随机变量数字特征习题课

合集下载

第四章 随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案一、 选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=22Y X -=,则34) A C 5A 6、)1=(C ) A .34?B .37C .323?D .326 7、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A .-13?B .15C .19?D .238、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )A .6?B .22C .30?D .469、设)31,10(~B X,则)(X E =(C )A .31?B .1C .310?D .1010、设)3,1(~2N X ,则下列选项中,不成立的是(B )A.E (X )=1?B.D (X )=3?C.P (X=1)=0?D.P (X<1)=0.511A .C .12、XY ρ=(D 13x =(B)A .14、(C ) A.-15、为(A .C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为则)(XY E =(B )A .91-?B .0 C .91?D .3117、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}22εσεμn n X P ≥<-?B .{}221εσεμn X P -≥<-C .{}221εσεμn X P -≤≥-?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91?B .31C .98?D .124、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C )A25A 1234且5x =710 67、设随机变量X 服从参数为3的指数分布,则)12(+X D =948、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=0 9、设随机变量序列 ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ- 10、设随机变量X 具有分布51}{==k XP ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X -2,则E?(?Y?)=-0.5 121314、3=,则cov(X 1516大于1724}=0.6826 附:18、-0.5,19的期望E?(Y)=4,D?(Y?)=9,又E?(XY?)=10,则X ,Y 的相关系数XY ρ=31 20、设随机变量X 服从二项分布31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P XP ,且该柜台销售情况Y (千元),满足2212+=X Y。

第4章随机变量的数字特征

第4章随机变量的数字特征

xi
xn
一、数学期望的定义 复习:
1
第4章 随机变量的数字特征
8
2
3 3
4
一、数学期望的定义
第4章 随机变量的数字特征
9
例2
一、数学期望的定义 解
第4章 随机变量的数字特征
10
一、数学期望的定义
第4章 随机变量的数字特征
11
一、数学期望的定义
第4章 随机变量的数字特征
12
一、数学期望的定义
55
一、协方差
第4章 随机变量的数字特征
56
在实际计算协方差时,更多的是使用下列公式,
一、协方差
第4章 随机变量的数字特征
57
定理1 协方差具有下列性质:
1 2
3
4
一、协方差 证明
01
OPTION
第4章 随机变量的数字特征
58
02
OPTION
03
OPTION
一、协方差
OPTION
第4章 随机变量的数字特征
第4章 随机变量的数字特征
97
定义4
总结/summary
第4章 随机变量的数字特征
98
理解 离散型、连续型随机变量的数学期望的 定义及其概率含义 熟悉 数学期望的性质 掌握 随机变量函数的期望公式 熟练 常用随机变量的数学期望 理解 熟悉 掌握 熟练 随机变量方差的定义及方差的概率含义 方差的性质 随机变量的方差计算公式 常用随机变量的方差
1
第4章 随机变量的数字特征
48
2
3 4
二、方差的性质
第4章 随机变量的数字特征
49
例2 解
那么,由方差的性质得

概率统计 第3章随机变量的数字特征1节

概率统计   第3章随机变量的数字特征1节

2020/9/21
3
1. 随机变量的数学期望
(1)设有n个数x1,x2,,xn ,那么这n个数的算术平均
x
x1
x2
n
xn
i
n 1
xi
1 n
(2)这n 个数有相同,,不妨设其中有 ni个取值为 xi,i 1,, k,
其均值应为 1
n
k
ni xi
i 1
k i 1
ni n
xi
以数值xi出现的频率为权重做加 权平均
2020/9/21
12
(2)随机变量函数数学期望的计算 方法1 (定义法): g(X)是随机变量, 按照数学期望 的定义计算Eg(X). 关键: 由X的分布求出g(X)的分布. 难点: 一般g(X)形式比较复杂的, 很难求出其分布.
2020/9/21
13
方法2 (公式法):
定理 设X是一个随机变量, Y g(X), 则
k1 k1
2020/9/21
17
(4) 若X与Y相互独立,E( X )与E(Y )存在, 则E(XY ) E(X )E(Y ).
证:仅就连续随机变量情形
EXY xyf x, ydxdy
xy f X x f Y y dxdy
xf
X
x
dx
y fY y dy
2020/9/21
15
补充: 函数
( ) x 1exdx 0
函数有下列结论:
(1) ( 1) ();
(2) Γ(n 1) n !; (3) (1) (2) 1, (1) .
2
0
y12e y1 dy1
(3) 2! 2
2020/9/21
16
二、数学期望的性质

随机变量的数字特征

随机变量的数字特征

第四章 随机变量的数字特征
例 11
§1 数学期望
用某台机器生产某种产品,已知正品率随着该机器
所用次数的增加而指数下降,即
P{第k次生产出的产品是正品}= ek , k 1,2,, 0.
假设每次生产100件产品,试求这台机器前10次生 产中平均生产的正品总数。
解:设X是前10次生产的产品中的正品数,并设
§1 数学期望

所以 EX N (k 1 kqk ) N (1 1 qk )
k
k
只要选 k 使 11/ k qk 1,即1/ k qk ,就可使第
二个方案减少化验次数;当 q 已知时,若选 k 使 f (k) 11/ k qk 取最小值,就可使化验次数最少。
例如:当p=0.1,q=0.9时,可证明k=4可使最小 ;这时,
返回主目录
第四章 随机变量的数字特征
(例8续)
3y,
x y
z g(x) 3x (y x), x y
§1 数学期望
2000 y 4000
下面求 EZ,并求使 EZ 达到最大的 y 值,
y
4000
EZ g(x) f (x)dx 3x ( y x)dx 3y dx
2000
2000
可为国家挣得外汇 3 万元,但假如销售不出而 囤积在仓库,则每吨需浪费保养费 1 万元。 问需要组织多少货源,才能使国家收益最大。
解:设 y 为预备出口的该商品的数量,这个数 量可只 介于 2000 与 4000 之间,
用 Z 表示国家的收益(万元)
3 y,
Xy
Z 3X ( y X ), X y
且 g(xi , y j )Pij 绝对收敛;则 EZ= g(xi , y j )Pij 。

