练习册第五章习题参考答案
北师大版七年级数学上册第五章《一元一次方程》单元练习题(含答案)

北师大版七年级数学上册第五单元《一元一次方程》单元练习题(含答案)一、单选题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( ) A .﹣2 B .2 C .±2 D .±1 2.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( ) A .1800元 B .1700元 C .1710元 D .1750元 3.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/小时,顺水航行需要6小时,逆水航行需要8小时,则甲乙两地间的距离是( )A .220千米B .240千米C .260千米D .350千米 4.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .12y y+= 5.某商品的标价为300元,打六折销售后获利50元,则该商品进价为( ) A .120元B .130元C .140元D .150元 6.在以下的式子中:3x +8=3;12-x ;x -y =3;x +1=2x +1;3x 2=10;2+5=7;其中是方程的个数为( )A 、3B 、4C 、5D 、67.下列方程是一元一次方程的是( )A .x+3y=-4B .21231()()n n n b b b b b b ⋅==2C .2x -3=0D .5-3=1-(-1)8.下列各组方程中,解相同的是( )A .x =3与4x +12=0B .x +1=2与2(x +1)=2xC .7x -6=25与7165x -= D .x =9与x+9=0 9.若a=b ,则下列各式不一定成立的是( )A .-a=-bB .a-2=b-2C .a b c c =D .22a b = 10.若关于x 的方程x m ﹣1+2m +1=0是一元一次方程,则这个方程的解是( ) A .﹣5 B .﹣3 C .﹣1D .511.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为小时,则可列方程得( ) A .B .C .D .12.一列匀速前进的火车,从它进入600m 的隧道到离开,共需20s ,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5s ,则这列火车的长度是( )A .100mB .120mC .150mD .200m二、填空题13.若关于x 的方程3x -7=2x +a 的解为x=-1,则a 的值为 .14.若关于x 的方程315ax x -=的解为5x =,则a 等于__________.15.已知数组:11211222,,,,123211333334,,,,,,234331444444,,,,,,…记第一个数为a 1,第二个数为a 2,第n 个数为a n ,若a n 是方程13123x x +--=1的解,则n 等于_____.16.若方程213x +=和203a x --=的解相同,则a 的值是__________. 17.方程2x ﹣3=0的解是__.18.当a 、b 满足关系式________时,等式99a b -=-成立.19.一项工程,甲单独做 10 天可以完成,乙单独做 15 天可以完成,甲队先做两天,余下的工程由两队合做 x 天可以完成,则由题意可列出的方程是________.20.一家商店将某款棉衣按进价提高40%标价,又以8折卖出,结果每件棉衣可获利15元,则这款棉衣的进价是_____元.三、解答题21.将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用式子表示十字框中的五个数之和;(3)若十字框中的五数之和为220,求十字框中的正中心的数是多少?(4)若将十字框上、下、左、右平移,可框住另外的五个数,则十字框中的五个数之和可能等于2010吗?若可能,写出这五个数;如不可能,请说明理由.22.当x为何值时,整式12x++1和24x-的值互为相反数?23.如果13a+1与273a-的值互为相反数,求a的值.24.将正整数1至2019按照一定规律排成下表:记a ij表示第i行第j个数,如a14=4表示第1行第4个数是4.(1)直接写出a42=_________,a53=_________;(2)①如果a ij=2019,那么i=_________,j =_________;②用i,j表示a ij=_____________;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由。
高中物理(新人教版)必修第二册课后习题:第五章习题课运动的合成与分解的两个模型【含答案及解析】

第五章抛体运动习题课:运动的合成与分解的两个模型课后篇巩固提升合格考达标练1.某小船船头垂直于河岸渡河,若水流速度突然增大,其他条件不变,下列判断正确的是()A.小船渡河的时间不变B.小船渡河的时间减少C.小船渡河的时间增加D.小船到达对岸的地点不变,与水速大小无关,选项v,河宽为d,则渡河时间t=dvA正确,B、C错误;由于水速增大,故合速度的方向变化,到达河对岸的地点变化,选项D错误。
2.(2021山东烟台高一期中)光滑半球A放在竖直面光滑的墙角处,用手推着保持静止。
现在A与墙壁之间放入光滑球B,放手让A和B由静止开始运动,当A、B运动到图示位置时,二者球心的连线与水平面成θ角,速度大小分别为v A和v B,则以下关系正确的是()A.v A=v BB.v A=v B sin θC.v A=v B cos θD.v A=v B tan θ,所以两球沿球心连线方向的分速度大小相等,即v A cos θ=v B sin θ,得v A=v B tan θ,故D正确。
3.(多选)如图所示,一人以恒定速度v 0通过定滑轮竖直向下拉小车,使其在水平面上运动,当运动到如图位置时,细绳与水平方向成60°,则此时 ( )A.小车运动的速度为12v 0 B.小车运动的速度为2v 0 C.小车在水平面上做加速运动 D.小车在水平面上做减速运动,如图。
人拉绳的速度与小车沿绳子方向的分速度是相等的,根据三角函数关系:v cos 60°=v 0,则v=vcos60°=2v 0,随小车向左运动,细绳与水平方向的夹角α越来越大,由v=v0cosα知v 越来越大,则小车在水平面上做加速运动,故B 、C 正确。
4.(2021河南焦作期末)不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v=2 m/s 的速度由C 点匀速向下运动到D 点,同时甲由A 点向右运动到B 点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
大学物理练习册习题及答案6--波动学基础

⼤学物理练习册习题及答案6--波动学基础习题及参考答案第五章波动学基础参考答案思考题5-1把⼀根⼗分长的绳⼦拉成⽔平,⽤⼿握其⼀端,维持拉⼒恒定,使绳端在垂直于绳⼦的⽅向上作简谐振动,则(A )振动频率越⾼,波长越长;(B )振动频率越低,波长越长;(C )振动频率越⾼,波速越⼤;(D )振动频率越低,波速越⼤。
5-2在下⾯⼏种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的;(B )波源振动的速度与波速相同;(C )在波传播⽅向上的任⼆质点振动位相总是⽐波源的位相滞后;(D )在波传播⽅向上的任⼀质点的振动位相总是⽐波源的位相超前 5-3⼀平⾯简谐波沿ox 正⽅向传播,波动⽅程为010cos 2242t x y ππ??=-+ ?. (SI)该波在t =0.5s 时刻的波形图是()5-4图⽰为⼀沿x 轴正向传播的平⾯简谐波在t =0时刻的波形,若振动以余弦函数表⽰,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(B )0点的初位相为φ0=-π/2 (C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5⼀平⾯简谐波沿x 轴负⽅向传播。
已知x=b 处质点的振动⽅程为[]0cos y A t ωφ=+,波速为u ,则振动⽅程为()(A)()0cos y A t b x ωφ??=+++??(B)(){}0cos y A t b x ωφ??=-++??(C)(){}0cos y A t x b ωφ??=+-+?? (D)(){}0cos y A t b x u ωφ??=+-+?? 5-6⼀平⾯简谐波,波速u =5m?s -1,t =3s 时刻的波形曲线如图所⽰,则0x =处的振动⽅程为()(A )211210cos 22y t ππ-??=?- (SI) (B )()2210cos y t ππ-=?+ (SI) (C )211210cos 22y t ππ-??=?+ (SI) (D )23210cos 2y t ππ-?=-(SI) 5-7⼀平⾯简谐波沿x 轴正⽅向传播,t =0的波形曲线如图所⽰,则P 处质点的振动在t =0时刻的旋转⽮量图是()5-8当⼀平⾯简谐机械波在弹性媒质中传播时,下述各结论⼀哪个是正确的?(A )媒质质元的振动动能增⼤时,其弹性势能减少,总机械能守恒;(B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任⼀时刻都相同,但两者的数值不相等;(D )媒质质元在其平衡位置处弹性势能最⼤。
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
概率论与数理统计练习册(理工类) - 第5,6章答案

答;收入至少400元的概率几乎为0.
(2)设出售1.2元的蛋糕数量为Y,则Y ~ B(300, 0.2), E(Y ) = 60, D(Y ) = 48.
P{Y
60}
=
Y P{
− 60
0}
=
(0)
=
0.5
48
答:售出价格为1.2元的蛋糕多于60只的概率0.5.
28
一、选择题:
概率论与数理统计练习题
x} = (x)
n→
n
n
Xi −n
(C) lim P{ i=1
x} = (x)
n→
n
n
Xi −
(D) lim P{ i=1
x} = (x)
n→
n
二、填空题:
224
1.对于随机变量 X,仅知其 E( X ) = 3,D( X ) = 1 ,则可知 P{| X − 3 | 3} 225
一、选择题:
概率论与数理统计练习题
系
专业
班 姓名
学号
第五章 大数定律与中心极限定理
1.设 n 是 n 次重复试验中事件 A 出现的次数,p 是事件 A 在每次试验中出现的概率,则对任意
的
0
均有
lim
P
n
−
p
n→ n
[A ]
(A) = 0
(B) = 1
(C) 0
(D) 不存在
系
专业
班 姓名
学号
第六章 数理统计的基本知识
§6.1 总体、样本与统计量、§6.2 抽样分布
1.设 X1, X 2 , X 3 是取自总 X 体的样本,a 是一个未知参数,下述哪个样本函数是统计量[ B ]
中职数学高教版基础模块下册练习册答案

第五章指数函数与对数函数5.1实数指数幂习题答案练习5.1.11.(1);(21(31(412.(1)1410;(2)1272⎛⎫⎪⎝⎭;(3)545.6;(4)45a-.3.(1)2.280; (2)0.488; (3)0.577. 练习5.1.21.(1)52a;(2)25a.2.(1)23125; (2)433.3.(1)16a; (2)2969ab.4.(1)0.033; (2)21.702. 习题5.1A组1.(1) 1; (2)18-;(3)4181x;(4)3x.2.(1)12310⎛⎫⎪⎝⎭; (2)431.5;(3;(4.3.(1)0.5; (2)116332;(3)433;(4)6.4.(1)3122a b-;(2)21343a b-.5.(1)0.354; (2)2.359; (3)39.905; (4)64.000. B组1.(1)4325;(2)109100.2.(1)0.212; (2)8.825. C 组约48.4%.提示:P=(12)6 0005 730≈0.484.5.2指数函数习题答案 练习5.2 1.(1)2.531.8 1.8<;(2)470.50.5-<.2.(1) ()(),00,-∞+∞; (2)R .习题5.2 A 组1.(1) > ; (2)> ; (3)>.2.(1) ()(),11,-∞+∞ ;(2)R .3.(1)2.531.9 1.9<;(2)0.10.20.80.8--<.4.略.5.a=3. B 组1.()1,11,2⎛⎫+∞ ⎪⎝⎭.2.19 . 提示:由()1327f =得13a =,()211239f ⎛⎫== ⎪⎝⎭. 3.(1)(,3⎤-∞⎦ ; (2))()1,22,⎡+∞⎣.4.256.提示:15分钟1次,2小时分裂8次,则82256y ==(个).C 组1.约161 km 2. 提示:()5100110%161+≈(km 2). 2.约512元. 提示:()31000120%512-≈(元).5.3对数习题答案 练习5.3.1 1.(1)2log 164=; (2)0.5log 0.1253=; (3)log 518=x.2.(1)0.1-1=10; (2)348127=; (3)415625-= . 3.(1)4; (2)1; (3)0; (4)1. 4.(1)0.653; (2)2.485; (3)-0.106. 练习5.3.21.(1)1lg 3x ;(2)lg lg lg x y z ++; (3)111lg lg lg 243x y z +-.2.(1)19. 提示:7522log 4log 272519+=⨯+=; (2)2. 提示:2ln 2e =111lg lg lg 243x y z +-. 3.32a b + .提示:()2311133ln 108ln 232ln 23ln 3ln 2ln 322222a b =⨯=+=+=+. 习题5.3 A 组1.(1)2log 7x = ; (2)116 ; (3)22.2.(1)13lg lg 2x y +; (2)3lg 3lg 3lg x y z +-; (3)4lg 2lg y x - . 3.(1)-3 ; (2)-4 ; (3)13.4.0.805. B 组1.(1)7. 提示:3434333log 33log 3log 3347⨯=+=+=.(2)12 ;(3)2. 2. 5. 提示:()lg 31a a -=,(3)10a a -=,2a =-(舍)或5a =. 3.(1)a+b. 提示:lg 23lg 2lg 3a b ⨯=+=+. (2)b-a. 提示:lg 3lg 2b a -=-. 4.0. 提示:()2lg 5lg 210+-=.C 组约2 100多年前.提示:125730log 0.7672193t =≈,所以马王堆古墓约是2 100多年前的遗址.5.4对数函数习题答案 练习5.4 1.(1) (),2-∞;(2)()0,1(1,)+∞ ; (3)2,3⎛⎫-∞ ⎪⎝⎭ ;(4))1,⎡+∞⎣. 2.(1)lg7<lg7.1; (2)0.1lg 5<0.1lg 3; (3)23log 0.5>23log 0.6 ; (4)ln 0.1<ln 0.2.习题5.4 A 组1.(1) 1,2⎛⎫-∞ ⎪⎝⎭ ; (2)()0,1; (3)(1,2⎤⎦; (4)()1,+∞. 2. 1. 提示:()99lg 1001f =-=2-1=1. 3.()(),03,-∞+∞ .4.(1)22log 5log 9< ; (2)1133log 0.4log 0.7>;(3)56log 6log 5> ; (4)0.55log 0.6log 0.7>. 5.()2,+∞. 6.()4,+∞. B 组 1.(1)()(),11,-∞-+∞ ; (2)(1,2⎤⎦; (3)()()2,33,+∞.2.b>a>c.3.a<b. C 组正常. 提示:()8lg 4.010lg 48lg 108lg 480.6027.398pH -=-⨯=--=-≈-=.5.5指数函数与对数函数的应用习题答案 练习5.51.约1 697.11万吨.提示:()515001 2.5%1697.11+≈. 2.约18.87万元.提示:()2010018%18.87-≈.3.约5年.提示:()100110%60x-=. 4.2059年.提示:()7510.7%100x+=. 习题5.5 A 组1.13年.提示:()1000120%10000x +≥.2.()()3001 2.5%xy xN +=+∈ .3.171.91.提示:2023年GDP 为()390017%1102.54+≈. B 组1.2030年 .提示:设第n 年年底该企业的产值可以达到260万元,则()202013017.5%260n -+=.2.300只. 提示:由题知当x=1时y=100,得a=100;当x=7时82100log 300y ==.3.约147万件. C 组 略. 复习题5 A 组一、1.C . 2. B. 3.D. 4.A. 5.C. 6.C. 7.D. 8. D. 9.B. 10.B. 11.C. 12.B. 13.A. 14.A. 15.B. 二、16.347-. 17.-3. 18. 4.5. 19.-4.20.51log 2<125-<125.三、21. 19.22. 略.23.(1)1; (2)-2.24.(1)23-; (2). 25.(1)(),1-∞; (2)R . 26. 34.87万元. B 组 1. (1)()(),01,-∞+∞ ; (2)()0,100.2. )4,⎡+∞⎣ .3.1,2⎛⎤-∞ ⎥⎝⎦ . 4.13,44⎡⎤⎢⎥⎣⎦.5.(1)()()*1xy a r xN =+∈;(2)1 117.68元.提示:()510001 2.25%1117.68+≈.6.0,120⎡⎤⎣⎦.