简谐运动的能量

合集下载

简谐运动的回复力和能量

简谐运动的回复力和能量

简谐运动的回复力和能量简谐运动是一种在物理学中经常出现的现象,它是指一种物体在作往复振动时,其位移随时间变化呈现出正弦曲线的运动。

简单来说,就是物体在一定的位置上来回振动,比如一个摆锤在悬挂在绳子上摆动,或者是一个弹簧在振动。

这种运动具有回复力和能量的特点,下面将分别进行讨论。

回复力的定义和特点在简谐运动中,回复力指的是弹性势能的作用力,它是当物体离开平衡位置时,受到的恢复力,使物体朝向平衡位置方向移动。

回复力的大小和方向与物体离开平衡位置的距离成正比,反向指向平衡位置。

具体来说,回复力的公式为F = -kx,其中k是弹性系数,x是物体离开平衡位置的距离。

回复力对于简谐运动来说是一个非常重要的特性,因为它是使物体朝向平衡位置恢复的力量,同时也是振动维持的关键因素。

在简谐运动中,振动的频率、周期和振幅都取决于回复力的大小和弹性系数的变化。

当振幅变大时,回复力也会变大,当弹性系数增大或减小时,回复力的大小也会发生相应的变化。

能量的定义和特点能量是指物体的运动状态所具有的“有用”的物理量。

在简谐运动中,能量由动能和势能组成,它们之间通过运动的转化实现互相转换。

简谐运动的总能量等于动能和势能的和,它是一个守恒量,也就是说在运动过程中能量的总和始终保持不变。

具体来说,当物体在平衡位置附近振动时,它具有最小的动能和弹性势能;当物体脱离平衡位置时,弹性势能会转化为动能,同时物体有更大的动能;当物体到达到最远的位置时,它的动能最大,而弹性势能为零。