2.3 随机变量的数字特征

2.3 随机变量的数字特征
X3
E(Y ) 10 0.328 5 0.410 00.205 20.057
5.216 (万元)
26
例题与解答
例8 设随机变量X的概率密度为 ex x 0
f (x) 0 x 0
求 Y e2X 的数学期望。 解:Y是随机变量X的函数,
E(Y
)
e2x
f
(x)dx
e2xex dx
8
数学期望的力学解释
在坐标轴上的 X1, X2, , Xn, 等点处放置质量 p1, p2 , , pn 的为质点, 则数学期望处为整个质量体系的重心。,
E(X)
x1
x2
x3
p1
p2
p3
9
例题与解 答
例1 甲乙两名射手在一次射击中得分(分别用 表示)
的分布律如下表所示, 试比较甲、乙两射手的技术。
解:由题意 X~
1 f ( x ) 60
x [ 0,60 ]
g( x)f ( x)dx
设Y表示旅客候车时间0 , 其它

Y=g(X)=
5-X 25-X 55-X
0<X≤5, 5<X≤25, 25<X≤55,
60 1 g( x )dx 0 60
15
25
60 [ 0 ( 5 x )dx 5 ( 25 x)dx
2
2.3.1 数学期 望
问题的提出
1654年, 一个名叫梅累的法国贵族就“两个赌 徒约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望。