提示:因1211010lg IL -=,令1I =得12110lg 10120L ==,令1210I -=得110lg 10L ==.所以人听觉的声强级范围为0,120⎡⎤⎣⎦.第六章 直线和圆的方程6.1两点间的距离公式和线段的中点坐标公式习题答案 练习6.11.M (-2,4);N(1,1); P(2,-2); Q(-1,-2).2.(1)AB =线段AB 的中点坐标(11,122);(2)5CD =,线段CD 的中点坐标(15,12);(3)5PQ =,线段PQ 的中点坐标(0,12).3.(1)中点D 的坐标(1,1);(2)中线AD .4.AB b =-,线段AB 的中点坐标(3333,22a b a b++). 习题6.1 A 组1.(1)AB =(2)5AB =,BC =AC =;(3)线段AB 的中点坐标(1,-1);(4)AB =线段AB 的中点坐标(111,122-).2.点P (2+)或P (2-).3.2PQ a=,线段PQ 的中点坐标(0,b ).4.点P 2的坐标为(6,1).5.2,AB AC BC ==,根据直角三角形判定定理,可知三角形是直角三角形. B 组 1. m=4,n=1.2.点B 的坐标(-4,5).3.顶点C 的坐标(0,0,.4.顶点A (6,5),顶点B (-2,3),顶点C (-4,-1). C 组 略.6.2直线的方程习题答案 练习6.2.1 1.2.(1)斜率为-1,倾斜角为4;(2)斜率为3;(3)斜率为56π.3.实数a =4.实数m=-1. 练习6.2.21.(1)1,4π;(23π;(3)2,3. 2.点A (2,3)在直线122y x =+上,点B (4,2)不在直线122y x =+上.3.(1)34(1)y x -=-;(2)55(2)y x +=-;(3)y x -=.4.(1)24y x =-+;(2)3y =+;(3)112y x =+;(4)1y x =-.5.4y -=;4y =+. 练习6.2.31.132y x =--.2.(1)2,230x y -+=;(2)23-,2340x y ++=.3.(1)A=0,B ≠0,C ≠0; (2)B=0,A ≠0,C ≠0.4.(1)37130x y +-=;(2)30y +=.5.30x y -+=,X 轴上的截距为-3,Y 轴上的截距为3. 习题6.2A 组1.(1)3-;(2)1,4π. 2.(1)210x y -+=;(2)3y =-;(3)430x y -+=. 3.(1)23,43;(2)1,3;(3)5,-12. 4.(1)A ≠0,B ≠0,C=0;(2)A=0,B ≠0,C=0;(3)A ≠0,B=0,C=0. 5.420x y +-=或420x y ++=. B 组1.实数52m =-.2.实数m=3,n=-8.3.(1)330x y +-=;(2)770x y -+=.4.(1)AB 边斜率为14,AC 边所在直线的斜率为1,BC 边所在直线的斜率为12-,AB 边所在直线的方程为470x y -+=;AC 边所在直线的方程为10x y -+=;BC 边所在直线的方程为2100x y +-=. (2)BC 边中线所在直线的斜率为12,AB 边中线所在直线的斜率不存在,AC 边中线所在直线的斜率为0,BC 边中线所在直线的方程为230x y -+=;AB 边中线所在直线的方程为3x =;AC 边中线所在直线的方程为3y =. C 组 略.6.3两条直线的位置关系习题答案 练习6.3.11. (1)平行;(2)重合;(3)重合;(4)平行.2.(1)12-;(2)20x y -+=;(3)360x y --=.3.x =1. 练习6.3.21.(1)相交,交点坐标(194,3-);(2)相交,交点坐标(4,-5);(3)不相交.2.(1)不垂直;(2)垂直;(3)不垂直;(4)垂直.3.20x y +-=.4.32120x y +-=. 练习6.3.31.(1;(2)0;(3)5.2.m=-3或m=7.3.习题6.3 A 组1.(1)相交;(2)平行,重合;(3)垂直.2.(1)平行;(2)垂直;(3)相交;(4)垂直.3.(1)相交,交点坐标(18,58);(2)不相交,平行;(3)相交,交点坐标(14,14); (4)相交,交点坐标(315-,435).4.10x y -+=.390y ++-=.6.(1)95;(2)0;(3)25.7.2. B 组 1.实数32a =.2.实数m=-2或m=12. 3.实数m=4,n=2.6.4 圆习题答案 练习6.4.11.(1)221x y +=;(2)22(1)9x y +-=;(3)22(3)4x y -+=;(4)22(2)(1)45x y -++=.2.(1)圆心坐标为(0,0)半径为4;(2)圆心坐标为(1,0)半径为2;(3)圆心坐标为(0,-3)半径为3;(4)圆心坐标为(2,1;(5)圆心坐标为(-1,3)半径为5. 3.22(1)(3)25x y ++-=. 练习6.4.21.(1)圆心坐标为(2,0)半径为2;(2)圆心坐标为(0,-2)半径为3;(3)圆心坐标为(3,-1)半径为4;(4)圆心坐标为(-1,32.2284160x y x y +-++=.3.是圆的方程,圆心坐标为(2,-1),. 习题6.41.(1)22(3)(1)16x y -++=,226260x y x y +-+-=;(2)(-1,3.2.(1)(-3,2;(2)(2,0),2.3.22(3)(9x y -+-=.4.226670x y x y +-+-=.5.是圆的方程,圆心坐标为(4,-1),半径为1. B 组1.2220x y x y +--=.2.0a =或8a =.3.K <34,圆心坐标为(8,2),半径为√68−2k . C 组 略.6.5直线与圆的位置关系习题答案 练习6.51.(1)2;(2)1.2.(1)1,不存在;(2)2,不存在,0;(3)1,0.3.(1)相切;(2)相离;(3)相交.4.y =2,x =3.5.8. 习题6.5 A 组 1.1,2,0.2.224640x y x y +-++=.3.(1)相切;(2)相交;(3)相交.4.当1b =时,直线与圆相切;当11b <当1b >或1b <-. 5.4x -3y -25=0,34250x y +-=. B 组1.22(3)(4)8x y -+-=.2.当6k =±时,直线与圆相切;当6k <-6k >+时,直线与圆相交;当66k -<<+时,直线与圆相离.切线方程为(620x y +-+=和(620x y --+=.4.k <1或k >13. C 组 略.6.6直线与圆的方程应用举例习题答案 练习6.61.(12,03-).2.x 2+(y -20.19)2=12.992.3.建立直角坐标系,A (-10,0),B (10,0)D (-5,0),E (5,0).设圆的方程为222()()x a y b r -+-=,得a =0,b =-10.5,r =14.5,将D 点横坐标-5代入方程得3.1y =,因为3 m<3.1 m ,因此船可以通过. 习题6.6 A 组 1.M (4,0). 2.3240x y ++=.3. 第二根支柱的长度约为4.49 m. B 组1.10x y --=.2.入射光线所在的直线方程为12510x y +-=,反射光线所在的直线方程为12510x y --=.3.(1)会有触礁可能;(2)可以避免触礁. C 组 略. 复习题6 A 组一、1.B. 2.D. 3.B. 4.C. 5.B. 6.B. 7.D. 8.B. 二、9.5. 10.-1. 11.(0,0). 12.0. 13.2.三、14(1)(-2,-1);(210y -+=. 15.(1)20x y +-=;(2)22(2)2x y -+=. 16.x 2+(y -1)2=1.17.(1)(1,2),2;(2)34y x =,0x =. 18.2.19.是圆的方程,圆心坐标为(2.5,2),圆的半径为1.5. B 组1.(1)20x y +-=;(2)1.2.(1)m=4;(2)x 2+(y -4)2=16.3.(1)点A 的坐标(7,1),点B 的坐标(-5,-5);(2)15.4.解:我们以港口中心为原点O ,东西方向为x 轴,建立平面直角坐标系,圆的方程为22230x y +=,轮船航线所在的直线方程为472800x y +-=;如果圆O 与直线有公共点,则轮船有触礁危险,需要改变航向;如果圆O 与直线无公共点,则轮船没有触礁危险,无需改变航向.由于圆心O (0,0)到直线的距离为30d =>,所以直线与圆O 没有公共点,轮船没有触礁危险,不用改变航向.第七章 简 单 几 何 体7.1多面体八、习题答案 练习7.1.1 1.略.2.(1)√;(2)√;(3)√; (4)√.3.)(侧2cm 60=S , S 表=73.86(cm 2), ()3320cm V =.4. 2a 22=表S ; 36a V =. 练习7.1.21.2.3.练习7.1.3 1.略.2.()2cm 34=侧S , ()3234cm V =. 3.(1)()()2cm 41939+=表S , ()3233cm V =;(2)习题7.1 A 组1.(1)Q M N P ⊆⊆⊆;(2) 2 ;(3) 4.2. S 侧=296()cm .3. 33)4V cm =.4. S 表=212()cm , 3)V =.5. S 侧2a =.6. 31)2V cm = . B 组1.S 表=(24a + , 33V a =. 2. ()372V cm =.3.4.C 组20+,S 表=122524202⨯⨯+⨯⨯⨯=+7.2旋转体习题答案 练习7.2.11. (1)√;(2)×;(3) ×.2. S 表=228()cm π, 320()V cm π=.3. S 侧=2100()cm π,3250()V cm π=.4. 2种;表面积不相等;体积不相等. 练习7.2.2 1.略.2.(1)×;(2)×;(3)√.3.38()V cm π=.4.310()3V cm π=. 5.S 表=236()cm π,316()V cm π=.6.6()L cm =, )h cm =. 练习7.2.31.(1)√;(2)√;(3)√.2.S 表=236()cm π, 336()V cm π=.3.16倍; 64倍.提示:设原球的半径为r ,S原=24r π , V 原343r π=,则现半径为R=4r ,S 现=222441664R r r πππ=⨯=,V 现=333444(4)64333R r r πππ=⨯=⨯,S 现=16S 原,V 现=64V 原. 4.4 cm. 习题7.2 A 组1. (1)26()cm π;(2)()343cm π;(3)236()cm π , 336()cm π ;(4) 8∶27.2. 2316()V cm π=.3. S 表=264()cm π,3128()3V cm =. 4. S 表=264()cm π,3256()3V cm π=. 5. 24 cm. B 组 1. 390 g. 2. (1)75()8h cm =;(2)不会溢出. 3.约4.49 cm. C 组粮囤的容积为49π+343√372π,最多能装稻谷约103 420 kg.提示:由题知圆锥的底面半径7()2r m =,高)h m =,故粮囤的容积V=V 圆柱+V 圆锥=2271774232649ππππ⎛⎫⎛⎫⨯⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=+所以所装谷物质量为4957510342072ππ⎛⎫+⨯≈ ⎪ ⎪⎝⎭kg.7.3简单几何体的三视图习题答案练习7.31.2.略.3.4.5.略.习题 7.3A 组1.俯视图,主视图,左视图.2.C.3.4.(1)(2)B 组1.2.C 组俯视图复习题7 A 组一、 1.B. 2.D. 3.C. 4.A. 5.C. 6.C.二、7. 312a .8. S 表= (236()cm +,3)V cm =. 9. 4 cm.三、10. S侧= (()2384cm +,31152()V cm =.提示:由S 底=72 cm 2得AB=BC=12cm ,AC=.S 侧= ((()22416384cm +⨯=+,372161152()V cm =⨯=.11. S 侧= S π,4SV π=.提示:设圆柱的底面半径为r ,则高为2r ,由题知S =4r 2,得2r =,S侧=222444Sr r r S ππππ⋅===,2322284S S V r r r ππππ=⋅==⋅=.12. 3288()V cm π= 或3192()V cm π=.13.14.B 组 1. C.2. 1 004.8(cm 3). 提示:223851004.8()V r h cm ππ==⨯≈.3.34 .提示:设球的半径为2r =,所以截面圆的面积)2213s r ππ==,大圆的面积:()2224s r r ππ==.所以截面圆的面积与大圆的面积之比为34.4.(1)方案一,体积31400()V m π= .提示:仓库的半径r=10m ,h=4m ,则2311400()V r h m ππ==.方案二,体积 32288()V m π= .提示:仓库的半径r=6m ,h=8m ,则2322288()V r h m ππ==.(2)方案一,墙面建造成本80πa 元.提示:墙面建造成本112210480y r ha a πππ==⨯⨯=(元).方案二,墙面建造成本96πa 元.提示:墙面建造成本22226896y r ha a πππ==⨯⨯=(元).(3)方案一更经济.提示:由(1)(2)知1212,V V y y ><,即方案一体积大,可以储藏的粮食多、墙面建造面积小,用材少、成本低,所以选择方案一更经济.第八章概率与统计初步8.1随机事件习题答案练习8.1.11.必然事件:(1);不可能事件:(2)(5);随机事件:(3)(4).2. Ω={0,1,2},随机事件:(1)(2);不可能事件:(3);必然事件:(4).3. Ω={(书法,计算机),(计算机,陶艺),(书法,陶艺)},3个样本点.4.略.练习8.1.21.0.125.2.(1)(2)0.55.3.不是必然事件.习题8.1A组1. 不可能事件:(1); 随机事件:(3); 必然事件:(2)(4).2.(1)Ω={0,1,2};(2)A包含样本点为“没有硬币正面向上”和“只有一枚硬币正面向上”.3.0.7.4.5.(1)(2)0.949.B组1.(1)正确;(2)错误;(3)错误.2.(1)随机事件;(2)不可能事件;(3)必然事件.3.(1)(2)0.080.C组第二种解释是正确的.8.2古典概型习题答案练习8.21.0.22.(1)(2)是古典概型,(3)不是古典概型.3.1 2 .习题8.2A组1.不是古典概型.2.1 3 .3.1 2 .4.1 13.5.1 2 .6.(1)15;(2)35.B组1.1 5 .2.(1)310;(2)12;(3)710.3.(1)12;(2)16;(3)56.C组略.8.3概率的简单性质习题答案练习8.31.(1)是互斥事件;(2)(3)不是互斥事件.2.0.762.3.2 3 .习题8.3 A组1.3 10.3.0.25.4.(1)(2)(3)不是互斥事件;(4)是互斥事件.5.0.8.6.2 3 .B组1.0.3.2.0.93.3.(1)136;(2)16;(3)518.C组略.8.4抽样方法习题答案练习8.4.11.总体是300件产品;样本是50件产品;样本容量是50。
工程力学习题册第五章 - 答案

第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。
其变形特点是杆件沿_轴线方向伸长或缩短__。
其构件特点是_等截面直杆_。
2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。
图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。
剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。
4.构件在外力作用下,_单位面积上_的内力称为应力。
轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。
1MPa=__106_N/m2=_1__N/mm2。
5.杆件受拉、压时的应力,在截面上是__均匀__分布的。
