基于数电自动循迹智能小车

合集下载

《2024年自循迹智能小车控制系统的设计与实现》范文

《2024年自循迹智能小车控制系统的设计与实现》范文

《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能与自动控制技术的快速发展,智能小车已经广泛应用于各种领域,如物流配送、环境监测、智能家居等。

本文将详细介绍一种自循迹智能小车控制系统的设计与实现过程,该系统能够根据预设路径实现自主循迹、避障及精确控制。

二、系统设计(一)系统概述自循迹智能小车控制系统主要由控制系统硬件、传感器模块、电机驱动模块等组成。

其中,控制系统硬件采用高性能单片机或微处理器作为主控芯片,实现对小车的控制。

传感器模块包括超声波测距传感器、红外线测距传感器等,用于感知周围环境并实时传输数据给主控芯片。

电机驱动模块负责驱动小车行驶。

(二)硬件设计1. 主控芯片:采用高性能单片机或微处理器,具备高精度计算能力、实时响应和良好的可扩展性。

2. 传感器模块:包括超声波测距传感器和红外线测距传感器。

超声波测距传感器用于测量小车与障碍物之间的距离,红外线测距传感器用于检测小车行驶路径上的标志线。

3. 电机驱动模块:采用直流电机和电机驱动器,实现对小车的精确控制。

4. 电源模块:为整个系统提供稳定的电源供应。

(三)软件设计1. 控制系统软件采用模块化设计,包括主控程序、传感器数据处理程序、电机控制程序等。

2. 主控程序负责整个系统的协调与控制,根据传感器数据实时调整小车的行驶状态。

3. 传感器数据处理程序负责对传感器数据进行处理和分析,包括距离测量、方向判断等。

4. 电机控制程序根据主控程序的指令,控制电机的运转,实现小车的精确控制。

(四)系统实现根据设计需求,通过电路设计与焊接、传感器模块的安装与调试、电机驱动模块的安装与调试等步骤,完成自循迹智能小车控制系统的硬件实现。

在软件方面,编写各模块的程序代码,并进行调试与优化,确保系统能够正常运行并实现预期功能。

三、系统功能实现及测试(一)自循迹功能实现自循迹功能通过红外线测距传感器实现。

当小车行驶时,红外线测距传感器不断检测地面上的标志线,并根据检测结果调整小车的行驶方向,使小车始终沿着预设路径行驶。

2024年度-智能循迹小车设计

2024年度-智能循迹小车设计

智能循迹小车设计目录•项目背景与意义•系统总体设计•循迹算法研究•控制系统设计•调试与测试•项目成果展示•总结与展望01项目背景与意义智能循迹小车概述定义智能循迹小车是一种基于微控制器、传感器和执行器等技术的自主导航小车,能够按照预定路径进行自动循迹。

工作原理通过红外、超声波等传感器感知周围环境信息,将感知数据传输给微控制器进行处理,微控制器根据预设算法控制执行器调整小车行驶状态,实现循迹功能。

随着工业自动化的发展,智能循迹小车在生产线、仓库等场景中的应用需求不断增加。

自动化需求教育领域需求娱乐领域需求智能循迹小车作为教学实验平台,在高等教育、职业教育等领域具有广泛应用前景。

智能循迹小车可以作为玩具或模型车进行娱乐竞技活动,满足消费者休闲娱乐需求。

030201市场需求分析通过本项目的研究与实践,掌握智能循迹小车的核心技术,包括传感器技术、微控制器技术、控制算法等。

技术目标将智能循迹小车应用于实际场景中,提高生产效率、降低成本、提升产品品质等方面的效益。

应用目标通过智能循迹小车的研发与教学应用,培养学生动手实践能力、创新精神和团队协作能力。

教育意义推动智能循迹小车相关产业的发展,促进就业和经济增长,提升国家科技竞争力。

社会意义项目目标与意义02系统总体设计主控制器传感器模块电机驱动模块电源管理模块总体架构设计01020304负责接收和处理传感器数据,控制小车运动。

包括红外传感器、超声波传感器等,用于感知环境和障碍物。

驱动小车前进、后退、转弯等动作。

为整个系统提供稳定可靠的电源。

硬件选型及配置选用高性能、低功耗的微控制器,如STM32系列。

选用高灵敏度、低误差的传感器,如红外反射式传感器、超声波测距传感器等。

选用高效、稳定的电机驱动器,如L298N电机驱动板。

选用合适的电池和电源管理芯片,确保系统长时间稳定运行。

主控制器传感器模块电机驱动模块电源管理模块初始化模块传感器数据处理模块运动控制模块调试与测试模块软件功能划分负责系统启动时的初始化工作,包括硬件初始化、参数设置等。