人教B版(2019)选修第二册突围者第四章第二节课时4随机变量的数字特征

人教B版(2019)选修第二册突围者第四章第二节课时4随机变量的数字特征

人教B 版(2019)选修第二册突围者第四章第二节课时4随机变量的数字特征学校:___________姓名:___________班级:___________考号:___________一、单选题1.一个口袋中有5个大小相同的球,编号为1,2,3,4,5,从中任取2个球,用X 表示取出球的较大号码,则EX 等于( ) A .4B .5C .3D .4.52.随机变量X 的分布列如表,若E (X )=2,则D (X )=( )A .65B .43C .54D .323.小智参加投篮比赛,比赛规则为投中1次得1分,投不中扣1分.已知小智投篮的命中率为0.5,记小智投篮3次后的得分为ξ,则()D ξ=( ) A .0.375B .0.75C .1.5D .34. “四书”是《大学》《中庸》《论语》《盂子》的合称,在中国思想史上产生过深远影响.为弘扬中国优秀传统文化,某校计划开展“四书”诵读比赛活动,某班有4名同学参赛,每人从《大学》《中庸》《论语》《孟子》这4本书中选取1本进行准备,且各自选取的书均不相同.比赛时,若这4名同学从这4本书中随机抽取1本选择其中的内容诵读,则抽到自己准备的书的学生人数的数学期望为( ) A .12B .1C .23D .25.设随机变量(),X B n p ,且X 的均值与方差分别是2.4和1.44,则( )A .4n =,0.6p =B .6n =,0.4p =C .8n =,0.3p =D .24n =,0.1p =6.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ7.利用下列盈利表中的数据进行决策,应选择的方案是A .A 1B .A 2C .A 3D .A 48.有甲、乙两名学生,经统计,他们在参加同一智力竞赛时,各自的成绩为80分、90分、100分的概率如下表所示:则下列说法正确的是( )A .甲、乙两名学生的成绩不相当,且甲的较稳定B .甲、乙两名学生的成绩不相当,且乙的较稳定C .甲、乙两名学生的成绩相当,但甲的较稳定D .甲、乙两名学生的成绩相当,但乙的较稳定 9.若X 是离散型随机变量,()123P X x ==,()213P X x ==,且12x x <,若4()3E X =,2()9D X =,则12x x +的值为( ) A .53B .73C .3D .11310.已知随机变量8ξη+=,若(10,0.4)B ξ,则()E η,()D η分别是( )A .4和2.4B .2和2.4C .6和2.4D .4和5.611.多项选择题给出的四个选项中会有多个选项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.若选项中有i (其中2,3,4i =)个选项符合题目要求,随机作答该题时(至少选择一个选项)所得的分数为随机变量i ξ(其中2,3,4i =),则有( )A .()()()24323E E E ξξξ+<B .()()()24323E E E ξξξ+>C .()()()24323E E E ξξξ+<D .()()()24323E E E ξξξ+>二、解答题12.已知在某公司年会上,甲、乙等6人分别要进行节目表演,若采用抽签的方式确定每个人的演出顺序(序号:为1,2,,6),求:(1)甲、乙两人的演出序号至少有一个为奇数的概率;(2)甲、乙两人之间的演出节目的个数ξ的分布列、数学期望与方差.13.袋中有20个除标号不同外其他完全相同的球,其中标号为0的有10个,标号为n 的有n (1n =,2,3,4)个.现从袋中任取一球,ξ表示所取球的标号. (1)求ξ的分布列、数学期望和方差;(2)若a b ηξ=+,()1E η=,()11D η=,试求a ,b 的值.14.某校组织一次冬令营活动,有8名同学参加,其中男同学5名,女同学3名.为了活动的需要,要从这8名同学中随机选出3名去执行一项特殊任务,记其中男同学的人数为X .(1)求去执行任务的同学中有男有女的概率; (2)求X 的分布列及数学期望和方差.15.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到奖券1张,每张奖券的中奖概率为12,且每张奖券是否中奖是相互独立的,若中奖,则商场返回顾客现金100元某顾客现购买单价为2300元的台式电脑一台,得到奖券4张. (1)设4张奖券中中奖的张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望和方差.16.已知甲、乙两名射手每次射击击中的环数均大于6环,且甲击中10,9,8,7环的概率分别为0.5,3a ,a ,0.1,乙击中10,9,8环的概率分别为0.3,0.3,0.2,甲,乙射击结果互不影响.记甲,乙两名射手在一次射击中的环数分别为ξ,η. (1)求ξ,η的分布列;.(2)求ξ,η的数学期望与方差,并比较甲、乙两名射手的射击技术.17.某地发现6名疑似病人中有1人感染病毒,需要通过血清检测确定该感染人员,血清检测结果呈阳性的即为感染人员,呈阴性表示没感染.拟采用两种方案检测:方案甲:将这6名疑似病人血清逐个检测,直到能确定感染人员为止;方案乙:将这6名疑似病人随机分成2组,每组3人.先将其中一组的血清混在一起检测,若结果为阳性,则表示感染人员在该组中,然后再对该组中每份血清逐个检测,直到能确定感染人员为止;若结果为阴性,则对另一组中每份血清逐个检测,直到能确定感染人员为止,(1)求这两种方案检测次数相同的概率;(2)如果每次检测的费用相同,请预测哪种方案检测总费用较少?并说明理由. 18.1933年7月11日,中华苏维埃共和国临时中央政府将8月1日作为中国工农红军成立纪念日.中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校举行“强国强军”知识竞赛.该校某班经过层层筛选,还有最后一个参赛名额要在A,B两名学生中产生,该班班委设计了一个测试方案:A,B两名学生各自从6个问题中随机抽取3个问题作答,根据答题情况确定参赛学生.已知这6个问题中,学生A能正确回答其中的4个问题,而学生B能正确回答每个问题的概率均为23,A,B两名学生对每个问题回答的正确与否都是相互独立的.设学生A答对题数为X,学生B答对题数为Y,若让你投票选择参赛选手,你会选择哪名学生?请说明理由.19.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率视为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率.(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.方案1:不分类卖出,单价为20元/kg.方案2:分类卖出,分类后的水果售价如下:从采购商的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取的是精品果的数量,求X的分布列及数学期望()E X.20.记A,B两个投资项目的利润率分别为1x和2x,根据市场分析,可知1x和2x的分布列分别为(1)在A ,B 两个项目上各投资100万元,1 y 和2y 分别表示投资项目A 和B 所获得的利润(单位:万元),求()1D y ,()2 D y . (2)将(0100)x x ≤≤万元投资A 项目,(100)x -万元投资B 项目()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时()f x 取得最小值.三、多选题21.已知随机变量X 的分布列为则下列结论正确的是( )A .()13E X =-B .()143E X +=-C .()2327D X =D .()315D X +=22.一个袋中装有除颜色外其余完全相同的6个黑球和4个白球,现从中任取4个小球,设取出的4个小球中白球的个数为X ,则( ) A .随机变量X 服从二项分布 B .随机变量X 服从超几何分布 C .()327P X ==D .()85E X =23.已知随机变量ξ的分布列如下表所示,则( )A .()E ξ有最小值12B .()E ξ没有最值C .()D ξ有最小值0 D .()D ξ有最大值12四、双空题24. 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销量落入各组的频率视为概率,并假设每天的销售量相互独立.X 表示在未来3天内日销售量不低于100个的天数,则E (X )=________,方差D (X )=________.五、填空题25.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历假定该毕业生得到甲公司面试机会的概率为23,得到乙、丙两个公司面试机会的概率均为p ,且三个公司是否让其面试是相互独立的.设X 为该毕业生得到面试机会的公司个数.若()1012P X ==,则()D X =______.参考答案1.A 【分析】由题意知随机变量为2,3,4,5,计算出相应的概率,运用公式计算结果即可. 【详解】解:由题意知随机变量为2,3,4,5, ()2511210P X C ===, ()1225213105C P X C ====,()13253410C P X C ===,()1425425105C P X C ====,故113223454105105EX =⨯+⨯+⨯+⨯=. 故选:A 【点睛】本题考查离散型随机变量的期望的计算,属于基础题. 2.D 【分析】根据随机分布列的性质以及数学期望可得出关于实数a ,b 的方程组,解出a ,b 的值, 再利用方差公式可求出()D X 的值. 【详解】由分布列的性质以及期望公式可得 1()242212E X a b a b ⎧=++=⎪⎪⎨⎪+=⎪⎩, 解得 14a b ==所以2221113()(12)(22)(42)2442D X =-+-+-=故选:D3.B 【分析】根据题意可得ξ的取值可能为3,3,1,1--,分别求出对应的概率,进而可得ξ的取值可能为1,3,分别求出对应的概率列出分布列,计算数学期望进而可得方差. 【详解】由题意得:ξ的可能取值是3,3,1,1--, 3(3)(3)0.50.125P P ξξ===-==,2333(1)(1)C 0.5300.375.5P P ξξ-⨯======,所以ξ的取值范围是1,3,()()()1110.37520.75P P P ξξξ===+=-=⨯=,()()()3330.12520.25P P P ξξξ===+=-=⨯=,ξ分布列为:故()10.7530.25 1.5E ξ=⨯+⨯=,()22(1 1.5)0.75(3 1.5)0.250.75D ξ=-⨯+-⨯=.故选:B. 4.B 【分析】由排列组合的知识结合古典概型概率公式可得X 取0,1,2,4时的概率,再由期望公式即可得解. 【详解】记抽到自己准备的书的学生人数为X ,则X 可能值为0,1,2,4,则1344C 33(0)A 8P X ⨯===,1444C 21(1)A 3P X ⨯===, 244411(2)4C P X A ⨯===,4411(4)24P X A ===,则3111()0124183424E X =⨯+⨯+⨯+⨯=.故选:B . 5.B 【分析】结合二项分布的期望和方差的公式得到方程组,解方程组即可求出结果. 【详解】由题意,得 2.4np =,(1) 1.44np p -=,∴10.6p -=,∴0.4p =,6n =. 故选:B. 6.A 【详解】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A . 【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确. 7.C 【分析】根据表中的数据,求解各自的均值1234,,,A A A A ,比较大小,即可得到结论. 【详解】由题意A 1的均值为50×0.25+65×0.30+26×0.45=43.7. A 2的均值为70×0.25+26×0.30+16×0.45=32.5. A 3的均值为-20×0.25+52×0.30+78×0.45=45.7. A 4的均值为98×0.25+82×0.30-10×0.45=44.6. ∵A 3的均值最大,∴选方案A 3. 【点睛】本题主要考查了数学期望(均值)的应用,其中明确数据的数学期望(均值)的计算公式和熟记的均值的含义是解答此类问题的关键,着重考查了推理与计算能力,以及分析问题和解答问题的能力. 8.C 【分析】计算出()E X 、()D X 、()E Y 、()D Y 的值,比较()E X 与()E Y 、()D X 与()D Y 的大小,即可得出结论. 【详解】()800.2900.61000.290E X =⨯+⨯+⨯=,()()()()22280900.290900.6100900.240D X =-⨯+-⨯+-⨯=,()800.4900.21000.490E Y =⨯+⨯+⨯=,()()()()22280900.490900.2100900.480D Y =-⨯+-⨯+-⨯=,()()E X E Y ∴=,()()D X D Y <,∴甲与乙成绩的均值一样,甲成绩的方差较小,因此甲.乙两名学生的成绩相当,但甲的较稳定. 故选:C. 9.C 【分析】根据离散型随机变量的期望和方差公式列出方程组,求解方程组即可得答案. 【详解】 解:12214()333E X x x =+=,∴2142x x =-, 又221242412()33339D X x x ⎛⎫⎛⎫=-⨯+-⨯= ⎪ ⎪⎝⎭⎝⎭,12x x <,∴11x =,22x =,∴123x x +=.故选:C. 10.A 【详解】100.4100.44100.40.6 2.4B E D ξξξ∴=⨯==⨯⨯=~(,),,, 8848 2.4E E D D ηξηξηξ=-∴=-==-=,(),()故选A . 11.B 【分析】分别求出2i =、3i =、4i =时()i E ξ,再一一判断即可; 【详解】解:当2i =时,2ξ的可能情况为0,3,5选择的情况共有:1234444415C C C C +++=种;()21515P ξ==,()22315P ξ==,()2121201151515P ξ==--= 所以()221121135015151515E ξ=⨯+⨯+⨯= 当3i =时,3ξ的可能情况为0,3,5选择的情况共有:1234444415C C C C +++=种;()31515P ξ==,()233363151515C P ξ==+=,()316801151515P ξ==--=所以()36182335015151515E ξ=⨯+⨯+⨯=当4i =时,4ξ的可能情况为3,5选择的情况共有:1234444415C C C C +++=种;()41515P ξ==,()4114311515P ξ==-=, 所以()41144753151515E ξ=⨯+⨯= 对于AB :()()24114710522151515E E ξξ+=+⨯=,()32369331515E ξ=⨯=,所以()()()24323E E E ξξξ+>,故A 错误,B 正确;对于CD : ()()2411476922151515E E ξξ+=⨯+=,()32369331515E ξ=⨯=,所以()()()24323E E E ξξξ+=,故CD 错误;故选:B12.(1)45 ;(2) 分布列见解析; 4()3E ξ=,14()9D ξ=.【分析】(1)设A 表示“甲、乙两人的演出序号至少有一个为奇数”,则A 表示“甲,乙两人的演出序号均为偶数”,再由()1()P A P A =-求解即可;(2)由题意ξ的取值范围为{}0,1,2,3,4,求出各个取值的概率,得到分布列,进而即可求出数学期望与方差 【详解】(1)设A 表示“甲、乙两人的演出序号至少有一个为奇数”,则A 表示“甲,乙两人的演出序号均为偶数”,故232614()1()1155A P A P A A =-=-=-=.(2)ξ的取值范围为{}0,1,2,3,4,则22265A 1(0)A 3P ξ===,22264A 4(1)A 15P ξ===,22263A 1(2)A 5P ξ===,22262A 2(3)A 15P ξ===,22261(4)15A P A ξ===所以ξ的分布列为所以141214()01234315515153E ξ=⨯+⨯+⨯+⨯+⨯=,22222144414241414()0123433153531531539D ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯-+⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.13.(1)分布列见解析; 3()2E ξ=,11()4D ξ= ;(2) 22a b =⎧⎨=-⎩或24a b =-⎧⎨=⎩. 【分析】(1)求出ξ的可能取值,进而根据古典概型的概率公式求出对应的概率,即可得到相应的分布列,进而根据期望和方差的概念即可求出结果;(2)根据期望和方差的性质得到2()()D a D ηξ=和()()E aE b ηξ=+,进而解方程组即可求出结果. 【详解】(1)ξ的可能取值为0,1,2,3,4, 故101(0)202P ξ===,1(1)20P ξ==,21(2)2010P ξ===, 3(3)20P ξ==,41(4)205P ξ===, 故ξ的分布列为所以111313()01234220102052E ξ=⨯+⨯+⨯+⨯+⨯=,22222313131333111()0123422220210220254D ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯+-⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)由2()()D a D ηξ=,得211114a ⨯=,即2a =±. 又()()E aE b ηξ=+,所以当2a =时,3122b =⨯+,得2b =-; 当2a =-时,由3122b =-⨯+,得4b =.所以22a b =⎧⎨=-⎩或24a b =-⎧⎨=⎩.14.(1) 4556;(2) 分布列见解析;期望为158;方差225()448D X =.【分析】(1)结合古典概型的概率公式以及概率的加法公式即可求出结果;(2)求出X 的可能取值,分别求出相应的概率,进而求出求X 的分布列及数学期望和方差. 【详解】(1)去执行任务的同学中有男有女的慨率为122153533388C C C C 151545(1)(2)C C 562856P X P X =+==+=+=.(2)X 的取值范围为{}0,1,2,3,035338C C 1(0)C 56P X ===,125338C C 15(1)C 56P X ===,21533815(2)28C C P X C ===,3053385(3)28C C P X C ===; 故X 的分布列为故X 的数学期望11515515()0123565628288E X =⨯+⨯+⨯+⨯=(或3515()88E X ⨯==), 方差222215115151515155225()0123856856828828448D X ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.15.(1)答案见解析 ;(2) 2300100ηξ=-, ()2100E η=,()10000D η=. 【分析】(1)由题意,ξ服从二项分布,从而可得ξ的分布列;(2)由二项分布的期望和方差公式可得()E ξ和()D ξ,又2300100ηξ=-,根据公式即可求解()E η和()D η. 【详解】解:(1)每张奖券是否中奖是相互独立的,∴14,2B ξ⎛⎫⎪⎝⎭, ∴441()C 2i P i ξ⎛⎫== ⎪⎝⎭(0,1,2,3,4)i = ∴ξ的分布列为(2)14,2B ξ⎛⎫⎪⎝⎭,∴1()422E ξ=⨯=,11()4122D ξ=⨯⨯=.又由题意可知2300100ηξ=-,∴()(2300100)2300100()230010022100E E E ηξξ=-=-=-⨯=,2()100()10000D D ηξ==.16.(1)答案见解析 ;(2) ()9.2E ξ=,()8.7E η=,()0.96D ξ=,() 1.21D η=;甲比乙的射击技术好. 【分析】(1)由题意先求出a ,再由随机变量ξ,η的意义得到相应的分布列;(2)由(1)中的分布列,利用期望与方差的公式求出期望与方差,结合期望与方差的含义即可求解 【详解】(1)依题意,有0.530.11a a +++=,解得0.1a =. 