高一数学 221对数与对数运算

合集下载

高中数学:2.2.1对数与对数运算 (24)

高中数学:2.2.1对数与对数运算  (24)

第二章 2.2 2.2.1 第二课时A 级 基础巩固一、选择题 1.log 29log 23=( B ) A .12B .2C .32D .92[解析] 原式=log 232log 23=2log 23log 23=2.2.lg8+3lg5的值为( D ) A .-3 B .-1 C .1D .3[解析] 原式=lg8+lg53=lg8+lg125=lg1000=lg103=3. 3.若lg2=a ,lg3=b ,则lg12lg15等于( D )A .2a +b 1+a +bB .2a +2b 1+a +bC .2a +b 2-a +bD .2a +b1-a +b[解析]lg12lg15=lg3+2lg2lg3+(1-lg2)=2a +b 1-a +b. 4.已知2x =3,log 483=y ,则x +2y 的值为( A )A .3B .8C .4D .log 48[解析] x +2y =log 23+2log 483=log 49+log 4(83)2=log 4(9×649)=log 464=3,故选A .5.若log 34·log 8m =log 416,则m 等于( D ) A .3 B .9 C .18D .27[解析] 原式可化为:log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27,故选D . 6.已知2a =5b =M ,且2a +1b =2,则M 的值是( B )A .20B .2 5C .±2 5D .400[解析] ∵2a =5b =M ,∴a =log 2M =lg M lg2,b =log 5M =lg Mlg5,∴1a =lg2lg M, 1b =lg5lg M ,∴2a +1b =2lg2lg M +lg5lg M =lg4+lg5lg M =lg20lg M =2, ∴2lg M =lg20,∴lg M 2=lg20, ∴M 2=20, ∵M >0,∴M =2 5. 二、填空题7.(2019·江苏泰州高一期末测试)计算:34×819+log 23×log 38=__5__.[解析] 原式=223 ×213+log 23×log 323 =2+lg3lg2×lg23lg3=2+lg3lg2×3lg2lg3=2+3=5.8.化简log 2(2+3)+log 2(2-3)=__0__. [解析] log 2(2+3)+log 2(2-3) =log 2[(2+3)·(2-3)]=log 21=0. 三、解答题9.计算下列各式的值:(1)(2019·天津河西区高一期末测试)log 327+lg25+lg4-7 log 73-27-23;(2)(2019·河北沧州市高一期中测试)21+log 23-log 1264+lg0.01+ln e.[解析] (1)原式=log 3332+lg(25×4)-7log 72-(33) -23=32+lg100-2-3-2 =32+2-2-19 =32-19=2518. (2)原式=2×2log 23-log 2-126+lg10-2+lne 12=2×3+6-2+12=212.B 级 素养提升一、选择题1.若x log 34=1,则4x +4-x 的值为( B ) A .83B .103C .2D .1[解析] 由x log 34=1得x =log 43,所以4x +4-x =3+13=103,故选B .2.已知a =log 32,那么log 38-2log 36用a 表示是( A ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2-1[解析] log 38-2log 36=log 323-2(log 32+log 33) =3log 32-2(log 32+1) =3a -2(a +1)=a -2.故选A . 3.log 2716log 34=( D )A .2B .32C .1D .23[解析] 由公式log an b m =mn log a b ,得原式=log 3342log 34=23log 34log 34=23.4.已知lg a ,lg b 是方程2x 2-4x +1=0的两个实数根,则lg(ab )·(lg ab )2=( B )A .2B .4C .6D .8[解析] 由题意得⎩⎪⎨⎪⎧lg a +lg b =2lg a ·lg b =12, ∴lg(ab )·(lg ab )2=(lg a +lg b )(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ] =2(4-4×12)=4.二、填空题5.lg 52+2lg2-(12)-1=__-1__.[解析] lg 52+2lg2-(12)-1=lg 52+lg4-2=-1.6.若log a x =2,log b x =3,log c x =6,则log abc x =__1__. [解析] ∵log a x =1log x a =2,∴log x a =12.同理log x c =16,log x b =13.∴log abc x =1log x (abc )=1log x a +log x b +log x c =1.三、解答题7.已知log a 2=m ,log a 3=n . (1)求a 2m-n的值;(2)求log a 18.[解析] (1)因为log a 2=m ,log a 3=n , 所以a m =2,a n =3.所以a 2m -n =a 2m ÷a n =22÷3=43.(2)log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n . 8.计算:(1)(log 3312)2+log 0.2514+9log 55-log31;(2)lg25+23lg8+lg5·lg20+(lg2)2.[解析] (1)(log 3312)2+log 0.2514+9log 55-log31=(12)2+1+9×12-0=14+1+92=234. (2)原式=lg25+lg823+lg102·lg(10×2)+(lg2)2=lg25+lg4+(1-lg2)(1+lg2)+(lg2)2=lg(25×4)+1-(lg2)2+(lg2)2=3.9.(2019·北师大附中高一期中测试)计算下列各式的值: (1)2log 32-lg 3329+log 38-log 553;(2)4log 23+log 128-lg 516+lg25-lg(12)-3-ln e 3.[解析] (1)原式=log 34-log 3329+log 38-3=log 3(4×932×8)-3=log 39-3=log 332-3=2-3=-1. (2)原式=4log 49+log 2-123-lg516+lg25-lg8-lne 32=9-3+lg25-(lg 516+lg8)-32=92+lg25-lg(516×8) =92+lg25-lg 52 =92+lg(25×25) =92+lg10=92+1=112.。

高中数学课件:2.2.1对数与对数运算

高中数学课件:2.2.1对数与对数运算
例9.若a,b是方程2(lgx)2 -4lgx+1=0的两个实根, 求lg(ab)(logab+logba)的值.
专题三 坚持科教 兴国 推进自主创