这意味着,简谐运动所产生的能量是从一种形式到另一种形式的转化。

简谐运动是一种常见的物理现象,它具有回复力和能量的特点。

回复力是指物体朝向平衡位置方向恢复的力量;能量由动能和势能组成,是物体运动状态的“有用”物理量。

回复力和能量是简谐运动的关键特性,它们直接决定了运动的频率、周期和振幅变化,因此在研究简谐运动时非常重要。

高二物理简谐运动能量

高二物理简谐运动能量

全家人都知道这个说法,在姐姐的心灵深处,樟木箱子早已深深地扎下了根。 光阴似箭,姐姐真的到了谈婚论嫁的时候了。正在紧锣密鼓地准备婚礼时,友人也给弟弟介绍了一个女朋友。当女朋友第一次上门时,看着樟木箱子,不经意地对弟弟说,这只樟木箱子做工可真好。妈妈 唯恐为了一只樟木箱子惹起儿子女朋友的不快,妈妈变卦了,她忘了已经多次许愿给自己的女儿了。 姐姐出嫁那天,虽是她一生大喜的日子,也没有阻挡她向自己的丈夫哭诉。架不住日积月累,丈夫终于在一天酒后,借酒壮胆来到了久违的岳母家,把身旁的小舅子打了个口鼻出 血…… 弟弟的几个朋友听说后愤愤不平。他们打得姐夫满脸血水趴在地上,姐夫被人抬到医院,大夫说须做眼球摘除手术,可怜的姐夫成了独眼瞎。这时的姐姐逢人就说,是我让丈夫去讨要樟木箱子,我要跟独眼瞎的丈夫过一辈子。弟弟只是个打手,是母亲指使他打了自己的丈夫。 她还说不要任何医疗赔偿,就是要把打人的弟弟送进监狱。 这个由一只樟木箱子引起的家庭伤害案,其实也是关于诚信的话题。亲人之间,甚至是母女之间,也要讲诚信。这个很是个别的案例,给人的思考真是一言难尽。 88、“少”的哲学 早在1583年,作为药理学家和 学者的帕拉斯尔萨斯就说过一句极其中肯而精彩的话:“只有剂量能决定一种东西没有毒。”直到今天,这句话仍然不失其意义。姑且不论中国民间“是药三分毒”的说法,就是人们一般不可须臾离开的裹腹之物———食物,也并非是“韩信点兵,多多益善”。食物如果过多,也可能造 成副作用和中毒,正所谓过犹不及。 最近,美英一个专家小组经过考察和比较研究指出,中国对肝癌的化疗用药不仅品种多而且剂量大,比美英一般用药量多一半。结果是,肝癌病人的死亡率不仅比国外高,而且即使能达到有效治疗,患者的存活期也不过一两年或二三年,相比之 下,国外的肝癌病人的治愈率不仅高于中国的肝癌病人,而且一般存活年限也比中国肝癌病人多一倍,至少是五六年。 为什么会有这样迥然相异的结果呢其中的原理很简单。肝癌本来就极大地损害了肝脏的功能,如果这时再对病人大剂量用药和用多种药,肝脏的负担更重。所以许 多肝癌病人并非死于癌症,而是死于药物中毒。尽管医生的用药是用心良苦,但结果却是事与愿违。 少,但是有效,不仅是用药的一种方法,而且是生活早就阐明的一个简单道理。简单而实用比繁琐哲学好得多。 89、爱下棋的国王 有一个爱下象棋的国王,他常和大臣、 象棋高手对弈。几年来,每次下棋国王都是赢家,大家都恭维他为天下独一无二的象棋高手。 一日,国王微服私访。他来到京城一家酒店,一个十来岁的小姑娘正和一个青年人下象棋。那小姑娘把青年人杀得一败涂地。国王坐下来和小姑娘对弈,不多一会就损兵折将,成了小姑娘 的手下败将。国王不服输,又和小姑娘下了一盘,结果是同样惨败。国王这才心服口服。 小姑娘笑着说:“我的父亲才是高手呢。他曾被选入宫中和国王对弈只是他输给了国王。”国王说:“为什么会输给国王呢”小姑娘哈哈大笑道:“父亲说,国王高兴就能国泰民安,他是故意 输给国王的。” 国王回到宫中,闭门反思,他想:太平盛世,其实不是我个人的功劳,还有各种各样的人要作出让步,或以不同的方式相助我啊是的,各行各业的兴旺与成功,上上下下的默契和互动作用是何等的重要呢。 90、暗示的力量 多年前的一个傍晚,一个叫亨利 的青年移民,站在河边发呆。这天是他30岁生日,可他不知道自己是否还有活下去的必要。因为亨利从小在福利院里长大,身材矮小,长相也不漂亮,讲话又带着浓厚的法国乡下口音,所以他一直很瞧不起自己,连最普通的工作都不敢去应聘,没有工作,也没有家。 就在亨利徘徊 于生死之间的时候,他的好朋友约翰兴冲冲地跑过来对他说:“亨利,告诉你一个好消息” 我刚刚从收音机里听到一则消息,拿破仑曾经丢失了一个孙子。播音员描述的相貌特征,与你丝毫不差” “真的吗,我竟然是拿破仑的孙子”亨利一下子精神大振。联想到爷爷曾经以矮 小的身材指挥着千军万马,用带着泥土芳香的法语发出威严的命令,他顿感自己矮小的身材同样充满力量,讲话时的法国口音也带着几分高贵和威严。第二天一大早,亨利便满怀自信地来到一家大公司应聘。 20年后,已成为这家大公司总裁的亨利,查自己并非拿破仑的孙子,但这早已 不重要了。 91、从“两可之说”到“两面思维” 春秋战国时期有一个名家学派。该学派的创始人叫邓析。我国古代文献称邓析“操两可之说,设无穷之辞”。下面的故事就是邓析“操两可之说”的典型事例: 郑国夏季常洪水泛滥。有一富人不幸被洪水淹死,尸体被某人捞起。 死者家属得知后,想出钱赎回尸体。但得尸者要价太高。死者家属无奈,便请邓析出主意。邓析对死者家属说:“你安心等着吧。