乙击中10,9,8环的概率分别为0.3,0.3,0.2,∴乙击中7环的概率为1(0.30.30.2)0.2-++=, ∴ξ,η的分布列分别为(2)由(1)可得()100.590.380.170.19.2E ξ=⨯+⨯+⨯+⨯=,()100.390.380.270.28.7E η=⨯+⨯+⨯+⨯=,2222()(109.2)0.5(99.2)0.3(89.2)0.1(79.2)0.10.96D ξ=-⨯+-⨯+-⨯+-⨯=, 2222()(108.7)0.3(98.7)0.3(88.7)0.2(78.7)0.2 1.21D η=-⨯+-⨯+-⨯+-⨯=.由于()()E E ξη>,说明甲平均击中的环数比乙高, 又()()D D ξη<,说明甲击中的环数比乙集中,比较稳定,∴甲比乙的射击技术好.17.(1)16;(2)乙方案,理由见解析.【分析】设甲方案检测的次数{1,2,3,4,5}X ∈,记乙方案检测的次数{2,3}Y ∈,(1)记两种方案检测的次数相同为事件A ,根据独立事件的概率的乘法公式,即可求解;(2)分别求得随机变量X 和Y 的期望,结合期望的大小,即可求解. 【详解】由题意可设甲方案检测的次数是X ,则{1,2,3,4,5}X ∈,记乙方案检测的次数是Y ,则{2,3}Y ∈, (1)记两种方案检测的次数相同为事件A ,则()()()111212,23,363636P A P X Y P X Y ===+===⨯+⨯=,所以两种方案检测的次数相同的概率为16.(2)由11(1)(2)(3)(4),(5)63P X P X P X P X P X ==========,所以1111110()12345666633E X =⨯+⨯+⨯+⨯+⨯=,122(2),(3)1333P Y P Y ====⨯=,则128()23333E Y =⨯+⨯=,因为()()E X E Y >,所以采用乙方案. 【点睛】求随机变量X 的期望与方差的方法及步骤: 1、理解随机变量X 的意义,写出X 可能的全部值; 2、求X 取每个值对应的概率,写出随机变量的分布列; 3、由期望和方差的计算公式,求得数学期望()(),E X D X ;4、若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解. 18.选择投票给学生A ;理由见解析. 【分析】根据古典概型运算公式求出随机变量X 的数学期望和方差,结合二项分布的定义求出随机Y 的数学期望和方差,最后利用数学期望和方差的性质进行判断即可. 【详解】选择A 学生理由如下: X 的取值范围为{}1,2,3,124236C C 1(1)C 5P X ===,214236C C 3(2)C 5P X ===,3436C 1(3)C 5P X ===,所以131()1232555E X =⨯+⨯+⨯=,2221312()(12)(22)(32)5555D X =-⨯+-⨯+-⨯=由题意知23,3YB ⎛⎫ ⎪⎝⎭, 所以2()323E Y =⨯=,212()3333D Y =⨯⨯=所以()()E X E Y =,()()D X D Y <,由此可见,学生A 与学生B 的平均水平相当,但学生A 比学生B 的成绩更稳定,所以选择投票给学生A . 19.(1)96625;(2)第一种方案;(3)详见解析 【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布,利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的计算公式求得结果. 【详解】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A ,则()2011005P A == 现有放回地随机抽取4个,设抽到礼品果的个数为X ,则1~4,5X B ⎛⎫ ⎪⎝⎭∴恰好抽到2个礼品果的概率为:()22244196255625P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ (2)设方案2的单价为ξ,则单价的期望值为:()1342165488481618222420.61010101010E ξ+++=⨯+⨯+⨯+⨯== ()20E ξ>∴从采购商的角度考虑,应该采用第一种方案(3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个 现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为:0,1,2,3则()36310106C P X C ===;()2164310112C C P X C ===;()12643103210C C P X C ===;()343101330C P X C ===X ∴的分布列如下:()1131601236210305E X ∴=⨯+⨯+⨯+⨯=【点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求解出概率.20.(1)()14D y =;()212D y = ;(2)()f x 的最小值3,此时=75x . 【分析】(1)首先求出1y 和2y 的分布列,再求出每个分布列的数学期望,然后通过离散型随机变量的方差公式计算即可;(2)通过已知条件表示利用新的方差表示函数()f x ,然后结合(1)中答案和方差的性质,再利用二次函数性质,求解即可. 【详解】(1)由题意,可知1y 和2y 的分布列分别为∴()150.8100.26E y =⨯+⨯=,()220.280.5120.38E y =⨯+⨯+⨯=,∴()221(56)0.8(106)0.24D y =-⨯+-⨯=,()2222(28)0.2(88)0.5(128)0.312D y =-⨯+-⨯+-⨯=.故答案为:()14D y =,()212D y =. (2)由题意可知,12100()100100x x f x D y D y -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由(1)中所求方差以及方差的性质可知()()2212100()100100x x f x D y D y -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭22(1675)3100x =-+, 故当75x =时,()f x 取得最小值3. 故答案为:()f x 取得最小值3,此时75x =. 21.AD 【分析】求出()E X 、()D X 的值,可判断AC 选项的正误,利用均值和方差的性质可判断BD 选项的正误. 【详解】()()11111012363E X =-⨯+⨯+⨯=-,()()11443E X E X +=+=,故A 正确,B 错误;()22211111151013233369D X ⎛⎫⎛⎫⎛⎫=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()3195D X D X +==,故C 错误,D正确. 故选:AD. 22.BCD 【分析】由题意知随机变量X 服从超几何分布,利用超几何分布的性质直接判断各选项即可 【详解】由题意,知随机变量X 服从参数为10,4,4的超几何分布,即(10,4,4)X H ~,故A 错误,B 正确;随机变量X 的取值范围为{}0,1,2,3,4,464101(0)14C P X C ===,13464108(1)21C C P X C ===,2246410C C 3(2)C 7P X ===,3146410C C 4(3)C 35P X ===,444101(4)20C P X C ===,故18341812341421()7352105E X ,故C ,D 正确. 故选:BCD . 23.AD 【分析】根据分布列的性质求得12b =,102a ≤≤,求出()E ξ关于a 的表达式,可判断AB 选项的正误;求出()D ξ关于a 的表达式,利用二次函数的基本性质可判断CD 选项的正误. 【详解】由题意知,21b a b a b -++==,即12b =,又0102a a ≥⎧⎪⎨-≥⎪⎩,则102a ≤≤,所以()()113022,222E b a b a a ξ⎡⎤=⋅-++=+∈⎢⎥⎣⎦,A 对;()222211112024112221224222D a a a a a a a ξ⎛⎫⎛⎫⎛⎫=+--++-++-=-++ ⎪ ⎪ ⎪⎝⎭⎝⎛⎫⨯⨯⎭⎝ ⎝⎭⎪⎭211442a ⎛⎫=--+ ⎪⎝⎭,又102a ≤≤,所以当14a =时,()D ξ有最大值12,当0a =或12时,()D ξ有最小值14. 故选:AD.24.1.8 0.72 【详解】由题意知,日销售量不低于100个的频率为(0.006+0.004+0.002)×50=0.6,且X ~B (3,0.6),所以期望E (X )=3×0.6=1.8, 方差D (x )=3×0.6×(1-0.6)=0.72. 25.1318【分析】根据该毕业生得到面试的机会为0时的概率,求出乙、丙公司面试的概率,根据题意得到X 的可能取值,结合变量对应的事件写出概率得出分布列及期望,从而求得方差. 【详解】答案第15页,共15页 由()1012P X ==,知211(1)312p ⨯-=,得12p =, 由题意知X 为该毕业生得到面试的公司个数,则X 的可能取值是0,1,2,3,221111(1)1132322P X ⎛⎫⎛⎫==⨯-+⨯⨯- ⎪ ⎪⎝⎭⎝⎭111113223⎛⎫+⨯-⨯= ⎪⎝⎭, 2112111115(2)1132232232212P X ⎛⎫⎛⎫==⨯⨯-+⨯-⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 2(3)3P X ==⨯21126⎛⎫= ⎪⎝⎭, 所以11515()01231231263E X =⨯+⨯+⨯+⨯=, 所以221515()0112333D X ⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭22551513231236318⎛⎫⎛⎫+⨯-+⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:1318。

