方程联立来求解。
轨道上正常转:
Mm v 2
G r2
=m
R
v
GM r
【讨论】(v 或 EK)与 r 关系,r 最小时为地球半径时,v 第一宇宙=7.9km/s (最大的运行速度、最小 的发射速度);
T 最小=84.8min=1.4h
r 越大,T 越大。
r 越大,a 向越小。
补充:V T W a 与 r 的正比关系
1 F∝ r 2
1 ;a∝ r 2 ; v∝
1 ; ∝ r
1
;T∝
r3
r3 。
规律:越高越慢
2、天体质量 M、密度ρ的估算(以地球为例) ⑴若已知卫星绕地球运行的周期 T 和半径 r
①地球的质量:
②地球的密度(设地 球半径 R 已知):
顿第二定律可得:G
Mm r2
=mr
(
2 T
)2
∴
r T
3 2
GM 4 2
k .这实际上是开普勒第三定律。它表
r3
明
T2
k 是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它
具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时, 只要围绕同一星球运转的卫星,均可使用该公式。 (4)适用条件:①万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大 于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。 ②当两物体是质量 均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的 r 是指两球心间的距离。 ③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个 质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路) (5)万有引力具有以下三个特性: ①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间 的相互吸引力,它是自然界的物体间的基本相互作用之一。 ②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。 ③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在 才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不 计。天体间的主要作用力就是万有引力了。 【例 1】设地球的质量为 M,地球的半径为 R,物体的质量为 m,关于物体与地球间的万有 引力的说法,正确的是: A、地球对物体的引力大于物体对地球的引力。
2、公式:
其中 G=6.67×10-11 N·m2/kg2,称为引力常量.
3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物 体本身的大小时,公式也可近似使用,但此时 r 应为两物体重心间的距离.对于均匀的球体, r 是两球心间的距离.
二.万有引力定律的应用
1、行星表面物体的重力:重力近似等于万有引力.
③若 F 供>F 求,供过于求——物体做向心运动.
卫星要达到由圆轨道变成椭圆轨道或由椭圆轨道变成圆轨道的目
的,可以通过加速(离心)或减速(向心)实现.
⑷速率比较:同一点上,外轨道速率大;同一轨道上,离恒星(或行
A
B
星)越近速率越大.
⑸加速度与向心加速度比较:同一点上加速度相同,外轨道向心加
速度大;同一轨道上,近地点的向心加速度大于远地点的向心加速
6.三星模型 宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他 星体对它们的引力作用.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗 星等间距地位于同一直线上,外侧的两颗星绕中央星在同一圆轨道上运行;另一种形式是三 颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行.
6
追梦教育微信公众号“v 梦想启航”免费学习资源为你助力高考
附录:万有引力相关公式
1 思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F 心=F 万 (类似原子模型)
2
公式:G
Mm r2
=man,又 an=
v2 r
2r ( 2)2 r , T
则 v=
GM , r
GM r3
,T= 2
r3 GM
附近环绕地球
②第二宇宙速度(地面附近的逃逸速度):v2=11.2km/s,使物体挣脱地球束缚,在 附 近的最小发射速度。
③第三宇宙速度:v3=16.7km/s,使物体挣脱太阳引力束缚,在 度。
附近的最小发射速
一.万有引力定律 1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大 小 F 与这两个物体质量的乘积 m1m2 成正比,与这两个物体间距离 r 的平方成反比.
①地球的质量:
②地球的密度(设地球半径 R 已知):
3、卫星变轨和卫星的能量问题
⑴人造卫星在圆轨道变换时,总是主动或由于其他原因使速度发生变化,导致万有引力与向
心力相等的关系被破坏,继而发生近心运动或者离心运动,发生变轨。在变轨过程中,由于
动能和势能的相互转化,可能出现万有引力与向心力再次相等,卫星即定位于新的圆轨道。
追梦教育微信公众号“v 梦想启航”免费学习资源为你助力高考
第四节 万有引力与天体运动
轨道定律 开普勒行星运动定律 面积定律
周期定律 发现 万有引力定律 万有引力定律 表述 G 的测定
应用
天体质量的计算 发现未知天体 人造卫星、宇宙速度
[本章要点综述]
1、开普勒行星运动定律
第一定律:
。
第二定律:
。
第三定律:
3 求中心天体的质量 M 和密度ρ
由
G
Mm r2
==m 2
r
=m ( 2 ) 2 r T
M=
42 r 3 GT 2
r3 (T2
恒量 )
ρT 2
(当 r=R 即近地卫星绕中心天体运行时) ρ
3 GT近 2
3 GT远2
( R h)3 R
=
3 GT 2
(M= V 球= 4 r3) s 球面=4 r2 3
⑵第二宇宙速度: 当卫星的速度等于或大于 11.2 km/s 时,卫星就会脱离地球的引力不再绕地球运行,成为绕 太阳运行的人造行星或飞到其他行星上去,我们把 v2=11.2 km/s 称为第二宇宙速度,也称脱 离速度。
⑶第三宇宙速度: 当物体的速度等于或大于 16.7 km/s 时,物体将挣脱太阳引力的束缚,飞到太阳系以外的宇 宙空间中去,我们把 v3=16.7 km/s 称为第三宇宙速度,也称逃逸速度。
⑵若已知卫星绕地 球运行的线速度 v 和半径 r
①地球的质量:
②地球的密度(设地 球半径 R 已知):
4
追梦教育微信公众号“v 梦想启航”免费学习资源为你助力高考
⑶若已知卫星绕地球运行的线速度 v 和周期 T(或角速度ω)
①地球的质量:
②地球的密度(设地球半径 R 已知):
⑷若已知地球半径 R 和地球 表面的重力加速度 g
度。
4.近地卫星、赤道上物体及同步卫星的运行问题 近地卫星、同步卫星和赤道上随地球自转的物体三种匀速圆周运动的异同: 1.轨道半径:r 同>r 近=r 物 2.运行周期:T 同=T 物>T 近
5
追梦教育微信公众号“v 梦想启航”免费学习资源为你助力高考
3.向心加速度:a 近>a 同>a 物 5.双心问题 在天体运动中,将两颗彼此距离较近的恒星称为双星. 它们围绕两球连线上的某一点做圆周运动.由于两星间的引力而使它们在运动中距离保持不 变.已知两星质量分别为 M1 和 M2,相距 L,求它们的角速度. 如图 ,设 M1 的轨道半径为 r1,M2 的轨道半径为 r2,由于两星绕 O 点做匀速圆周运动 的角速度相同,都设为ω,根据万有引力定律有:
。即:
2、万有引力定律
(1)开普勒对行星运动规律的描述(开普勒定律)为万有引力定律的发现奠定了基础。
(2)万有引力定律公式: