高中数学2.2.3向量数乘运算及其几何意义导学案新人教A版必修4
人教版高中数学高一A版必修4学案 向量数乘运算及其几何意义

2.2.3 向量数乘运算及其几何意义问题导学一、向量数乘的基本运算活动与探究1计算:(1)3(6a +b )-9⎝⎛⎭⎫a +13b ; (2)12⎣⎡⎦⎤(3a +2b )-⎝⎛⎭⎫a +12b -2⎝⎛⎭⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a .迁移与应用化简:(1)2(3a -2b )+3(a +5b )-5(4b -a );(2)16[2(2a +8b )-4(4a -2b )].向量的数乘运算可类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.二、向量的共线问题活动与探究2已知向量e 1和e 2不共线.(1)若AB =e 1+e 2,BC =2e 1+8e 2,CD =3(e 1-e 2),求证:A ,B ,D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.迁移与应用1.已知e 1,e 2是两个非零不共线的向量,a =2e 1-e 2,b =k e 1+e 2.若a 与b 是共线向量,求实数k 的值.2.如图,已知AD =3AB ,DE =3BC ,试判断AC 与AE 是否共线.共线向量定理是判断两个向量是否共线的依据,即对于非零向量a ,b ,a ∥b 是否成立,关键是能否确定唯一的实数λ,使b =λa .而对于三点共线问题可转化为两个向量共线问题,再依据定理进行解决:要证A ,B ,C 三点共线,只需证AB =λAC (λ∈R )或AB =λBC (λ∈R );要证AB ∥CD ,只需证AB =λCD (λ∈R ).三、向量的线性运算活动与探究3如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB ,DC 与OA 交点为E ,设OA =a ,OB =b ,用a ,b 表示向量OC ,DC .迁移与应用在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC =a ,BD =b ,则AF 等于( )A .14a +12bB .23a +13b C .12a +14b D .13a +23b用已知向量来表示另外一些向量是向量解题的基础,除了要利用向量的加、减、数乘等线性运算外,还应充分利用平面几何的一些定理、性质,如三角形的中位线定理,相似三角形对应边成比例等把未知向量转化为与已知向量有直接关系的向量进行求解.当堂检测1.下列计算正确的有( )①(-7)×6a =-42a ;②a -2b +(2a +2b )=3a ;③a +b -(a +b )=0.A .0个B .1个C .2个D .3个2.已知λ,μ∈R ,则下面关系正确的是( )A .λa 与a 同向B .0·a =0C .(λ+μ)a =λa +μ aD .若b =λa ,则|b |=λ|a |3.已知向量a ,b ,且AB =a +2b ,BC =-5a +6b ,CD =7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,CC .B ,C ,D D .A ,C ,D4.已知e 是任一向量,a =-2e ,b =5e ,用a 表示b ,其结果是__________.5.点C 在直线AB 上,且AC =3AB ,则BC =__________AB .答案:课前预习导学【预习导引】1.向量 向量的数乘 λa (1)|λ||a | (2)相同 相反 0预习交流1 提示:1.从代数角度来看,(1)λ是实数,a 是向量,它们的积仍然是向量;(2)λa =0的条件是a =0或λ=0.2.从几何的角度来看,对于向量的长度而言,(1)当|λ|>1时,有|λa |>|a |,这意味着表示向量a 的有向线段在原方向(λ>0)或反方向(λ<0)上伸长到|λ|倍;(2)当0<|λ|<1时,有|λa |<|a |,这意味着表示向量a 的有向线段在原方向(0<λ<1)或反方向(-1<λ<0)上缩短到|λ|倍.2.(1)(λμ)a (2)λa +μa (3)λa +λb3.唯一一个 b =λa预习交流2 提示:定理中a ≠0不能漏掉.若a =b =0,实数λ仍然存在,但λ是任意实数,不唯一;若a =0,b ≠0,则不存在实数λ,使b =λa .4.(1)加、减、数乘运算 (2)λμ1a ±λμ2b课堂合作探究【问题导学】活动与探究1 思路分析:可综合运用向量数乘的运算律求解.解:(1)原式=18a +3b -9a -3b =9a ;(2)原式=12⎝⎛⎭⎫2a +32b -a -34b =a +34b -a -34b =0; (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .迁移与应用 解:(1)2(3a -2b )+3(a +5b )-5(4b -a )=6a -4b +3a +15b -20b +5a =14a -9b ;(2)16[2(2a +8b )-4(4a -2b )]=16(4a +16b -16a +8b )=16(-12a +24b )=-2a +4b . 