基于光电传感器自动循迹的智能车系统设计

基于光电传感器自动循迹的智能车系统设计

第一章绪论1.1智能小车的意义和作用自第一台工业机器人诞生以来,机器人的开展已经普及机械、电子、冶金、交通、宇航、国防等领域。

近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。

人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。

随着科学技术的开展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。

视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当兴旺,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些构造化环境简单的目标。

视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。

但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。

机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。

避障控制系统是基于自动导引小车〔AVG—auto-guide vehicle〕系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。

使用传感器感知路线和障碍并作出判断和相应的执行动作。

该智能小车可以作为机器人的典型代表。

它可以分为三大组成局部:传感器检测局部、执行局部、CPU。

机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。

可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。

基于上述要求,传感检测局部考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。

智能小车的执行局部,是由直流电机来充当的,主要控制小车的行进方向和速度。

单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现准确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以准确调速,但单片机型号的选择余地较大。

智能循迹小车2024

智能循迹小车2024

智能循迹小车的引言概述智能循迹小车是近年来兴起的一种智能机器人,它能够通过内置的传感器和程序,自动识别和跟踪预定的路径。

这种小车使用了先进的计算机视觉技术和控制算法,能够在各种环境中准确地进行循迹。

智能循迹小车在许多领域中都得到了广泛的应用,包括工业自动化、物流运输、仓储管理等。

本文将对智能循迹小车的原理、技术和应用进行详细阐述。

智能循迹小车的原理和技术1. 传感器技术a. 摄像头传感器:通过摄像头传感器,智能循迹小车可以捕捉环境中的图像,并进行图像处理和识别。

b. 距离传感器:距离传感器可以帮助智能循迹小车感知周围环境中的障碍物,并避免碰撞。

c. 地盘传感器:地盘传感器用于检测小车在路径上的位置和姿态,以便进行准确的定位和导航。

2. 计算机视觉技术a. 特征提取:通过计算机视觉技术,智能循迹小车可以从摄像头捕捉的图像中提取关键特征,例如路径轮廓、颜色等。

b. 物体识别:利用深度学习算法,智能循迹小车可以识别环境中的物体,例如道路标志和交通信号灯,以便做出相应的反应。

c. 路径规划:根据图像处理和物体识别的结果,智能循迹小车可以计算出最优的路径规划,以达到快速而安全地循迹的目的。

3. 控制算法a. PID控制算法:智能循迹小车使用PID控制算法来实现精确的速度和方向控制,以便按照预定的路径进行循迹。

b. 路径校正算法:当智能循迹小车发现偏离路径时,会通过路径校正算法对速度和方向进行调整,以便重新回到预定的路径上。

智能循迹小车的应用1. 工业自动化a. 生产线物料运输:智能循迹小车可以自动将物料从一个地点运输到另一个地点,减少人力成本和提高生产效率。

b. 仓储管理:智能循迹小车可以在仓库中自动识别货物并进行搬运和分拣,提升仓储管理的效率和精确度。

2. 物流运输a. 快递配送:智能循迹小车可以在城市道路上按照预定的路径进行循迹,实现快递的自动配送和准时派送。

b. 高速公路货物运输:智能循迹小车可以在高速公路上准确无误地进行循迹,减少人为驾驶过程中的车祸风险。

毕业设计基于单片机的智能循迹小车

毕业设计基于单片机的智能循迹小车

第1章绪论1.1课题背景目前,在企业生产技术不断提高、对自动化技术要求不断加深的环境下,智能车辆以及在智能车辆基础上开发出来的产品已成为自动化物流运输、柔性生产组织等系统的关键设备。