2.2随机变量的数字特征



数学期望也称为均值。
返回主目录
二、 随机变量的函数的分布
随机变量的函数
设 X 是一随机变量,Y 是 X 的函数, g X , 则 Y Y
也是一个随机变量.当 X 取值 x时,Y 取值 y g x
本节的任务就是:
已知随机变量 X 的分布,并且已知Y g X , 要求随机变量Y 的分布.
返回主目录
此时称Y 服从自由度为1的 2分布。
二、 随机变量的函数的分布
例 6
设 随机变量 X 的密度函数为 f X x , X ,试 Y 求随机变量Y 的密度函数 f Y y .
设随机变量X 的分布函数为FX y ,随机变量 Y 的分布函数为FY y
解:
FY y P y P X y Y
解:(1) 先求 Y = X 2 的分布函数 FY(y):
10 由于 Y X 2 0, 故当 y 0 时 FY ( y) 0.
20 当 y 0 时, FY ( y ) P{Y y} P{ X 2 y} P{ y X y }
y y
f X ( x)dx.
Y = (X-1)2
的分布律.
1 2 X -1 0 pk 0.2 0.3 0.1 0.4
解: Y 有可能取的值为 0,1,4. 且 Y=0 对应于 ( X-1)2=0, 解得 X=1, 所以, P{Y=0}=P{X=1}=0.1,
返回主目录
二、 随机变量的函数的分布
例 2(续) Y=(X-1)2 同理,
(1) 旅客 8:00 到站,求他侯车时间的数学期望。 (2) 旅客 8:20 到站,求他侯车时间的数学期望。
解:设旅客的候车时间为 X(以分记)