活动与探究2 思路分析:对于(1),欲证明A ,B ,D 三点共线,只需证明存在λ,使BD =λAB 即可.对于(2),若k e 1+e 2与e 1+k e 2共线,则一定存在λ,使k e 1+e 2=λ(e 1+k e 2).解:(1)∵AB =e 1+e 2,BD =BC +CD =2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB , ∴AB ,BD 共线,且有公共点B ,∴A ,B ,D 共线.(2)∵k e 1+e 2与e 1+k e 2共线,∴存在λ使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2.由于e 1与e 2不共线,只能有0,10,k k λλ-=⎧⎨-=⎩则k =±1. 迁移与应用 1.解:∵a 与b 是共线向量,∴a =λb ,∴2e 1-e 2=λ(k e 1+e 2)=λk e 1+λe 2,∴2,1,k λλ=⎧⎨=-⎩∴k =-2. 2.解:∵AE =AD +DE =3AB +3BC=3(AB +BC )=3AC ,∴AC 与AE 共线.活动与探究3 思路分析:解题的关键是建立OC ,DC 与a ,b 的联系,为此需要利用向量加、减、数乘运算.解:∵AC =BA ,∴A 是BC 的中点,∴OA =12(OB +OC ),∴OC =2OA -OB =2a -b . ∴DC =OC -OD =OC -23OB =2a -b -23b =2a -53b . 迁移与应用 B解析:易知△DFE ∽△BAE ,又∵E 是OD 中点,∴DF =13DC ,AF =AD +DF =AD +13DC =(AO +OD )+13(OC -OD ) =12AC +12BD +131122AC BD ⎛⎫- ⎪⎝⎭=23AC +13BD =23a +13b . 【当堂检测】1.C 解析:a +b -(a +b )=0,故③错误,①②正确. 2.C 解析:当a ≠0,λ<0时,λa 与a 反向,且λ|a |<0,则A ,D 错误.又∵0·a 的结果为0,则B 错误.由运算律知C 正确.3.A 解析:∵BD =BC +CD =2a +4b =2AB ,且有一个公共点B ,∴A ,B ,D 三点共线.4.b =-52a 解析:由a =-2e ,得e =-12a ,代入b =5e ,可得b =-52a . 5.2 解析:BC =AC -AB =3AB -AB =2AB .。
高中数学人教(A版)必修4导学案:2.2.3-向量数乘运算及几何意义(无答案)

2.2.3 向量数乘运算及其几何意义学习目标1.理解实数与向量的积的概念.2.明确实数与向量的积的定义和运算律.3.掌握向量共线定理并能够判断两向量是否共线.【预习案】1.向量的加减法的法则有____________法则和________法则.2.平行四边形法则中,两个向量必须是共________、不共线;三角形法则中的两个向量_________求其和;连终点指向被减,求其差.3.向量数乘的定义一般地,我们规定实数λ与向量a的积是一个_____,这种运算叫做______________,记作λa,它的长度与方向规定如下:(1)|λa|=|λ||a|.(2)λ>0时,λa的方向与a的方向_____;λ<0时,λa的方向与a的方向______;λ=0时,λa=0.4.向量数乘的运算律(1)λ(μa)=(λμ)a(λ,μ∈R);(2)(λ+μ)a=λa+μa(λ,μ∈R);(3)λ(a+b)=λa+λb(λ∈R).3.共线向量基本定理向量a(a≠0)与b共线,当且仅当有_________实数λ,使b=λa.4.线性运算(1)向量的____________________统称为向量的线性运算.(2)任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.【探究案】问题探究1.数乘向量与原向量之间有什么关系?2.在共线向量定理中,为什么要强调a≠0?考点一:向量数乘的定义及其几何意义由实数与向量的积的定义可以看出,它的几何意义就是将表示向量a的有向线段伸长或压缩.例一已知点C在线段AB的延长线上,且AB∶AC=2∶3.(1)用BC→表示AB→;(2)用CB→表示AC→.【思维总结】解决此类问题,关键是准确理解数乘向量的定义,把握表示及被表示向量的长度和方向,实现问题的转化考点二向量数乘及线性运算向量的加法、减法、实数与向量的积以及它们的混合运算称为向量的线性运算.根据运算律化简.例二:计算:(1)3(6a+b)-9(a+13b);(2)12[(3a+2b)-(a+12b)]-2(12a+38b);(3)2(5a-4b+c)-3(a-3b+c)-7a.【思维总结】其运算规律可类比多项式的合并“同类项”考点三:共线向量定理及应用要证明向量a、b共线,只需证明存在实数λ,使得b=λa(a≠0)即可.应用该定理可证明三点共线、两直线平行等几何问题.例三:设两非零向量a和b不共线,如果AB→=a+b,CD→=3(a-b),BC→=2a+8b.求证:A、B、D三点共线.【思维总结】利用向量证明三点共线时,一般是把“共线”问题转化为“向量关系a=λb”,通过向量关系证出“三点共线”的结论.互动探究2 在本例前提下,证明:CA →=xCB →+yCD →.(其中x +y =1) 方法技巧1.判断向量a 与b 是否共线的方法是:判断是否有且只有一个实数λ,使b =λa (a ≠0).2.判断A 、B 、C 三点是否共线的方法是:判断是否有且只有一个实数λ,使AC →=λAB →.如例33.向量的数乘运算可类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”,“公因式”指向量,实数看作是向量的系数.如例2 4.向量也可以通过列方程来解,把所求向量当作未知数,利用解代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算. 失误防范1.对于λa ,当|λ|>1时,表示a 的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍; 当|λ|<1时,表示a 的有向线段在原方向(λ>0)或反方向(λ<0)上缩小为原来的|λ|倍. 2.数乘向量λa =0,则可得λ=0或a =0;反之,也成立. 3.如果a 与b 不共线,且λa =μb ,则λ=μ=0.。
高中数学 2.2.3向量数乘运算及其几何意义学案 新人教A版必修4-新人教A版高一必修4数学学案

第二章平面向量2.2 平面向量的线性运算2.2.3 向量数乘运算及其几何意义1.理解向量数乘运算的几何意义.2.掌握向量数乘运算的运算律.3.掌握向量共线的条件.基础梳理一、向量的数乘运算1.实数与向量的积:实数λ与向量a的积是一个向量,记作:λa.(1)|λa|=|λ||a|.(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa=0.2.运算定律.结合律:λ(μa)=(λμ)a,第一分配律:(λ+μ)a=λa+μa,第二分配律:λ(a+b)=λa+λb.练习1:a为单位向量,则|3a|=3,|2a|=2,|2(3a)|=6.练习2:(-3)×4a=-12a.思考应用1.实数与向量可以求积,那么实数与向量能不能进行加法、减法运算呢?解析:不能.向量是既有大小又有方向的量,而数量只有大小,两者是不相同的量,不能进行加减.二、向量共线 1.向量共线的条件.(1)对于向量a (a ≠0)、b ,若有实数λ,使b =λa ,则a 与b 为共线向量. (2)若a 与b 共线(a ≠0),则有实数λ,使b =λa . 2.向量共线定理:向量b 与非零向量a 共线的条件是 当且仅当有唯一一个实数λ,使b =λa .练习3:M 是线段AB 的中点,对于任意一点O ,都有OM →=12(OA →+OB →).思考应用2.在向量共线定理中,为什么附加上条件a ≠0?解析:当a =0时,不论实数λ为何值,都有b =0,而当b ≠0,a =0时,向量a 与b 共线,此时λ不存在,共线定理不成立.也就是说当a =0时,不能表示任意的向量b .自测自评1.若a =e 1-e 2,b =-2e 1+2e 2,则a =-12b ,b =-2a .解析:根据向量共线条件得a =-12b ,b =-2a .2.点C 在线段AB 上,且AC CB =52,则AC →=57AB →,BC →=-27AB →.3.已知|a |=3,|b |=5,b 与a 的方向相反,若a =λb ,则λ=-35.解析:|a |=35|b |,b 与a 的方向相反,∴a =-35b ,∴λ=-35.4.若C 是线段AB 的中点,则AC →+BC →为(D ) A.AB → B.BA → C .0 D .0解析:∵C 是线段AB 的中点,∴AC →=CB →.∴AC →+BC →=AC →-CB →=AC →-AC →=0.故选D .基础提升1.将112[2(2a +8b )-4(4a -2b )]化简成最简式为(B )A .2a -bB .2b -aC .a -bD .b -a2.(2015·新课标全国高考Ⅱ卷)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数________.解析:因为向量λa +b 与a +2b 平行,所以λa +b =k (a +2b ),则⎩⎪⎨⎪⎧λ=k ,1=2k ,所以λ=12. 答案:123.已知向量是不共线向量e 1,e 2,给出下列各组向量: ①a =2e 1,b =e 1+e 2;②a =2e 1-e 2,b =-e 1+12e 2;③a =e 1+e 2,b =-2e 1-2e 2;④a =e 1+e 2,b =e 1-e 2. 其中共线的向量组共有(B )A .1个B .2个C .3个D .4个4.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则必有(C ) A.AD →=0 B .AB →=0或AD →=0C .ABCD 为矩形 D .ABCD 为正方形解析:由于AB →+AD →=AC →,AB →-AD →=DB →,由条件得|AC|→=|DB|→,又ABCD 是平行四边形,∴ABCD 为矩形,故选C .5.下列等式:①0-a =-a ;②-(-a )=a ;③a +(-a )=0;④a +0=a ;⑤a -b =a +(-b );⑥a +(-a )=0.正确的个数是(C )A .3个B .4个C .5个D .6个解析:只有⑥错误,应为a +(-a )=0.故选C . 巩固提高6.如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA →-BC →-OA →+OD →+DA →=________.答案:CA →7.设两个非零向量a 和b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证A 、B 、D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.(1)证明:∵AB →=a +b ,BD →=BC →+CD →=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →、BD →共线. 又∵它们有公共点B ,∴A 、B 、D 三点共线. (2)解析:∵ka +b 和a +kb 共线, ∴存在实数λ,使ka +b =λ(a +kb ), 则(k -λ)a =(λk -1)b .由于a 与b 不共线.只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,则k =±1.8.证明:向量OA →、OB →、OC →终点A 、B 、C 共线,则存在实数λ、μ,且λ+μ=1,使得OC →=λOA →+μOB →,反之也成立.证明:∵向量OA →、OB →、OC →终点A 、B 、C 共线,∴存在实数t ,使得AC →=tAB →,即OC →-OA →=t (OB →-OA →),OC →=(1-t )OA →+tOB →.令λ=1-t ,μ=t .则有OC →=λOA →+μOB →,且λ+μ=1. 反之,若OC →=λOA →+μOB →,(*) ∵λ+μ=1,把λ=1-μ带入(*)式得OC →=(1-μ)OA →+μOB →, OC →-OA →=μ(OB →-OA →),即得AC →=μAB →.∴向量OA →、OB →、OC →终点A 、B 、C 共线.9.设O 为△ABC 内任一点,且满足OA →+2 OB →+3 OC →=0. (1)若D ,E 分别是BC ,CA 的中点,求证:D ,E ,O 共线; (2)求△ABC 与△AOC 的面积之比.(1)证明:如右图,OB →+OC →=2 OD →,OA →+OC →=2 OE →, ∴OA →+2 OB →+3 OC →=(OA →+OC →)+2(OB →+OC →)=2(2OD →+OE →).∴2OD →+OE →=0,∴OD →与OE →共线,即D ,E ,O 共线. (2)解析:由(1)知2|OD →|=|OE →|,∴S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,即S △ABCS △AOC=3.1.若向量b 与非零向量a 共线,则存在唯一实数λ,使b =λa ;若存在实数λ,使b =λa (a ≠0),则向量a 与向量b 共线.2.若存在不全为0的实数λ1,λ2,使λ1a +λ2b =0,则向量a 与b 共线;若向量a 与b 共线,则必存在不全为0的实数λ1,λ2,使λ1a +λ2b =0.。
高中数学 人教A版必修4 第2章 2.2.3向量的数乘运算及其几何意义

λ>0 时,与a方向相同 λ<0 时,与a方向相反 ;
特别地,当 λ=0 或 a=0 时,0a= 0 或 λ0= 0 .
填一填·知识要点、记下疑难点
2.2.3
2.向量数乘的运算律 (1)λ(μa)= (λμ)a . (2)(λ+μ)a= λa+μa . (3)λ(a+b)= λa+λb .
本 课 时 栏 目 开 关
果 a(a≠0)与 b 共线,当且仅当存在一个实数 λ,使 b=λa. 判断两个向量是否共线可转化为存在性问题.解决存在性问 题通常是假设存在,再根据已知条件找等量关系列方程(组) 求解.若有解且与题目条件无矛盾则存在,反之不存在. 例如,已知 e1,e2 是不共线的向量,a=3e1+4e2,b=6e1- 8e2,则 a 与 b 是否共线?
研一研·问题探究、课堂更高效
2.2.3
答
①λ(μa)=(λμ)a(λ,μ∈R)
如果 λ=0 或 μ=0 或 a=0,则①式显然成立; 如果 λ≠0,μ≠0,a≠0,则由向量数乘的定义有
本 |λ(μa)|=|λ||μa|=|λ||μ||a|, 课 时 栏 |(λμ)a|=|λμ||a|=|λ||μ||a|, 目 开 故|λ(μa)|=|(λμ)a|. 关
证明 → → 若 A、B、C 三点共线,则存在 λ∈R,使AC=λAB.
→ → → → ∴OC-OA=λ(OB-OA), → → → ∴OC=(1-λ)OA+λOB.
2.2.3
2.2.3
【学习要求】
向量数乘运算及其几何意义
本 1.了解向量数乘的概念,并理解这种运算的几何意义. 课 时 栏 2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向 目 量运算. 开 关
[教案新课标高中数学人教A版必修四全册教案2.2.3向量数乘运算及其几何意义(一).pdf

2.2.3 向量的数乘运算及几何意义(1) 一、教学目标:1.掌握实数与向量的积的定义;2.掌握实数与向量的积的运算律,并进行有关的计算;二、教学重、难点:1.实数与向量的积的定义及其运算律。
三、教学过程:(一)复习: 已知非零向量a r ,求作a a +r r 和()()a a −+−r u u r . 如图:OB a a =+u u u r r r 2a =r ,()()CE a a =−+−u u u r r r 2a =−r .(二)新课讲解:1.实数与向量的积的定义: 一般地,实数λ与向量a r 的积是一个向量,记作a λr ,它的长度与方向规定如下: (1)||||||a a λλ=r r ; (2)当0λ>时,a λr 的方向与a r 的方向相同; 当0λ<时,a λr 的方向与a r 的方向相反; 当0λ= 时,0a λ=r r .2.实数与向量的积的运算律: (1)()()a a λμλμ=r r (结合律); (2)()a a a λμλμ+=+r r r (第一分配律); (3)a b λλλ+r r r r (a+b )=(第二分配律).3.例1 计算:(1)(3)4a −⨯r ; (2)3()2()a b a b a +−−−r r r r r ; (3)(23)(32)a b c a b c +−−−+r r r r r r . 解:(1)原式=12a −r ; (2)原式=5b r ; (3)原式=52a b c −+−r r r .例2.已知向量a ϖ和向量b ϖ,求作向量b a a ρρρρ325.2−−和4.练习计算: (1))2(2)(3b a b a +−−(2))243(3)362(2c b a c b a −+−−−+(3)教材P90面5题5.思考例3. a −r E a r a r a r O B A C D a −r )0( ρρρρ≠a a a 有何关系?与λ. a b a b ρρρρλλ=,使得一个实数共线当且仅当有且只有与非零向量向量是否共线?向量212122 ,e e b e e a +−=−=ρρ例4.教材例7。
高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课后习题新人教A版必修4

高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
高中数学2.2.3向量数乘运算及其几何意义导学案新人教版必修4
223向量数乘运算及其几何意义课前预习学案预习目标:通过对比物理中的一些向量与数量之间的运算关系,引入向量与数量之间的乘法运算,同时也为该运算赋予其物理意义。
预习内容:引入:位移、力、速度、加速度等都是向量,而时间、质量等都是数量,这些向量与数量的关系常常在物理公式中体现。
如力与加速度的关系F二m a,位移与速度的关系s= v t。
这些公式都是实数与向量间的关系。
师:我们已经学习了向量的加法,请同学们作出a+ a+ a和(-;)+(-;)+(-;)向量,并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?生:____________________________________________________________________________________师:很好!本节课我们就来讨论实数与向量的乘积问题,(板书课题:实数与向量的乘积)课内探究学案学习目标:1 •掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算;2.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行;3•通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想。
学习过程:1、探索研究1)定义:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?(可结合教材思考)可根据小学算术中3+ 3+ 3+ 3+ 3= 3? 5的解释,类比规定:实数入与向量a的积就师:由此可得向量平行的充要条件:向量b 与非零向量a 平行的充要条件是有且仅有一个实数2,使得b = 2 .对此定理的证明,是两层来说明的: 是2a ,它还是一个向量,但要对实数 入与向量a 相乘的含义作一番解释才行。
实数入与向量a 的积是一个向量,记作 2a .它的长度和方向规定如下:(1) _______________ . _______________(2) _______________________________________ . _______________________________________2)运算律:问:求作向量2(3;)和6a ( a 为非零向量)并进行比较,向量2(a+ b )与向量2a + 2b 相等吗?(引导学生从模的大小与方向两个方面进行比较)生: ______________________________ . ___________________________ 师:设a 、b 为任意向量, 入、 卩为任意实数,则有: r r rr r r r r r (1)(入+ 口)a = 2a + g ;(2) 2 pa) = ( 2 @) ; ( 3) 2a + b) = 2 + ?b 通常将( 2)称为结合律,(1) (3)称为分配律。
高中数学必修四教案-2.2.3 向量的数乘运算及其几何意义(1)-人教A版
《向量数乘运算及其几何意义》教学设计人民教育出版社普通高中课程标准实验教科书(A版)必修4向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算。
教学时先从《朗读者》节目的主题遇见引入实数和向量的遇见,然后从110米跨栏比赛抽象出物理背景,引入数乘运算,充分展现了向量数乘运算的现实意义。
实数与向量的乘积,仍然是一个向量,既有大小,也有方向。
特别是方向与已知向量是共线向量,进而引出共线向量定理。
共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错。
尤其是定理的前提条件:向量a 是非零向量。
共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系。
课时1.向量数乘运算及其几何意义、运算律,共线向量定理。
2.经历向量数乘运算定义及其几何意义的探究过程,体会类比、归纳、由特殊到一般的数学思想的应用。
体会类比、归纳推理方法在本节课中的作用。
在用向量方法研究三点共线教学的过程中渗透数形结合的思想方法。
3.感受平面向量方法在研究平面几何问题中的作用,进一步提高学习向量知识的积极性。
体会类比迁移的推理方法,培养学生的创新能力【教学重点】向量数乘运算及其几何意义、运算律、共线向量定理。
◆向量数乘定义由学生类比实数乘法得到,通过学生自主验证运算律与教师几何画板演示相结合的方法突破教学重点。
【教学难点】共线向量定理及其应用。
◆通过学生思考、讨论、交流、变式训练、总结等环节突破共线向量定理及其应用这一教学难点。
、相关准备的方向相同;的方向与a 的方向相反;0a λ=。
)a λμ;a b λλ+a+b )=。
向量线性运算律)yb =xa yb λλ±(1)(-3)×4a ;3b c -)-(3a思考:向量a (0a ≠)和b ,若存在实数λ,使b a λ=,则的方向有什么关思考:若向量a (a 论。
0≠)与b 共线,当且仅,使a λ=。
a 、b ,试作OA 能判断A 、B 、C 三点之间的位置关系吗?为什么? 论,给出证。
新课标高中数学人教A版必修四全册教案2.2.3向量数乘运算及其几何意义(二)
2.2.3 向量数乘运算及几何意义(2) 一、教学目标: (1)理解并掌握共线向量定理,并会判断两个向量是否共线。
(2)能运用向量判断点共线、线共点等。
二、教学重、难点:(1)共线向量定理(2)共线向量定理应用。
三、教学过程:(一)复习:1.实数与向量的积的定义: 一般地,实数λ与向量a r 的积是一个向量,记作a λr ,它的长度与方向规定如下: (1)||||||a a λλ=r r ; (2)当0λ>时,a λr 的方向与a r 的方向相同; 当0λ<时,a λr 的方向与a r 的方向相反; 当0λ= 时,0a λ=r r .2.实数与向量的积的运算律: (1)()()a a λμλμ=r r (结合律); (2)()a a a λμλμ+=+r r r (第一分配律); (3)a b λλλ+r r r r (a+b )=(第二分配律).3.向量共线定理: 定理: 如果有一个实数λ,使b a λ=r r (0≠),那么向量b r 与a r 是共线向量;反之,如果向量b r 与a r (0≠)是共线向量,那么有且只有一个实数λ,使得b a λ=r r .(二)新课讲解:1.向量共线问题:例1、例2、例3、教材P89面例6. ,2351253 共线和求证:向量(满足、已知向量b a b a +=--+证明三点共线的问题 .2.)0(B 三点共线、、C B A ⇒≠=ρλ .3证明两直线平行的问题. CD //AB CD AB // 直线直线不在同一直线上与⇒⎪⎭⎪⎬⎫⇒=λ是否共线?与,试判断,已知 3 3==A BC D E例4。
四、课堂练习: P90面6题五、小结:1.掌握向量数乘运算的定义;2.掌握向量数乘运算的运算律,并进行有关的计算;3.理解两向量共线(平行)的条件,并会判断两个向量是否共线、点共线。
课后思考1.2.3...35,4,2,为梯形求证:四边形中在四边形ABCD ABCD --=--=+=。
高中数学 第二章 平面向量 2.2.3 向量数乘运算及其几何意义导学案 新人教A版必修4-新人教A版
2.2.3 向量数乘运算及其几何意义班级:__________姓名:__________设计人:__________日期:__________ ♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语一个人追求的目标越高,他的才力就发展得越快,对社会就越有益。
——高尔基学习目标1.掌握向量数乘运算的概念.2.能应用向量数乘运算的运算律化简数乘运算.3.掌握向量的共线定理及应用.学习重点平面向量数乘运算法则的应用.学习难点平面向量数乘运算法则的应用自主学习1.向量的数乘运算的概念(1)定义:实数λ与向量a的积是一个______.(2)运算律:①=②=③=特别地,( )= ( ),=. 2.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使_________.预习评价1.在四边形ABCD中,若,则此四边形是A.平行四边形B.菱形C.梯形D.矩形2.设,是两个不共线的向量,若向量m=-+ k(k∈R)与向量n= -2 共线,则A.k=0B.k=1C.k=2D.3.若向量,a满足2 -3( -2a)=0,则向量=________.4.向量a与b不共线,向量c=3a-b,d=6a-2b,则向量c与的关系_______.(共线,不共线)5. =___________.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.向量数乘的概念及运算根据向量数乘的概念,思考下面的问题:(1)向量数乘得到的依然是向量,那么它的方向由谁确定?(2)实数与向量数乘所得向量与原向量是否为共线向量?2.所得向量λa的几何意义是什么?3.向量的大小与方向如何?4.共线向量定理根据共线向量定理,探究下面的问题:(1)若向量a与向量b(b≠0)共线,则a=λb,如何确定λ的值?(2)定理中为何要限制a≠0?5.若向量a,b不共线,且λa=μb,则λ,μ的值如何?为什么?教师点拨1.对向量数乘的三点说明(1)向量的数乘是一个实数与一个向量相乘,其结果是一个向量,方向与λ的正负有关.(2)当λ=0时,λa=0.(3)向量的数乘运算要遵循向量的数乘运算律.2.