世界上许多国家都在积极进行智能车辆的研究和开发设计。

移动机器人是机器人学中的一个重要分支,出现于20世纪06年代。

当时斯坦福研究院(SRI)的Nils Nilssen和charles Rosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。

从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。

智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航及白动控制等技术,是典型的高新技术综合体。

智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。

它具有道路障碍自动识别、自动报警、自动制动、自动保持安全距离、车速和巡航控制等功能。

智能车辆的主要特点是在复杂的道路情况下,能自动地操纵和驾驶车辆绕开障碍物并沿着预定的道路(轨迹)行进。

智能车辆在原有车辆系统的基础上增加了一些智能化技术设备:(1)计算机处理系统,主要完成对来自摄像机所获取的图像的预处理、增强、分析、识别等工作;(2)摄像机,用来获得道路图像信息;(3)传感器设备,车速传感器用来获得当前车速,障碍物传感器用来获得前方、侧方、后方障碍物等信息。

智能车辆技术按功能可分为三层,即智能感知/预警系统、车辆驾驶系统和全自动操作系统团。

上一层技术是下一层技术的基础。

三个层次具体如下:(1)智能感知系统,利用各种传感器来获得车辆自身、车辆行驶的周围环境及驾驶员本身的状态信息,必要时发出预警信息。

主要包括碰撞预警系统和驾驶员状态监控系统。

碰撞预警系统可以给出前方碰撞警告、盲点警告、车道偏离警告、换道/并道警告、十字路口警告、行人检测与警告、后方碰撞警告等.驾驶员状态监控系统包括驾驶员打吨警告系统、驾驶员位置占有状态监测系统等。

基于单片机的智能循迹小车设计

基于单片机的智能循迹小车设计

基于单片机的智能循迹小车设计智能循迹小车是一种基于单片机控制的小型车辆,通过传感器检测路面信息,结合预设路线实时调整行驶方向,实现自动循迹行驶。

智能循迹小车在无人驾驶、智能物流、探险救援等领域具有广泛的应用前景。

智能循迹小车的硬件主要包括单片机、传感器、电机和电源。

其中,单片机作为整个系统的控制中心,负责接收传感器信号、处理数据并输出控制指令;传感器用于检测路面信息,一般选用红外线传感器或激光雷达;电机选用直流电机或步进电机,为小车提供动力;电源为整个系统提供电能。

智能循迹小车的软件设计主要实现传感器数据采集、数据处理、控制指令输出等功能。

具体来说,软件通过定时器控制单片机不断采集路面信息,结合预设路线信息进行数据分析和处理,并根据分析结果输出控制指令,实现小车的自动循迹。

为提高智能循迹小车的稳定性和精度,需要对算法进行优化。

常用的算法包括PID控制、模糊控制等。

通过对算法的优化,可以实现对路面信息的精确检测,提高小车的循迹精度和稳定性。

为验证智能循迹小车的实际效果,需要进行相关测试。

可以在平坦的路面上进行空载测试,检验小车的稳定性和循迹精度;可以通过加载重量、改变路面条件等方式进行负载测试,以检验小车在不同条件下的性能表现;可以结合实际应用场景进行综合测试,以验证智能循迹小车在实际应用中的效果。

测试环境的选择要具有代表性,能够覆盖实际应用中可能遇到的各种情况。

测试过程中要保持稳定的行驶速度,以获得准确的测试数据。

对于测试过程中出现的问题,要及时记录并分析原因,以便对系统进行改进。

测试完成后,要对测试数据进行整理和分析,评估系统的性能表现,提出改进意见。

通过以上测试,我们发现基于单片机的智能循迹小车在循迹精度、稳定性等方面表现良好,能够满足实际应用中的需求。

同时,通过对算法的优化和硬件的改进,可以进一步提高小车的性能表现。

本文介绍了基于单片机的智能循迹小车的设计和实现过程。

通过合理选择硬件和优化软件算法,实现了小车的自动循迹功能。

基于光电传感器自动循迹小车设计

基于光电传感器自动循迹小车设计

摘要制作自动寻迹小车所涉及的专业知识包括控制、模式识别、传感技术、汽车电子、电气、计算机、机械等诸多学科。

为了使小车能够快速稳定的行驶,设计制作了小车控制系统。

在整个小车控制系统中,如何准确地识别路径及实时地对智能车的速度和方向进展控制是整个控制系统的关键。

由于此小车能够自动寻迹,加速,减速.故又被称作为智能车.本智能车控制系统设计以MC9S12XS128微控制器为核心,通过两排光电传感器检测小车的位置和运动方向来获取轨道信息,根据轨道信息判断出相应的轨道类型,并分配不同的速度给硬件电路加以控制,完成了在变负荷条件下对速度的快速稳定调节。