8-5随机变量的数字特征

解: 句子中共8个单词,其中5个单词含3个字母,其 余3个单词分别含2个字母、4个字母、9个字母。 因此,X 的概率分布为
X xk
2
34
9
P{ X xk }
1
8
5 8
1 8
1 8
EX 2 1 3 5 4 1 9 1 15
8
8
8
84
例2 已知连续型随机变量 X 的分布密度为
p( x)
2( x 1) 3 , x 0
随机变量的这些数字特征不仅在一定程度上可以简 单刻划出随机变量的基本性态,而且可以用数理统计 的方法估计出它们。因此,对它们的研究在理论上、 实际上都有重要意义。
一、数学期望(均值)---数据的中心
1、从加权平均到数学期望
一门课程,平时成绩p占20%,期末成绩m占 80%,某生平时得90分,期末得82分,则该生该课程 的总成绩 z 为平时成绩p和期末成绩m的加权平均,即
.
0,
x0
求 EX 。
解: EX
xp( x)dx
2x 0 ( x 1)3 dx
2
1
1 dx
0 ( x 1)2 ( x 1)3
1
2
(x 1)2 x 1 0
1
2
lim
x
(x
1)2
x1
(1 2) 1
2、常见分布的数学期望
• 二项分布 X B(n, p) EX n p
• 泊松分布 X P( λ) EX λ
z 20% p 80% m 0.2 90 0.8 82 83.6
一般地,一组数 x1, x2 , , xn 在一组权
p1, p2 , , pn 下的加权平均为 p1 x1 p2 x2 pn xn

智轩考研数学红宝书2010精华习题完全解答---概数第四章 随机变量的数字特征

第四章 随机变量的数字特征精华习题一、填空题1. 设二维随机变量()(), ~01; X Y U x y x <<<,32Z X =+,则DZ _____=。

2.3于456123 (C)D(XY)<D(X)D(Y) (D)()(E E X E YY =ç÷èø[ ] 4.设二维连续型随机变量(X,Y)服从222{(,)|}D x y x y a =+£上的均匀分布,则(A)X和Y不相关,不独立。

(B)X和Y相互独立。

(C)X和Y相关。

(D)X和Y均服从() , a a -上的均匀分布。

[ ]5.已知随机变量()~0, 1X N ,随机变量2Y X =,则X与Y(A)相关且不独立 (B )不相关且独立(C )不相关且不独立 (D )相关且独立 [ ]三、解答题1.设,X Y 是两个离散随机变量,可能的取值为1, 1X =-;1, 0, 1Y =-;0.2;EX = 0.25;EY ={P 23 4.52Y6第四章 随机变量的数字特征精华习题完全解答二、填空题1.设二维随机变量()(), ~01; X Y U x y x <<<,32Z X =+,则DZ _____=。

【解】设A =“每次检验调整设备”,Y =“10件产品中所发现的次品数”,则()~10, 0.1Y B ,()~4, X B p (){}{}{}()()()()()01019011010210110.10.90.10.90.2640.26 1.04; 140.260.740.75p P A P Y P Y P Y C C EX np DX np p ==³=-=-==--===´==-=´´=4.设随机变量X的分布函数0,1,0.2,10,()0.6,01,1, 1.x x F x x x <-ìï-£<ï=í£<ïï³î(||)____,E X =则 (||)_____.D X =5 61()()()()22222E E X E X D X m m m m m s s ìïí-=-+-=-+=éùïëûî2.设随机变量X和Y相互独立,均服从()0, 1U ,则服从相应区间或区域上均匀分布的是(A)2X (B)X+Y (C)X-Y (D)(X,Y) [ ]【解】选()D 。

随机变量的数字特征



12
E (e 2 X ). 例 设随机变量X~E (1),求
解 X的概率密度为
e x , x 0 p ( x) 0, x 0E(e2 XFra bibliotek) e


2 x
p( x)dx e3 x dx
0


1 1 3 x e 3 3 0
10000
0.5
20000
0.2
E( X ) 40000 0.3 10000 0.5 20000 0.2 13000
存入银行的利息: 8000 故应选择股票投资.
练 设随机变量的分布律为

p
0
1
2
0.2
3
0.1
0.4 0.3
2
求E,E ,E 2 - 1
解:E 0 0.4 1 0.3 2 0.2 3 0.1 1
1 3 即A 应获得赌金的 , 而 B 只能获得赌金的 4 . 4
A胜出的概率 1/2+1/2*1/2=3/4
若设随机变量 X 为:在 A 胜2局B 胜1局的前提 下, 继续赌下去 A 最终所得的赌金.
则X 所取可能值为:
其概率分别为:
200
3 4
0
1 4
因而A期望所得的赌金即为X的 “期望”值, 等于 即为
4 5 6 1/4 1/2 1/4
X2 P
2
3
5
7
8 1/8
1/8 1/8 1/2 1/8
若需要直径为5的产品,选哪种产品较理想? 两种产品的直径均值是相同的,但产品2的偏差大, 如果需要使用直径为5的产品,则产品1较产品2理想。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲 随机变量的数字特征习题课 教学目的:掌握随机变量的数字特征,了解切比雪夫不等式和大数定律。 教学重点:理解数学期望和方差的概念,掌握它们的性质与计算,熟悉常用分布的数学期望和方差。 教学难点:随机变量函数的数学期望。 教学时数:2学时 教学过程: 一、知识要点回顾 1. 随机变量X的数学期望()EX 对离散随机变量 ()()iiiEXxpx

若1,2,iL,则假定这个级数绝对收敛,否则就没有数学期望。 对连续随机变量 ()()EXxfxdx 假定这个广义积分绝对收敛,否则就没有数学期望。 2. 随机变量X的函数()gX的数学期望[()]EgX,其中()gX为实函数。 对离散随机变量 [()]()()iiiEgXgxpx

对连续随机变量 [()]()()EgXgxfxdx 假定所涉及的无穷级数绝对收敛,所涉及的广义积分绝对收敛。 3. 二维随机变量(,)XY的函数(,)gXY的数学期望[(,)]EgXY,其中(,)gXY为二元实函数。 对离散随机变量 [(,)](,)(,)ijijijEgXYgxypxy

对连续随机变量 [(,)](,)(,)EgXYgxyfxydxdy 假定所涉及的无穷级数绝对收敛,所涉及的广义积分绝对收敛。 4. 数学期望的性质(假定所涉及的数学期望都存在) (), ()Eccc为常数 ()(), ()EcXcEXc为常数 ()(), (,)EaXbaEXbab为常数 ()()()EXYEXEY

11()()nniiiiiiEcXcEX 若,XY相互独立,则()()()EXYEXEY。 若12,,,nXXXL相互独立,则1212()()()()nnEXXXEXEXEXLL。