6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。
__压缩_时的应力为__压应力_,符号位负。
7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。
8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。
9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。
E称为材料的_弹性模量__。
它是衡量材料抵抗_弹性变形_能力的一个指标。
10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。
11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。
12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。
13.采用___退火___的热处理方法可以消除冷作硬化现象。
物理学教程(第二版)[上册]第五章课后习题答案解析详解
![物理学教程(第二版)[上册]第五章课后习题答案解析详解](https://img.taocdn.com/s3/m/bc0b44efad51f01dc281f1a1.png)
物理学教程第二版第五章课后习题答案第五章 机械振动5-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题5-1图分析与解(B )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向Ox 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(B ).5-2 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s(D )2.00 s题5-2图分析与解 由振动曲线可知,初始时刻质点的位移为A /2,且向x 轴正方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为-3/π2.振动曲线上给出质点从A /2 处运动到x =0处所需时间为1 s ,由对应旋转矢量图可知相应的相位差65232πππϕ=+=∆,则角频率1s rad 65Δ/Δ-⋅==πϕωt ,周期s 40.22==ωπT .故选(B ). 5-3 两个同周期简谐运动曲线如图(a )所示, x 1的相位比x 2的相位( )(A )落后2π(B )超前2π(C )落后π(D )超前π分析与解 由振动曲线图作出相应的旋转矢量图(b )即可得到答案为(B ).题5 -3图5-4 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A )60 (B )90 (C )120 (D )180分析与解 由旋转矢量图可知两个简谐运动1和2的相位差为120 时,合成后的简谐运动3的振幅仍为A .正确答案为(C ).题5-4图5-5 若简谐运动方程为⎪⎭⎫ ⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1)振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1)将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s rad π20-⋅=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a5-6 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==. 证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题5-6图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为gS ρm πωT /2/π2==5-7 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1)证明其运动仍是简谐运动;(2)求系统的振动频率.题5-7图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ(1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为 ()()111222sin sin x x k mg x x k mg F '+-='+-=θθ(2) 将式(1)代入式(2)得1122x k x k F '-='-=(3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1)由本题的求证可知,斜面倾角θ对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2)如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.5-8 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1)物体在正方向端点;(2)物体在平衡位置、向负方向运动;(3)物体在x =-1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1)解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0和v =v 0来确定φ值.(2)旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0和速度v 0的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题5-8图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ϕωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=ϕ,因00<v ,取2π2=ϕ;(3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±=ϕ,由00<v ,取3π3=ϕ;(4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±=ϕ,由00>v ,取3π44=ϕ. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=ϕ,3π3=ϕ,3π44=ϕ. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m0.22+10=-xcos⨯/3π44tπ5-9有一弹簧,当其下端挂一质量为m的物体时,伸长量为9.8 ×10-2 m.若使物体上、下振动,且规定向下为正方向.(1)当t=0 时,物体在平衡位置上方8.0 ×10-2m处,由静止开始向下运动,求运动方程.(2)当t=0时,物体在平衡位置并以0.6m·s-1的速度向上运动,求运动方程.分析求运动方程,也就是要确定振动的三个特征物理量A、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m及弹簧劲度系数k)决定的,即k mω=/,k可根据物体受力平衡时弹簧的伸长来计算;振幅A和初相φ需要根据初始条件确定.题5-9图解物体受力平衡时,弹性力F与重力P的大小相等,即F=mg.而此时弹簧的伸长量Δl=9.8 ×10-2m.则弹簧的劲度系数k=F/Δl =mg/Δl.系统作简谐运动的角频率为1ωmk//g=s=l10-∆=(1)设系统平衡时,物体所在处为坐标原点,向下为x轴正向.