红外对射传感器用于检测智能车的速度,以脉宽调制控制方式〔PWM〕控制电机和舵机以到达控制智能车的行驶速度和偏转方向。

软件是在CodeWarrior 5.0的环境下用C语言编写的,用PID控制算法调节驱动电机的转速和舵机的方向,完成对模型车运动速度和运动方向的闭环控制。

智能车能够准确迅速地识别特定的轨道,并沿着引导线以较高的速度稳定行驶。

整个智能车系统涉及车模机械构造的改装、传感器电路设计及控制算法等多个方面。

经过屡次反复的测试,最终确定了现有的智能车模型和各项控制参数。

关键词:MC9S12XS128;PID;PWM;光电传感器;智能车ABSTRACTMaking automatic tracing car involved the professional knowledge including control, pattern recognition, sensing technology, automobile electronics, electrical, computer, machinery and so on many subjects. According to the technical requirements of the contest, we design the intelligent vehicle control system. In the entire control system of the smart car, how to accurately identify the road and real-time control the speed and direction of the Smart Car is the key to the whole control system.Because this car can automatic tracing, accelerate, slowing down. So it is also known as intelligent car this intelligent vehicle control system design take the MC9S12XS128 micro controller as a core, examines car's position and the heading through two row of photoelectric sensors gains the racecourse information, judges the corresponding racecourse type according to the racecourse information, and assigned the different speed to control for the hardware circuit, has completed in changes under the load condition to the speed fast stable adjustment. The infrared correlation sensor uses in examining the intelligent vehicle's speed, (PWM) controls the electrical machinery and the servo by the pulse-duration modulation control mode achieves the control intelligence vehicle's moving velocity and the deflection direction.The software is under the CodeWarrior 5.0 environment with the C language compilation, actuates electrical machinery's rotational speed and servo's direction with the PID control algorithm adjustment, completes to the model vehicle velocity of movement and the heading closed-loop control. The intelligent vehicle can distinguishthe specific racecourse rapidly accurately, and along inlet line by the high speed control travel.The entire intelligent vehicle system involves the vehicle mold mechanism the re-equipping, the sensor circuit design and the control algorithm and so on many aspects. After the repeated test, has determined the existing intelligent vehicle model and each controlled variable finally many times.Keywords:MC9S12XS128; PID;PWM;photoelectric sensor; smart car目录第一章绪论 (1)1.1引言 (1)1.2本文设计方案概述 (2)1.2.1总体设计 (2)1.2.2传感器设计方案 (2)1.2.3控制算法设计方案 (6)第二章机械构造设计 (7)2.1前轮倾角的调整 (7)2.2齿轮传动机构调整 (8)2.3后轮差速机构调整 (8)2.4红外传感器的固定 (9)2.5小车重心的调整 (9)2.6齿轮啮合间隙的调整 (10)第三章硬件电路的设计 (11)3.1系统硬件概述 (11)3.2电源模块的设计 (12)3.2.1 LM2940供电电路 (14)3.2.2 LM2596供电电路 (16)3.3电机驱动模块 (18)3.3.1模块介绍 (18)3.3.2使用说明 (18)3.3.3电压电流测试结果 (20)3.4舵机控制模块 (22)3.5路径识别模块 (23)3.7单片机模块的设计 (26)3.8硬件电路局部总结 (27)第四章软件系统设计 (28)4.1智能车控制算法监测平台 (28)4.2主程序流程图 (29)4.3系统的模块化构造 (30)4.3.1时钟初始化 (30)4.3.2串口初始化 (30)4.3.3 PWM初始化 (32)4.4中断处理流程 (34)4.5小车控制算法 (34)4.5.1舵机控制 (36)4.5.2速度控制 (37)4.6坡道的处理 (40)4.7弯道策略分析 (40)第五章开发与调试 (42)5.1软件开发环境介绍 (42)5.2智能车整体调试 (46)5.2.1 舵机调试 (46)5.2.2 电机调试 (46)5.2.3 动静态调试 (46)第六章结论 (48)6.1智能车的主要技术参数说明 (48)6.2总结 (48)6.3缺乏与展望 (48)参考文献 (50)致 (51)附录1 (52)附录2 (64)附录3 (82)第一章绪论1.1引言思路及技术方案是一个工程工程的灵魂。