那尸体如果你不去买,别人是不会去买的。”死者家属觉得有道理:对啊,我是那尸体的唯一买主,我若不买,得尸者便一无所得,那我就耐着性子再等一等, 看他如何!过了一阵,得尸者见死者家属不再来赎尸,而尸体眼看就要腐烂了,情急之下也去请邓析出主意。邓析说:“你安心等着吧。死者家属只能到你这儿来买尸体,不可能到别处去买。”得尸者觉得没错:是啊,我是那尸体的唯一卖主,只此一家别无分号,我再耐心等一等,死者 家属迟早会来的。故事的结局虽不得而知,但可以预见,如果死者家属和得尸者都遵从邓析的意见一直等下去,结果只能是两败俱伤。 邓析在死者家属和得尸者之间左右逢源,“操两可之说”的做法既不可取,更不值得效仿。但邓析的观察问题、分析问题的方式与方法,却有值得 我们思考之处。在这个故事中,我们看到的是邓析的“两面思维”,即从正反两个方面来思考同一事物。这是一种辩的思维方式。如果死者家属和得尸者也懂得“两面思维”,每一方都既看到自己有利的一面,也看到自己不利的一面,在知己知彼的情况下坐下来认真谈判,双方都做出一 点让步,结果就会是“双赢”,而不是“双输”了。 92、责任 那天晚上,在单位加班,8点多钟时,我出去吃饭,在路上,一个八、九岁的小姑娘拦住了我。 “叔叔,你能帮我一个忙吗?”“什么事?”“那边下水道的井盖开了,你能帮我把它放好吗?”听了她的话,我 才注意到,在自行车道上,一块井盖错了位,虚虚地搭在井口。我走上前去用脚踩了踩,不在意的话,人踏上去会跌落井下的。在我掂量井盖重量的时候,小姑娘用一种期待和信赖的目光看着我。 这忙,我能不帮吗? 在小姑娘和一个过路女同志的帮助下,折腾了半天,好不容 易才将它恢复原状,踩了踩,终于没事了。“谢谢叔叔!”小姑娘高兴地骑着车走了。 站在路边,我又想起小姑娘的话,她说的是“你能帮我一个忙吗”——她说的是帮她的忙,而这块井盖的错位,该是谁的事呢?如果没有这个小姑娘,也许,明天的报纸和电视上又会有“窨井伤 人”的新闻,或者是“井盖开了,该谁来管”之类的报道。从小女孩的话中,从她期盼的目光中,我分明看到了一种责任,一种发自内心的善良——小姑娘一定认为,她是第一个发现的人,就有义务将井盖恢复原状。 93、有与无 越有学问的人,也许“知道”的事情越少。比方 当对面坐着智力游戏明星。越是“知道”很多的人,也许越没有学问。比方说坐在电脑面前的网恋大师。 一个学者,一开口上下五千年地引经据典,五分钟后还说不出一句属于他自己的话,我劝你就是出于礼貌,你也要尽早抽身退席,因为这种讲演,其实,也是一种盗版。一个官 员,一开口就是“既要……又要……”,而且成串成串地说出来,方方面面都有了,其实这种报告等于什么也没有说,只表明他说过了,有了错,出了事,与他没有关系。 在文坛上,会一时红得发紫的新星,有时也会在你惊讶他突然冒出来之余,马上惊奇地发现他又突然消失得无 影无踪。这种彗星,见得多了,就能发现规律性的特性:无背景有胆量,所以在名家众多高手如云的文坛,也能振臂一呼叫人惊诧一回。 无才华却有勇气,骂倒鲁迅,横扫当今一切名流,自开门户,有主义有流派有世界最新写作方式,让人知道又有颗彗星扫过文坛。 越是年纪 小的时候,越容易得到大评语,比方说“是个天才”,比方说“能当大官当总统当联合国秘书长”;有评价容易,因为兑现的日子还遥遥无期;越到老了越不容易得到这样的评价,因为人老了,资格有了,能力有了,可惜兑现的时间没有了。 94、珍贵东西慢慢长 从读小学起, 我就一直很努力地学习,可成绩总是平平。有一段时间,我曾对自己失去了信心。 父亲带我去公园,指着园内的两排树问我:“你知道那些是什么树吗?”我一看,一排是白杨,一排是银杏,与高大的白杨相比,银杏显得十分矮小。父亲说:“我特意问过公园管理员,这两排树是 同时栽下的。栽下时,都一样高。它们享受同样的阳光,同样的水土,同样的条件,到后来,白杨为什么长得高大,而银杏却生得矮小呢?”父亲见我回答不上来,接着说:“孩子,要知道,珍贵的东西总是慢慢成长。” 95、保护孩子的天性 1979年6月,中国曾派一个访问团, 去美国考察初级教育。回国后,写了一份3万字的报告,在见闻录部分,有四段文字: ▲学生无论品德优劣、能力高低,无不趾高气扬、踌躇满志,大有“我因我之为我而不同凡响”的意味。 ▲小学二年级的学生,大字不识一斗,加减乘除还在掰手指头,就整天奢谈发明创造。 在他们手里,让地球调个头,好像都易如反掌似的。 ▲重音、体、美,而轻数、理、化。无论是公立还是私立学校,音、体、美活动无不如火如荼,而数、理、化则乏人问津。 ▲课堂几乎处于失控状态。学生或挤眉弄眼,或谈天说地,或跷着二郎腿,更有甚者,如逛街一般, 在教室里摇来晃去。 最后,在结论部分,是这么写的:美国的初级教育已经病入膏肓,可以这么预言,再用20年的时间,中国的科技和文化必将赶上和超过这个所谓的超级大国。 在同一年,作为互访,美国也派了一个考察团来中国。他们在看了、、西安的几所学校后,也写了 一份报告,在见闻录部分,也有四段文字: ▲中国的小学生在上课时喜欢把手端在胸前,