5. 随机变量X的方差222(){[()]}()[()]DXEXEXEXEX,这里假定

2(),()EXEX都存在。

6. 方差的性质 ()0, ()Dcc为常数 2()(), ()DcXcDXc为常数

2()(), (,)DaXbaDXab为常数

若,XY相互独立,则()()()DXYDXDY。

若12,,,nXXXL相互独立,12,,,ncccL为常数,则211()()nniiiiiiDcXcDX。 7. 随机变量X的k阶原点矩 ()()kkXEX

随机变量X的k阶中心矩 (){[()]}kkXEXEX

易知,112()(),()0,()()XEXXXDX。 8. 随机变量X与Y的协方差 cov(,){[()][()]}()()()XYEXEXYEYEXYEXEY 22()()()2cov(,), (,)DaXbYaDXbDYabXYab为常数

cov(,)cov(,)XYYX cov(,)cov(,), (,)aXbYabXYab为常数 cov(,)cov(,)cov(,)XYZXZYZ 若cov(,)0XY,则称X与Y不相关。若随机变量X与Y相互独立,则X与Y一定不相关,反之不成立。 9. 随机变量X与Y的相关系数cov(,)(,)()()XYRXYDXDY

|(,)|1RXY |(,)|1YabXRXY 10. 切比雪夫不等式:若随机变量X的数学期望()EX与方差()DX存在,则对任意正 数有

2()()DXPXEX

由切比雪夫不等式可证明切比雪夫定理,进而推出伯努利定理。后面两个定理是常用的大数定律。 二 、典型例题解析 1.已知随机变量X的概率分布为

X -2 0 1 ip 0.3 0.4 0.3 求2(46)EX。

分析 由要点2,令2()46gXX,代入公式即可。

解 322

1(46)(46) 220.360.4100.312iiiEXxp



注 计算随机变量函数的数学期望原则上有两种方法:一种是先求出随机变量的概率分布或概率密度,再按数学期望的定义计算;一种是直接带入要点2种所列的公式。 通常用后一种方法较简便。

2.设二维随机变量(,)XY的概率密度01,01(,)0xyxyfxy其它, 求(),(),(),(),(),cov(,),(,)EXEYDXDYEXYXYRXY。 分析 题中前五项计算均可按要点3所列公式计算,后两项按要点8与9计算。 解 110010()(,)()17 ()212EXxfxydxdyxdxxydyxxdx



 又 1122200120()(,)()15 ()212EXxfxydxdyxdxxydyxxdx



 所以 2225711

()()[()]1212144DXEXEX



按对称性有 711(),()12144EYDY

110010()(,)()11 ()233EXYxyfxydxdyxdxyxydyxxdx



 1771cov(,)()()()31212144XYEXYEXEY

111111

(,)144121211RXY



注 二维随机变量的许多计算都可归结为计算二维随机变量函数的数学期望,所以 要点3所列公式应会灵活应用。 3.填空 (1) 已知()4,()1,(,)0.6DXDYRXY,则(32)DXY____________。 (2) 随机变量,XY相互独立,又1(2),(8,)4XPYB::,则(2)EXY____________,

(2)DXY____________。

(3) 设,XY独立且同分布011233Xp,则(,)EXY____________。 (4) 随机变量X的方差为2,则根据切比雪夫不等式,估计()2PXEX____________。

分析 在要点8中取3,2ab代入公式解答(1);由已知公式得()2EX,()2DX1()824EY,133()8442DY,在利用方差性质解答(2);对于(3),

可求出随机变量ZXY的概率分布再求()EXY,或由,XY都服从“0-1”分布得,再代相应公式;对于(4),用2,()2DX带入切比雪夫不等式。 解 (1) (32)9()4()12(,)()() 9441120.62125.6DXYDXDYRXYDXDY (2) (2)()2()2222EXYEXEY 3(2)()4()2482DXYDXDY

(3) 解一 015499XYp,54()0199EXY

解二 224()()()339EXYEXEY

(4) 22

()21{|()|2}1122DXPXEX

注 填空主要用于复习概念,熟悉各种计算公式,通常计算量较小。 4.一台设备有三大部件构成,在设备运转中各部件需要调整的概率相应为0.1,0.2,0.3,假设各部件相互独立,以X表示同时需要调整的部件数,求数学期望()EX

和方差()DX。

分析 先引入新随机变量1,ii=1230,iiX第个部件需要调整(,,)第个部件无需调整,则31iiXX,iX

相互独立,利用31()()iiEXEX,31()()iiDXDX完成计算。 解 由iX服从“0-1”分布,()iiEXp,()(1)iiiDXpp,1,2,3i,得

1()0.1EX,1()0.09DX,2()0.2EX,2()0.16DX,3()0.3EX,3()0.21DX 故()0.10.20.30.6EX,()0.090.160.210.46DX。 注 利用性质来计算数学期望和方差往往较有效,应该学会这种方法。另外,应记住常用分布相应的数学期望和方差。 5.甲乙两队比赛,若有一队先胜四场,则比赛结束。假定甲队在每场比赛中获胜的概率为0.6,乙队为0.4,求比赛场数的数学期望。 分析 X可能取值为4,5,6,7,按古典概型计算X取各值的概率得到X的概率分布,由此算出)(XE。 解 1552.04.06.0}4{ 44XP 141444{5}0.60.40.60.40.2688PXCC

24222455{6}0.60.40.60.40.2995PXCC

34333466{7}0.60.40.60.40.2765PXCC

()40.155250.268860.299570.27655.7EX 注 对应用题而言,大量计算是计算概率,这就要求掌握好以前所学过的各种计算概率的方法。

6.设随机变量X服从分布,其概率密度1,0()()00xxexfxx,其中0,0是常数,求(),()EXDX。 分析 按定义求()EX,又22()()[()]DXEXEX,计算中涉及函数,

10(),(0),(1)()sxsxedxs

解 0()()xEXxedx 1110()() ()()xxedxtx令

(1)()()()



又 210()()xEXxedx

相关文档
最新文档