智能寻迹小车

智能寻迹小车

引言概述:智能寻迹小车是一种结合了人工智能和机械工程的创新产品。

它能够根据预设的轨迹自动行驶并进行导航,具有很高的便捷性和灵活性,适用于各种环境和任务。

在本文中,将对智能寻迹小车的设计原理、工作模式、技术优势和应用前景进行详细阐述。

正文内容:一、设计原理1.1 感知模块的设计智能寻迹小车的感知模块采用多种传感器进行环境感知,包括视觉传感器、红外线传感器和超声波传感器。

视觉传感器用于识别道路标志和障碍物,红外线传感器用于进行物体跟踪,超声波传感器用于进行距离测量。

1.2 控制模块的设计智能寻迹小车的控制模块采用嵌入式系统,实现对感知模块的数据处理和运动控制。

通过运用机器学习算法,控制模块能够学习和记忆不同轨迹的特征,从而实现自主导航和寻迹功能。

二、工作模式2.1 自主导航模式智能寻迹小车在自主导航模式下,可以根据预设的轨迹进行自动行驶,不需要人工干预。

它能够通过感知模块实时获得周围环境的信息,并根据这些信息做出相应的决策和控制。

2.2 手动遥控模式智能寻迹小车还可以切换到手动遥控模式,由人工遥控进行操作。

在这种模式下,小车的控制将完全依赖于操作者的指令,可以实时控制小车的速度和方向。

三、技术优势3.1 高精度的轨迹识别智能寻迹小车的感知模块采用先进的图像处理算法和目标识别技术,能够准确地识别出道路标志,并对轨迹进行跟踪,从而实现高精度的轨迹识别和导航。

3.2 自动避障和防碰撞智能寻迹小车的感知模块不仅可以识别道路标志,还能够探测到前方的障碍物,并实时进行避障和防碰撞。

这种智能寻迹小车能够确保行驶的安全性和可靠性。

3.3 强大的自学习能力智能寻迹小车的控制模块具有强大的自学习能力,可以通过机器学习算法不断学习和适应不同的环境和任务,提高智能寻迹小车的导航精度和性能。

四、应用前景4.1 物流领域智能寻迹小车在物流领域有着广阔的应用前景。

它能够自动化完成货物运输和仓储管理任务,提高物流效率和准确性。

4.2 安防领域智能寻迹小车可以在安防领域进行侦查和监控,通过自主导航和环境感知功能,实现对重要区域的巡逻和监测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计题目:基于数电的循迹小车
2014年09月10日
目录
目录....................................................................................................3.. 摘要 (4)
1. 设计任务与要求 (5)
1.1 基本功能 (5)
2.系统设计方案 (5)
2.1小车循迹原理…………………………………………………………………………5.
2.2控制系统总体设计 (6)
3.系统方案 (6)
3.1循迹传感器模块………………………………………………………………………6.
3.1.1红外传感器的简介………………………………………………………………7..
3.1.2比较器LM324简介 (7)
3.1. 3具体电路 (8)
3.1.4传感器的安装 (8)
3.2控制器模块 (9)
3.2.1稳压芯片的工作原理 (9)
3.2.2继电器的工作原理 (9)
3.3电机与驱动模块 (10)
3.4自动循迹小车的总体设计 (11)
4.设计体会 (11)
5.参考资料 (12)
基于数电的循迹小车
内容摘要:本着从简到繁的原则,我们制作一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。

关键词:循迹小车,传感器,电机驱动
1.设计任务与要求
1.1 基本功能
①设计一个基于直流电机的自动循迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色轨迹行驶。