共线向量定理的两个作用(1)证明线段平行,但要注意向量共线时,两向量所在的线段可能平行,也可能共线.(2)证明点共线,当两向量共线,且有公共点时,则表示向量的线段必在同一条直线上,从而向量的起点、终点必共线.交流展示——向量的数乘运算及理解已知向量a,b满足:|a|=3,|b|=5,且a=λb,则实数λ=A. B. C. D.变式训练设a是非零向量,λ是非零实数,则下列结论中正确的是 ( )A.a与λa的方向相同B.a与-λa的方向相反C.a与λ2a的方向相同D.|λa|=λ|a|交流展示——共线向量定理及其应用已知向量,,,则A.A、B、C三点共线B.A、B、D三点共线C.A、C、D三点共线D.B、C、D三点共线变式训练在中,点是的中点,点在上,且,求证:,,三点共线.交流展示——向量线性运算的应用下列各式计算正确的个数是 ( )①(-7)·6a=-42a;②a-2b+2(a+b)=3a;③a+b-(a+b)=0.A.0个B.1个C.2个D.3个变式训练=A.2a−bB.2b−aC.b−aD.a−b学习小结1.向量的数乘运算方法(1)向量的数乘运算类似于代数的多项式的运算,其解题方法为“合并同类项”“提取公因式”,“同类项”“公因式”指的是向量,实数与向量数乘,实数可看作是向量的系数.(2)向量的求解可以通过列方程来求,将所求向量作为未知量,通过解方程的方法求解. 2.由共线向量定理求向量系数的步骤(1)把向量等式通过向量线性运算,转化为与另一个式子相同的形式.(2)由两等式相同知对应系数相同,列方程可求向量的系数.3.用共线向量定理证明三点共线的三个步骤(1)定向量:由三点可确定多个不同的向量.(2)证共线:证明两个向量共线.(3)得结论:说明三点共线.当堂检测1.化简下列各式:(1)-+--;(2)2(a+2b)+3(3a+2b)-4(a-b).2.已知向量a,b不共线,若向量a+λb与b+λa的方向相反,则实数λ的值为. 3.已知关于的方程有,则=A. B. C. D.无解4.在平行四边形ABCD中,,,,则________(用e1,e2表示).5.已知非零向量e1,e2,a,b满足a=2e1-e2,b=k e1+e2.(1)若e1与e2不共线,a与b共线,求实数k的值.(2)是否存在实数k,使得a与b不共线,e1与e2共线?若存在,求出k的值,否则说明理由知识拓展已知两个向量e1,e2不共线.如果a=e1+2e2,b=2e1-4e2,c=4e1-7e2,是否存在非零实数λ,μ,使得向量d=λa+μb与c共线?2.2.3 向量数乘运算及其几何意义详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】1.(1)向量λa,|λ||a|,相同相反0(2)①(λμ)a②λa+μa③λa+λbλa-aλa-λb2.b=λa【预习评价】1.C2.D3.6a4.共线5.2b-a♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)实数λ与向量a数乘,得到向量λa,其方向由λ的正负及向量a的方向共同确定(2)所得向量与原向量是共线向量.2.是把向量a沿a的方向放大(λ>1)或缩小(0<λ<1)到原来的λ倍或沿a的相反方向放大(λ<-1)或缩小(-1<λ<0)到原来的|λ|倍.3.向量的大小为1,方向与a的方向相同,所以该向量也是向量a方向上的单位向量.4.(1)当a,b同向时,λ=,当a,b反向时,λ=-.(2)共线向量定理中,若不限制a≠0,则当a=b=0时,λ的值不唯一,定理不成立.并且当b≠0,a=0时,λ的值不存在.5.:λ=μ=0.假设λ≠0,由于向量a,b不共线,则a≠0,b≠0,且a=b,从而a,b共线,与向量a,b不共线矛盾,可知λ=μ=0.【交流展示——向量的数乘运算及理解】C【变式训练】C【解析】只有当λ>0时,a与λa的方向相同,a与-λa的方向相反,且|λa|=λ|a|.因为λ2>0,所以a与λ2a的方向相同.【交流展示——共线向量定理及其应用】B【解析】本题主要考查平面向量的共线的定理与向量的应用,由于与有公共点B,因此A、B、D三点共线,故答案为B.【变式训练】证明:.因为,,所以.由于,可知,即.又因为、有公共点,所以、、三点共线.【解析】本题考查向量的运算法则、向量共线的充要条件、利用向量共线解决三点共线.【交流展示——向量线性运算的应用】C【解析】根据数乘向量的运算律可验证①②正确;③错误,因为向量的和、差及数乘运算的结果仍为一个向量,而不是实数.【变式训练】B【当堂检测】1.(1)原式=(-)-(+)=-0=.(2)原式=2a+4b+9a+6b-4a+4b=(2+9-4)a+(4+6+4)b=7a+14b.2.-1【解析】本题主要考查向量的相关知识,解题的关键是根据a+λb与b+λa的方向相反得到恒等式,进而得到关于λ的方程,从而得出λ的值.由a+λb与b+λa的方向相反得,a+λb=-k(b+λa),k>0,则λ=-k,-kλ=1,即λ2=1,又k>0,所以λ=-1,此时a+λb与b+λa的方向相反.3.B【解析】本题主要考查向量的线性运算.向量的线性运算同多项式的合并化简类似,具体解法如下:由已知得,则.4.5.(1)由,得,而与不共线,所以2,21k k λλ=⎧⇒=-⎨=-⎩. (2)不存在.若与共线,则, 有因为为非零向量,所以2λ≠且k λ≠-, 所以,即,这时与共线,所以不存在实数k 满足题意. 【知识拓展】显然c≠0,否则4e 1-7e 2=0,即e 1=e 2,与e 1,e 2不共线矛盾.又d=λa+μb=(λ+2μ)e 1+(2λ-4μ)e 2(λμ≠0),假设向量d=λa+μb 与c 共线,则存在一个实数γ,使得d=γc,即( λ+2μ)e 1+(2λ-4μ)e 2=4γe 1-7γe 2,从而,消去γ,得15λ=2μ(μ≠0).所以存在非零实数λ,μ,只要它们满足15λ=2μ(μ≠0),就能使得向量d 与c 共线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2.3向量数乘运算及其几何意义
【学习目标】1. 掌握向量数乘运算,并理解其几何意义;
2. 理解两个向量共线的含义;掌握向量的线性运算性质及其几何意义. 【学习过程】 一、自主学习
(一)知识链接:复习: 向量减法的几何意义是什么?