简谐运动的能量

简谐运动的能量
此方法对于研究非机械振动非常方便。
例1.用机械能守恒定律求弹簧振子的运动方程。
解:弹簧振子在振动过程中,机械能守恒,即
两边对时间求导,得

令 ,则
其解为
代入守恒方程可得
A=A’
例2.劲度系数为k、原长为l、质量为m的匀质弹簧,一端固定,另一端系一质量为M的物体,在光滑的水平面上作直线运动,求其运动方程。
2.共振角频率与共振振幅:
1)共振角频率:系统发生共振时强迫力的角频率称为共振角频率,用ωr表示。用求极值的方法
计算可得
2)共振振幅
3)共振时受迫振动位移与强迫力之间的相位差
3.说明:
1)ωr略小于ω0,当阻尼因子β趋于零而发生共振现象时,共振角频率等于系统的固有角频率,ωr=ω0;
2)当β→0,ωr=ω0时,共振振幅趋于无穷大,这种情况称为尖锐共振;此时受迫振动位移与强迫力之间的相位差为
考虑到 ,则
(2)结论
弹簧振子作简谐运动的能量与振幅的平方成正比。
(3)解释
由于系统不受外力作用,并且内力为保守力,故在简谐运动的过程中,动能与势能相互转化,总能量保持不变。
(4)说明
1)E∝A2,对任何简谐运动皆成立;
2)动能与势能都随时间作周期性变化,变化频率是位移与速度变化频率的两倍,而总能量保持不变;且总能量与位移无关。
动能Ek=E-Ep
2.能量曲线
注意理解能量守恒和动能、势能相互转化过程。
二、能量平均值
定义:一个随时间变化的物理量f(t),在时间T内的平均值定义为
因而弹簧振子在一个周期内的平均动能为
因而弹簧振子在一个周期内的平均势能为
结论:简谐运动的动能与势能在一个周期内的平均值相等,它们都等于总能量的一半。