由初始条件t =0 时,x10=8.0 ×10-2m、v10=0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=ϕ[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0时,x 20=0、v 20=0.6 m·s -1,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=ϕ[图(b )].则运动方程为 ()()m π5.010t cos 100.622+⨯=-x5-10 某振动质点的x -t 曲线如图(a )所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1)质点振动振幅A =0.10 m.而由振动曲线可画出t 0=0 和t 1=4 s时旋转矢量,如图(b )所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题5-10图(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c )所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3)由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .5-11 质量为10 g 的物体沿x 的轴作简谐运动,振幅A =10 cm ,周期T =4.0 s ,t =0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t =1.0 s 时物体的位移;(2)t =1.0 s 时物体受的力;(3)t =0之后何时物体第一次到达x =5.0 cm 处;(4)第二次和第一次经过x =5.0 cm 处的时间间隔.分析根据题给条件可以先写出物体简谐运动方程)cos(ϕω+=t A x .其中振幅A ,角频率Tπ2=ω均已知,而初相ϕ可由题给初始条件利用旋转矢量法方便求出. 有了运动方程,t 时刻位移x 和t 时刻物体受力x m ma F 2ω-==也就可以求出. 对于(3)、(4)两问均可通过作旋转矢量图并根据公式t ∆=∆ωϕ很方便求解.解由题给条件画出t =0时该简谐运动的旋转矢量图如图(a )所示,可知初相3π2=ϕ.而A =0.10 m ,1s 2ππ2-==T ω.则简谐运动方程为m )3π22πcos(10.0+=t x (1)t =1.0 s 时物体的位移m 1066.8m )3π22π0.1cos(10.02-⨯-=+⨯=x(2)t =1.0 s 时物体受力N1014.2N)1066.8()2π(101032232---⨯=⨯-⨯⨯⨯-=-=x m F ω (3)设t =0时刻后,物体第一次到达x =5.0 cm 处的时刻为t 1,画出t =0和t =t 1时刻的旋转矢量图,如图(b )所示,由图可知,A 1与A 的相位差为π,由t ∆=∆ωϕ得s 2s 2/ππ1==∆=ωϕt (4)设t =0时刻后,物体第二次到达x =5.0 cm 处的时刻为t 2,画出t =t 1和t = t 2时刻的旋转矢量图,如图(c )所示,由图可知,A 2与A 1的相位差为3π2,故有 s 34s 2/π3/π212==∆=-=∆ωϕt t t题 5-11 图5-12 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1)振动周期;(2)加速度的最大值;(3)运动方程. 分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2.在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0=v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0=-Aωsinφ就可求出φ. 解 (1)由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3)从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=ϕ因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为()cm 6π55.1cos 2⎪⎭⎫⎝⎛-=t x题5-12图5-13 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1)求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3)摆角为3°时的角速度和摆球的线速度各为多少?题5-13图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分. 解 (1)单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2)由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3)摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为1s m 218.0/d d -⋅-==t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ较小时成立.*5-14 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.题5-14图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/m g r TJ =(这里r l C ≈).则由平行轴定理得222220m kg 83.2π4⋅=-=-=mr mgrT mr J J 5-15 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题5-15图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1+m 2和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0和初位移x 0)求得.初相位仍可用旋转矢量法求. 解 振动系统的角频率为()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0为12110s m 0.1-⋅=+=m m v m v又因初始位移x 0=0,则振动系统的振幅为()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=ϕ,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x5-16 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1的空盘.现有一质量为m 2的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?题5-16图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0和初始位移x 0是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0,这也是该振动系统的初始速度.在确定初始时刻的位移x 0时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1)空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2)如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g kmg k m m k g m l l x 2211210-=+-=-= 式中k g m l 11=为空盘静止时弹簧的伸长量,l 2=g km m 21+为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()gm m khk g m x A )(21/2122020++='+=ωv 本题也可用机械能守恒定律求振幅A .5-17 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1求:(1)振动的周期;(2)物体通过平衡位置时的总能量与动能;(3)物体在何处其动能和势能相等?