(二)自主探究:(预习教材P87—P90) 探究:向量数乘运算与几何意义 问题1:已知非零向量a ,作出:①a
a a
++;②()()()a a a -+-+-.通过作出图形,同学
们能否说明它们的几何意义?
1、一般地,我们规定___________________
是一个向量,这种运算称做向量的数乘记作a λ,它的长度与方向规定如下:
(1
)||a λ=___________________________________;
(2)
当_________时,a
λ的方向与a 的方向相同;
当_______时,
a λ的方向与a 方向相反,
当_________时,
a λ=O 。
问题2:向量的加、减、数乘运算统称为向量的线性运算.请同学们解释它们的几何意义. 2、向量数乘运算律,设,λμ为实数。
(1)()
a λμ=_______; (2)()
a λμ+=_________; (3)()
a b λ+=_________; (4)=-a )(λ________=___________; (5)()
a b λ-=______________;
(6
)对于任意向量a ,b ,任意实数12λμμ、、恒有2a
b λμμ1(+)=_______________。
问题3:引入向量数乘运算后,你能发现数乘向量与原向量之间有什么位置关系? 3、两个向量共线(平行)的等价条件:如果(0)
a a
b ≠与共线,那么_____________。
二、合作探究 1、计算:
⑴()
76a -⨯; ⑵()()
438a b a b a
+---;
⑶()()54232a b c a b c
-+--+.
2、已知两个两个向量1
e 和2e 不共线,12
A
B e e =-,12
28B
C
e e =-,12
33C D
e e =+,求
证:A 、B 、
D 三点共线.
a
3、如图,平行四边形A B C D 的两条对角线相交于点M ,且A B a
=,A D
b
=,你能用a 、
b
表示A M 、B M 、C M 、D M 吗?
三、交流展示
1、8()7()a c a c c ++--=___________。
(92)(2)a b c b c +-++=________ _。
()
2a a b a ⎡⎤
---⎣⎦
= ; 11(2)8(42)32a b a b ⎡⎤
+--⎢⎥⎣⎦
=______ ___。
2、在A B C ∆中,E 、F 分别是A B 、A C 的中点,若A B a
=,A C
b
=,则E F 等于( )
A.
()1
2a b + B.()1
2a b - C.()1
2b a - D.()1
2
a b -+ 3、点C 在线段AB 上,且35
A C A
B =
,则________A C C B =。
4、设12,e e 是两个不共线向量,若12
b
e e λ=+,与12
2a
e e =-共线,则实数λ的值为 .
四、达标检测(A 组必做,B 组选做)
A 组:1. 下列各式中不表示向量的是( ) A.0a ⋅ B.3a
b
+ C.
3a
D.
1e
x y
-(,x y R
∈
,且x y ≠)
2. 下列向量a 、b 共线的有( ) ①
12
2,a
e b e ==-; ②1212
,22a
e e b e e =-=-+; ③1212
214,5
10
a
e e b e e =-
=-
;
④1212,22a e e b e e =+=-(12,e e 不共线)
A.②③
B.②③④
C.①③④
D.①②③④
3. A B C ∆中,13A D A B
=,//D E B C ,且与边A C 相交于点E ,A B C ∆的中线A M 与D E
相交于点N .设A B a
=,A C b
=,用a 、b 分别表示向量,,,,,A E C B D E C E D N N A .
B 组:1、设两非零向量12,e e 不共线,且1212()//()k e e e k e ++,则实数k 的值为
2、若
8,5
A B A C ==,则
B C
的取值范围是( )
A.[]3,8
B.()3,8
C.[]3,13
D.()3,13。