简谐运动的能量

简谐运动的能量
系统的势能为
根据机械能守恒定律,有
将上式对时间求导,整理后可得
或写成
式中
可见,当弹簧质量远小于物体的质量时,且系统作微小运动时,弹簧振子的运动可以认为是简谐运动,振动周期为
因而,周期比不计弹簧质量时要大。不过当m=M时,与严格计算结果相比较,误差也是不大于1%。
Composition of Simple Harmonic Vibration
§
Energy of Simple Harmonic Vibration
引言:作简谐运动的系统,因物体有速度而具有动能,因弹簧发生形变而具有势能,动能和势能之和就是其能量。
一、简谐运动的能量
1.能量表达式
(1)推导
以弹性振子为例。假设在t时刻质点的位移为x,速度为v,则
则系统动能为:
系统势能为:
因而系统的总能量为
1.应用1——记忆振幅公式
由能量守恒关系可得:kA2/2=mv02/2+kx02/2
解之即得:
2.应用2——推导简谐运动相关方程
在忽略阻力的条件下,作简谐运动的系统只有动能和势能(弹性势能和重力势能),且二者之和保持不变,因而有
将具体问题中的动能与势能表达式代入上式,经过简化后,即可得到简谐运动的微分方程及振动周期和频率。这种方法在工程实际中有着广泛的应用。
2.两个分振动的频率相差较大,但有简单的整数比关系:
此时合振动的轨迹为封闭的图形,称为李萨如(Lissajou's Figures)图形。该图形的的具体形状取决于两个互相垂直方向简谐运动的频率之比合初相位,并且该图形坐标轴的切点之比与频率之比相等。用此方法可以测量一未知振动的频率与相互垂直方向的两个简谐运动的相位差。
振子恰好从准周期运动变为非周期运动。与弱阻尼和过阻尼比较,在临界阻尼情况下振子回到平衡位置而静止下来所需时间最短。

简谐运动能量

简谐运动能量
大学物理
§9-4 简谐运动的能量
§9-4 简谐运动的能量
能量是伴随运动而存在的, 能量是伴随运动而存在的 , 简谐运动同样具有动 能和势能。 能和势能。
以水平弹簧振子为例) 一、简谐振动的能量(以水平弹簧振子为例 简谐振动的能量 以水平弹簧振子为例
x = A cos( ω t + ϕ )
v = −ωA sin( ω t + ϕ )
3、 机械能 、
情况同动能。 情况同动能。
1 2 1 2 2 E = Ek + E p = kA = mω A 2 2
理学院 物理系
E不随时间变化,简谐振动系统机械能守恒。 不随时间变化,简谐振动系统机械能守恒。 不随时间变化
大学物理
§9-4 简谐运动的能量
二、简谐振动系统的能量特点
x, v
o
能量 动画) 简 谐 运 动 能 量 图(动画 动画
Ek max
1 2 = kA , Ek min = 0 2
t +T
1 Ek = T
1 2 ∫ Ek dt = 4 kA t
2、 势能 、
x = A cos( ω t + ϕ )
1 2 1 2 = kA cos 2 (ω t + ϕ ) E p = kx 2 2
E p max , E p min , E p
简谐运动能量守 恒,振幅不变
Ep
C
1 E = kA 2
2
简谐运动势能曲线
E
Ek
Ep
−A
O
B
xபைடு நூலகம்
+A
x
理学院 物理系
大学物理
§9-4 简谐运动的能量
能量守恒 简谐运动方程 1 2 1 2 E = mv + kx = 常量 2 2 d 1 2 1 2 ( mv + kx ) = 0 dt 2 2 dv dx mv + kx =0 dt dt d2x k + x = 0 2 dt m