(4)当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题. 解 (1)由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2)当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max22k -⨯====.mAa mA E E ω (3)设振子在位移x 0处动能与势能相等,则有42220//kA kx =得m 100772230-⨯±=±=./A x(4)物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫⎝⎛==则动能为43P K /E E E E =-=5-18 一劲度系数k =312 1m N -⋅的轻弹簧,一端固定,另一端连接一质量kg 3.00=m 的物体,放在光滑的水平面上,上面放一质量为kg 2.0=m 的物体,两物体间的最大静摩擦系数5.0=μ.求两物体间无相对滑动时,系统振动的最大能量.分析简谐运动系统的振动能量为2p k 21kA E E E =+=.因此只要求出两物体间无相对滑动条件下,该系统的最大振幅max A 即可求出系统振动的最大能量.因为两物体间无相对滑动,故可将它们视为一个整体,则根据简谐运动频率公式可得其振动角频率为mm k+=0ω.然后以物体m 为研究对象,它和m 0一起作简谐运动所需的回复力是由两物体间静摩擦力来提供的.而其运动中所需最大静摩擦力应对应其运动中具有最大加速度时,即max 2max A m ma mg ωμ==,由此可求出max A . 解根据分析,振动的角频率mm k+=0ω 由max 2max A m ma mg ωμ==得kgm m g A μωμ)(02max +=则最大能量J1062.92)(])([212132220202max max -⨯=+=+==kg m m kg m m k kA E μμ5-19 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1)合振动的振幅及初相;(2)若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1+x 3的振幅最大?又3ϕ为多少时,x 2+x 3的振幅最小?题5-19图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1)作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=ϕϕϕ,故合振动振幅为()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A /(2)要使x 1+x 3振幅最大,即两振动同相,则由π2Δk =ϕ得,...2,1,0,π75.0π2π213±±=+=+=k k k ϕϕ要使x 1+x 3的振幅最小,即两振动反相,则由()π12Δ+=k ϕ得(),...2,1,0,π25.1π2π1223±±=+=++=k k k ϕϕ5-20 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1和x 2;(2)在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1)由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1.曲线1表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1=-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2=π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为()()m 2/ππcos 1.01-=t x 和()()m 3/ππcos 1.02+=t x(2)由图(b )可知振动2超前振动1 的相位为5π/6. (3)()ϕω+'=+=t A x x x cos 21其中()m 0520cos 212212221.=-++='ϕϕA A A A A()12π0.268arctan cos cos sin sin arctan22112211-=-=++=ϕϕϕϕϕA A A A则合振动的运动方程为 ()()m π/12πcos 052.0-=t x题5-20 图5-21 将频率为348 Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz .若在待测频率音叉的一端加上一小块物体,则拍频数将减少,求待测音叉的固有频率.分析 这是利用拍现象来测定振动频率的一种方法.在频率υ1和拍频数Δυ=|υ2-υ1|已知的情况下,待测频率υ2可取两个值,即υ2=υ1 ±Δυ.式中Δυ前正、负号的选取应根据待测音叉系统质量改变时,拍频数变化的情况来决定.解 根据分析可知,待测频率的可能值为υ2=υ1 ±Δυ=(348 ±3) Hz因振动系统的固有频率mkπ21=v ,即质量m 增加时,频率υ减小.从题意知,当待测音叉质量增加时拍频减少,即|υ2-υ1|变小.因此,在满足υ2与Δυ均变小的情况下,式中只能取正号,故待测频率为υ2=υ1+Δυ=351 Hz*5-22 图示为测量液体阻尼系数的装置简图,将一质量为m 的物体挂在轻弹簧上,在空气中测得振动的频率为υ1,置于液体中测得的频率为υ2,求此系统的阻尼系数.题5-22图分析 在阻尼不太大的情况下,阻尼振动的角频率ω与无阻尼时系统的固有角频率ω0及阻尼系数δ有关系式220δωω-=.因此根据题中测得的υ1和υ2(即已知ω0、ω),就可求出δ.解 物体在空气和液体中的角频率为10π2v =ω和2π2v =ω,得阻尼系数为2221220π2v v -=-=ωωδ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, 和 ,则a (3,3,3 2).
.
33 4
解 a 6(cos ,cos ,cos ) (3,3,3 2).
334
二.计算题(p1)
二.计算题
1.设 {1,1,1}, {2,3,5}, {2,1,2},
(1)求 || ||,|| ||,|| ||; (2)求 , ,的单位向量 0 , 0 , 0;
d | M0M s |.
解
|s|
M0
| M0M s || M0M | | s | | sin |,
d
d | M0M | | sin |,
M
s
| M0M s |. |s|
§5.3平面与直线p.4完成
§5.4--§5.4曲面与曲线p.7
一.填空题p7
1.球面x2 y2 z2 2x 4 y 4z 0的 中心是 (1,2,2) ,半径R 3 .
二.5.设一直线过点P (2, 1, 2)且与两直线
L1 :
x1 1
y1 0
z
1
1
与L2
:
x2 1
y1 1
z3 3
同时相交,求此直线方程.
解 设所求直线与L1相交于A(1 t,1,1 t ), 与L2相交于B(2 r,1 r, 3 3r), 则 PA (1 t,2,1 t), PB (r,2 r,5 3r)
一.填空题p5
1.过点(3,0,1)且与平面3 x 7 y 5z 12 0平行的 平面是 3x 7 y 5z 4 0 .
2.过点(3,1,2)且包含z轴的平面是 x 3 y 0 .
3.通过点M0
(2,
9,
6)且垂直于向量OM
的平面方程
0
是 2x 9 y 6z 121 .
解 n M0M (1,2,2),所求平面方程为 1 ( x 1) 2( y 1) 2(z 1) 0,
x 2y 2z 3 0
二.2.求过点M
0
(0,1,
2)且与直线
x
1
1
y1 1
z 平行 2
的直线方程.