②当小车走在白色轨道时,保持原来速度行驶;当遇到黑线时,说明小车跑偏,通过继电器将开关打到低电压一路,使小车差速行驶,并
调整行驶方向。

③在白色区域,光电传感器经光线通过地面反射到光敏电阻上通过检测光敏电阻阻值变化能判断小车是否行驶在白色区域上
2.系统设计方案
系统方案方框图如下:
2.1循迹小车的工作原理
这里的循迹是指小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收的反射光的强弱来判断“道路”。

通常采取得方法是红外探测法。

红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收,光线通过地面反射到光敏电阻上通过检测光敏电阻阻值变化能判断小车是否行驶在白色区域上;如果遇到黑线则红外光被吸收,小车上的接收
管接收不到红外光。

说明小车跑偏,这一侧的电机就会减速甚至停转这一侧的绿色的
LED
熄灭,驱动小车向相反方向行驶,这样小车就能始
终沿着跑道行驶了。

继电器就是否接收到反射回来的红外光为依据来确定车速,以便调整车的方向。

2.2控制系统总体设计
自动循迹小车控制系统由控制电路模块、稳压电源模块、红外检测模块、电机及驱动模块等部分组成。

控制系统的结构框图如下:
1.电压稳压模块:用7805芯片、104容值的电容、330uf的电容
2.红外检测模块:红外传感器,比较器LM324
3.电机及驱动模块:两个直流电机,电磁继电器
3.系统方案
3.1循迹传感器模块
在黑线检测的测试中,若检测到白色区域,发射管发射的红外线没有反射到接收管;若检测到黑色区域,管接收到发射管发射的红外线,电阻发生变化,所得的分压也就随之发生变化。

判断有无黑线我们用比较器LM324,比较基准由电位器调节,各个接收管的参数都不一致,每个传感器的比较基准也尽不相同,我们
为每个传感器配备了一个变阻器。

3.1.1 红外传感器的简介
红外技术发展到现在,已经为大家所熟知,这项技术在现代科技、国防科技和工农业科技等领域得到了广泛的应用。

红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。

红外传感器根据探测机理可分成为:光子探测器(基于光电效应)和热探测器(基于热效应)。

本次我们使用的是光子探测器。

3.1.2 比较器LM324简介
LM324为四运放集成电路,采用14脚双列直插塑料封装。

内部有四个运算放大器,有相位补偿电路。

电路功耗很小,工作电压范围宽。

在黑线检测电路中用来确定红外接收信号电平的高低,以电平高低判定黑线有无。

在电路中,LM324的一个输入端需接滑动变阻器,通过滑动变阻器的阻值来提供合适的比较电压,
3.1.3具体电路
通过红外传感器检测黑线,输出接收到的信号给LM324,接收电压与比较电压比较后,输出信号变为高低电平,再输入到继电器中,用以判断是否检测到黑线。

3.1.4 传感器的安装
在小车具体的循迹行走过程中,为了能精确测定黑线位置并确定小车行走的方向,需要在小车前方安装两个红外传感器,进行两边方向纠正控制提高其循迹的可靠性。

3.2控制器模块
采用继电器和7805稳压芯片为控制器,继电器相当于一个单刀双掷开关,7805将7.2v的电压稳压为5v,以便给LM324、电机供电。

3.2.1稳压芯片的工作原理
3.2.2继电器的工作原理
电磁继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。

只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。

当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。

这样吸合、释放,从而达到了在电路中的导通、切断的目的。

对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

继电器一般有两股电路,为低压控制电路和高压工作电路。

我们将通过LM324的信号先经过1N919三极管集电极放大,发射极接地,将放大的信号传送到继电器,让继电器做出相应的判断。

3.3电机与驱动模块
电机采用直流电机,外接大小电源控制电机的速度,是电机的两轮遇到黑线时差速行驶。

驱动电路图:
3.4自动循迹小车的总体设计电路图
4.设计体会
5.参考文献
1.《数字电子技术基础》(第五版),阎石主编,高等教育出版社。

2《传感器原理设计与应用》,刘迎春主编,长沙:国防科技大学出版社,1992.
12。

相关文档
最新文档