简谐运动的回复力和能量 课件

简谐运动的回复力和能量 课件

5.理想化模型 (1)力的角度:简谐运动所受回复力不考虑摩擦阻力. (2)能量角度:简谐运动没有考虑因克服阻力做功带来 的能量损耗.
一、简谐运动的判断
例1:弹簧下端挂一质量为M的钢球,如右图所示,试证 明此系统在竖直方向上做的机械振动为简谐运动.
证明:设弹簧的劲度系数为k,在弹性限度内把钢球向下 拉一段距离至A点.如图甲所示. 在钢球振动中到达平衡位置O点下方某一点B,此时振 子的位移为x. 在平衡位置时,弹簧伸长x0. 由平衡方程Mg-kx0=0. 在B点F回=Mg-k(x+x0)=-kx. 由于B是振动中的任一位置,可见钢球受 合外力与它的位移的关系符合简谐运动 的受力特点.即该振动为简谐运动.
(4)式中“k”虽是系数,但有单位,其单位由F和x的单 位决定,为N/m. (5)简谐运动中,回复力F=-kx,因x=Asin(ωt+φ).故 F=-kAsin(ωt+φ),可见回复力随时间按正弦规律变 化,简谐运动是一个变加速运动. (6)判断一个振动是否为简谐运动可根据此振动的回复 力是否满足F=-kx来判断.如果一个振动系统,它的回 复力满足F=-kx,则此振动一定为简谐运动.
二、简谐运动的回复力
例2:如右图所示,物体A置于物体B上,一轻弹簧一端固定,另一 端与B相连,在弹性限度范围内,A和B在光滑水平面上往复运 动(不计空气阻力),并保持相对静止.则下列说法正确的是( ) A.A和B均做简谐运动 B.作用在A上的静摩擦力大小与弹簧的形变量成正比 C.B对A的静摩擦力对A做功,而A对B的静摩擦力对B不做功 D.B对A的静摩擦力始终对A做正功,而A对B的静摩擦力对B 做负功
置 的 距 离k为mg .
由简谐运动的特点知最高点离平
衡 位 置 的mg距.k离 也 为

4_1_3简谐运动的能量和实例

4_1_3简谐运动的能量和实例

3. 机械能
1 2 E = E k + E p = kA 2
1 2 E p = kA cos 2 (ω t + ) 2
1 2 2 E k = kA sin (ω t + ) 2
简谐运动系统机械能守恒, 简谐运动系统机械能守恒, 机械能守恒 能量没有输入(因是自由振动 因是自由振动), 能量没有输入 因是自由振动 , 因无阻尼), 也无损耗 (因无阻尼 , 因无阻尼 各时刻机械能=起始能量E 时输入的能量)。 各时刻机械能=起始能量 0 (t =0时输入的能量 。 时输入的能量
fn
重力的切向分量为 f t = mg sin θ 对悬点的恢复力矩 M = l ( mg sin θ ) 由转动的牛顿第二定律, 由转动的牛顿第二定律,得 l ( mg sin θ ) = Jα sin 很小时, 在角位移θ很小时, θ ≈ θ lmg α= θ --- 简谐运动 J
2
方法2 方法
J T = 2π mgl c
简谐运动中线量-角量的对比 简谐运动中线量-角量的对比 线量
线量 位移 加速度 恢复力 牛顿第 二定律 x(t)=Acos(ω t+)
a ( t ) = ω x ( t )
2
角量
θ ( t ) = θ m cos(ωt + )
α ( t ) = ω θ ( t )
2
ω=
k m
L ~ m
磁 1 2 E B = Li 能 2
ω=
1 LC
ω
三、稳定平衡位置附近的微小振动 物体一离开该平衡位置就受到恢复力而返回。 物体一离开该平衡位置就受到恢复力而返回。 在该位置,势能必为最小值。 在该位置,势能必为最小值。 dE p 保守力: 保守力:F = 势能: 势能: E p = E p ( x ) dx 一 将势能在x=0的平衡位置展开 将势能在 的平衡位置展开 定 是 d 2E p dE p 1 2 x +L 简 x+ E p ( x ) = E p ( 0) + dx 2! dx 2 x=0 x =0 谐 势能 dE p 运 平衡 d 2E p >0 动 dx = 0 最小 2 dx 稳定 x=0