解 所求直线方程为 x y 1 z 2 , 1 1 2
或
x 2 y
4.平面2x 2 y z 5 0与各坐标面的夹角余弦分
别是
2,2,1 333
5.平面ax by cz 1(abc 0)与三个坐标面围成的
四面体体积V
1
6 | abc |
.
6.直线 2xx
y z 1 的对称式方程是 yz4
x1 y1 z1
x5 (3
y 2 3
z)
2 1
3
2
二.4.求两平面x y 2z 2与x 2 y z 8
的平分面方程.
解 平分面上的点M ( x, y, z)到两平面的距离相等,
|
x
y
2z
2
|
|x
2y
z
8
| ,
6
6
x y 2z 2 ( x 2 y z 8),
得两个平分面: 1 : y z 2 0, 2 : 2x y z 10 0.
2.若向量a 3b垂直于向量7a 5b,a 4b垂直于向量
7a 2b,决定向量a和b间的夹角.
(a
3b)
(7a
5b)
0
7
|
a
|2
16a
b
15
|
b
|2
0 ,
(a 4b) (7a 2b) 0 7 | a |2 30a b 8 | b |2 0
2a b | b |2,| a || b |,
1 3.
7.点(3,1,1)关于平面6x 2 y 9z 96 0的对称
点是 (9,5,17)
.
8.过点(0,2,4)且同时平行于平面x 2z 1和 y 3z 2的直线方程是
x y2 z4
2 3
1
x 2z - 8 0
(
y
-
3z
10
) 0
.
二.计算题p5
二.1.求过点M0(1,1, 1)且垂直于M0与M (2, 1,1)连线 的平面方程.
a12 a22 a32 b12 b22 b32 | a | | b | | a | | b | | cos(aˆ, b) | | a b || a1b1 a2b2 a3b3 | .
2.证明: 对任意的向量a,b,都有 || a b ||2 (a b)2 || a ||2|| b ||2 .
解 设所求向量为 (cosa,cosb,cosc),则
cosa cosb cosc, cos2 a cos2 b cos2 c 1, cosa cosb cosc 1 ,
3
1 (1,1,1).
3
4.向量AB的终点为B(2,1,7),且在x轴, y轴, z轴上的 投影依次为4,4,7,则起点A的坐标是 (2,3,0) .
(3)用 0 , 0 , 0表示 , , . 解 (1) || || 3, || || 38, || || 3;
(2) 0
1 (1,1, 2),
0
3
0 1 (2, 1, 2);
3
1 (2, 3,5), 38
(3) 3 0, 38 0 , 3 0 .
2.ABC的边BC五等分,分点依次为D1, D2, D3, D4,再把
证明
|| a b ||2 || a ||2|| b ||2 sin2(aˆ, b). (a b)2 || a ||2|| b ||2 cos2(aˆ, b),
|| a b ||2 (a b)2 || a ||2|| b ||2 .
§5.2向量的乘法运算p.3完成
§5.3平面与直线p.5
则OM
(3, 1, 3)
.
解
设M ( x, y, z),则由M1M
3
MM
得
2
( x, y, z) (3,5,3) 3[(3, 3,5) ( x, y, z)],
4( x, y, z) (3,5,3) 3(3,3,5) (12,4,12),
( x, y, z) (3,1,3).
8.设 || a || 6,且a与x轴, y轴, z轴正向的夹角依次为
y z
1 4
或
2
x x
y z
1 .
2
二.3.求过直线 2xx
y z 1 0且垂直于x y z 1 0
2
y
z
0
的平面方程.
解 设所求平面方程为
2x y z 1 ( x y z 1) 0,
1 (2 ) 2 (1 ) (1) (1 ) 0,
1,
4
所求平面方程为 : 3x y z 1 0.
|
a
|
5,|
b
|
8,
且(aˆ,b)3,则||a
b
||
7
.
6.已知a (1,1,4),b (1,2,2),则Pr j a b
3 .
(aˆ, b)
3 .
4
7.设a (3,5,2),b (2,1,4),又a b与z轴垂直,则
, 满足关系式 2
.
二.计算题p3
1.a (2,3,1),b (1,1,3),c (1,2,0),计算 : (1) (a b)c (a c)b; (2) (a b) (b c); (3) (a b) c. 解 (1) (a b)c (a c)b
2.在Oz轴上与点A(4,1,7), B(3,5, 2)等距离的
点是
(0,0, 14) . 9
解 设所求点的坐标为(0,0, z),则
42 12 (z 7)2 32 52 (z 2)2,
z 14 ,所求点为(0,0, 14).
9
9
3.与三坐标轴正向成等角的单位向量是 1 (1,1,1) . 3
2 | a | | b | cos | b |2 | a | | b |,
cos 1 , .
2
3
3.设 || a ||
3 ,||
b
||
1,(a
ˆ,
b)
6
, 计算以a
2b与a
3b
为邻边的平行四边形面积.
解 | (a 2b) (a 3b) |
| a a 3a b 2b a 6b b |
cos 1 ,cos 2 ,cos 1 ,
2
2
2
, ,cos .
34
3
6.已知向量a i 5 j k与b 3i j k共线,则
15, 1
5
.
解
5 1 , 15, 1 .
31
5
7.设M1(3,5, 3), M2(3, 3,5),且点M使M1M 3MM2,
PA, PB共线 1 t 2 1 t , r 2 r 5 3r
r 5, 4
PB ( 5 , 3 , 5) 1 (5, 3,5), 44 4 4
所求直线方程为 x 2 y 1 z 2 . 5 3 5
三.证明题p6
三.设M0是直线L外的一点,M是直线L上的任意一点,
且直线L的方向向量为s,证明:点M0到L的距离
2.同时垂直于a (2,2,1)与b (4,5,3)的单位向量是
1 (1,2,2) 3
.
3.以a (1,3,1)和b (2,1,3)为两边的平行四边形
的面积S 3 10 .
4.已知a (2,1,1),b=(3,0,1),
则sin(aˆ, b)
1 11 165 2 15 30
.
5.已知
解 设A( x, y, z),则AB (2,1,7) ( x, y, z) (4,4,7),
( x, y, z) (2,1,7) (4,4,7) (2,3,0).