第五节 简谐运动的能量

第五节  简谐运动的能量

第五节 简谐运动的能量 阻尼振动 第六节 受迫振动 共振一、简谐运动的能量:1、振子在振动过程中动能和势能相互转化,机械能守恒。

如图所示的单摆,在振动过程中能量转化情况2、注意:能量的大小和振幅有关,和振动系统回复力与位移的比例系数有关。

振幅越大,比例系数越大,振动能量越大。

二、阻尼振动与无阻尼振动:1、阻尼振动:振幅逐渐减小的振动叫做阻尼振动。

注意:1)振幅减小,能量也减小; 2)阻尼振动的周期不变。

2、无阻尼振动:振幅不变的振动叫做无阻尼振动。

注意:1)可能是振动系统摩擦和阻力不计,振动能量无损失;2)可能是振动虽有能量损失,但不断补充能量,使振动等幅。

三、受迫振动: 1、概念:1)自由振动:不受其它外力,只在系统内部的弹力或重力作用下的振动叫做自由振动;2)驱动力:作用于质点的周期性的外力叫做驱动力;3)受迫振动:物体在周期性驱动力作用下的振动叫做受迫振动。

2、特点:1)物体做受迫振动时的振动频率等于驱动力的频率,而与物体的固有频率无关;2)物体做受迫振动的振幅与驱动力的频率和物体的固有频率有关,二者相差越小,物体做受迫振动的振幅越大。

四、共振: 1、共振曲线:2、条件:当驱动力的频率跟物体的固有频率相等(固驱f f )时,受迫振动的振幅最大,这种现象叫做共振。

3、共振的应用和防止: 利用:让驱动力频率接近或等于固有频率防止:让驱动力频率远大于或远小于固有频率五、振动的分类:1、按振动特点分:简谐运动、非简谐运动;2、按形成原因分:自由振动(内力)、受迫振动(外力);3、按振动振幅分:等幅振动(无阻尼)、减幅振动(阻尼)。

说明:简谐运动必为无阻尼振动(等幅);实际的简谐运动必为受迫振动;实际的自由振动必为阻尼振动;理想的简谐运动是指无阻尼自由振动,实际上不存在。

例题:A 、B 两个弹簧振子,固有周期分别为f 、4f ,它们均在频率为3f 的驱动力作用下做受迫振动,则下列说法中正确的是:A 、振子A 的振幅较大,振动频率为4f ;B 、振子B 的振幅较大,振动频率为3f ;C 、振子A 的振幅较大,振动频率为3f;D 、振子B 的振幅较大,振动频率为4f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解: 简谐运动的总能量为
E E pE k
1kA 2 2
当 x=1 kA2 1 E 2 2 4
Ek
E
E
p
3 4
E
动能和势能各占总能量的一半时:
1 2
kx
2 0
1 2
1 kA2 2
x0
1 A0.707A 2
大学物理
振动学基础
第5讲 简谐运动的能量
简谐运动的能量
简谐运动的能量
简谐运动物体的能量及其变化有什么特点?
简谐运动的能量
简谐运动的能量
弹簧振子的动能为
Ek
1 mv 2
2
1 m
2
A2
s2in
2t
弹簧的弹性势能
Ep
1 kx 2
2
1 kA 2
2
cos 2 t
系统的总机械能为
E Ek Ep
1 kA2 1 m2A2
(3)动能和势能的变化其频率为两倍ω;;
(4)动能和势能变化位相相反.
简谐运动的能量
(5)振动强度:
E 1m2A2 1 kA22
2
(6)简谐运动的判据之二:
Ep
1 2
kx
2
x2
Ep
E
Ek
A
Ep
O x A
x
简谐运动的能量
简谐运动的能量
例题 当简谐运动的位移为振幅的一半时, 其动能和势能 各占总能量的多少?物体在什么位置时其动能和势能各占总 能量的一半?
22
——系统机械能守恒
(1)动能和势能的平均值:
简谐运动的能量
Ep
1 T
T
0 Epdt
1 T
T 1 kA2cos2 tdt 1kA2
02
4
Ek
1 T
T
0 Ekdt
1 T
T 1 kA2sin 2 tdt 1 kA2
02
4

Ep
Ek
1 kA 2 4
1E 2
(2)机械能守恒——简谐运动动力学特征之二;
相关文档
最新文档