热点一 科教兴国 时事❶ 第三届深圳国际智能装备产业博览会
第三届深圳国际智能装备产业博览会暨第六届深圳国 际电子装备产业博览会于2017年7月27日至29日在深圳会 展中心举办。本届博览会以“智能改变未来,产业促进发 展”为主题,定位于创新型、专业性和国际化,展会将突
1.我国科技取得成就的原因有哪些? ①我国经济实力不断增强,为科技创新提供了坚实的 物质基础。 ②我国实施科教兴国战略和人才强国战略,为科技创 新提供了强有力的政策支持。 ③我国大力弘扬创新精神,尊重劳动、尊重知识、尊 重人才、尊重创造。
④社会主义制度具有集中力量办大事的优越性。 ⑤广大科研工作者发扬了艰苦奋斗、开拓创新、团结 协作的精神等。
2.我国为什么要实施创新驱动发展战略,坚持走中国特 色自主创新道路? ①我国正处在社会主义初级阶段,教育科学技术水平比 较落后,科技水平和民族创新能力不足。 ②创新是一个民族进步的灵魂,是一个国家兴旺发达的 不竭动力。 ③我国是一个发展中国家,要想真正地缩小与发达国家 之间的差距,关键靠创新。
④只有把科技进步的基点放在增强自主创新能力和持续创 新能力上,才能实现我国科学技术的跨越式发展,真正掌 握发展的主动权。 ⑤没有创新,就要受制于人,没有创新,就不可能赶超发 达国家。 ⑥科学技术是第一生产力,科技创新能力已越来越成为综 合国力竞争的决定性因素。 ⑦增强自主创新能力,有利于全面建成小康社会、实现中 华民族的伟大复兴。
出智能自动化设备、机器人、3D打印、可穿戴产业的展览 主题,瞄准打造全球智能装备领域第一展会平台的目标, 展示深圳智能装备产业的发展成就。

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。

〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。

〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。

教学重难点:指、对数式的互化。

教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。

这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。

能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。

二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。

其中a 叫做对数的底数,N 叫做真数。

根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。

高中数学必修一《对数与对数运算》教学设计

高中数学必修一《对数与对数运算》教学设计

高中数学必修一《对数与对数运算》教学设计一、教学背景分析:(一)教材地位与作用我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.(二)学情分析学生刚开始接触对数,从指数函数到对数函数的过渡,学生在学习上可能会有些困难,转化能力有待提高。

而且学生学习的主动意识不强,自主探究能力也有待提高。

(三)设计思想教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.注重引导学生通过自己观察、操作交流、讨论、有条理的思考和推理,让学生通过自主探索、合作交流,进一步认识和掌握对数式与指数式的互化,积累数学活动的经验。

(四)教法分析和学法指导掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握在本课的教学设计中,注重“引、思、探、练”的结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

在学习方法上,指导学生:通过实例启发学生产生主动运用的意识;通过解题思路的脉络分析,对学生进行解题思路的指导;通过对学生发言的点评,规范语言表达,指导学生进行交流和讨论。

(五)教具设备:多媒体课件.二、教学目标(一)知识与能力1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的关系。

高中数学必修1公开课教案221对数与对数运算第1课时

高中数学必修1公开课教案221对数与对数运算第1课时

2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的根底,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比拟,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法那么的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.〔1〕取4次,还有多长?〔2〕取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕. 推进新课 新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要到达18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少?④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即假设1318=1.01x ,那么x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330.由此得到对数和指数幂之间的关系:a Nb 指数式a b =N 底数 幂 指数 对数式log a N=b对数的底数真数对数提出问题①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为假设a <0,那么N 为某些值时,b 不存在,如log 〔-2〕21; 假设a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;假设a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用例如思路1例1将以下指数式写成对数式,对数式写成指数式: 〔1〕54=625;〔2〕2-6=641;〔3〕(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对〔1〕根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对〔2〕根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数. 对〔3〕根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂.解:〔1〕log 5625=4;〔2〕log 2641=-6;〔3〕log 315.73=m; 〔4〕(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照. 解答:假设是指数式化为对数式,关键要看清指数是几,再写成对数式.假设是对数式化为指数式,那么要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求以下各式中x 的值: 〔1〕log 64x=32-;〔2〕log x 8=6; 〔3〕lg100=x;〔4〕-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:〔1〕因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.〔2〕因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. 〔3〕因为lg100=x,所以10x =100=102.因此x=2.〔4〕因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:此题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求以下各式中的x : ①log 4x=21;②log x 27=43;③log 5〔log 10x 〕=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5〔log 10x 〕=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,假设不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是〔 〕 〔1〕假设log 5x=3,那么x=15 〔2〕假设log 25x=21,那么x=5 〔3〕假设log x 5=0,那么x=5 〔4〕假设log 5x=-3,那么x=1251 A.〔2〕〔3〕 B.〔1〕〔3〕 C.〔2〕〔4〕 D.〔3〕〔4〕 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于〔1〕因为log 5x=3,所以x=53=125,错误;对于〔2〕因为log 25x=21,所以x=2521=5,正确;对于〔3〕因为log x 5=0,所以x 0=5,无解,错误; 对于〔4〕因为log 5x=-3,所以x=5-3=1251,正确. 总之〔2〕〔4〕正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,以下结论正确的选项是〔 〕 〔1〕假设M=N,那么log a M=log a N 〔2〕假设log a M=log a N,那么M=N 〔3〕假设log a M 2=log a N 2,那么M=N〔4〕假设M=N,那么log a M 2=log a N 2 A.〔1〕〔3〕 B.〔2〕〔4〕 C.〔2〕 D.〔1〕〔2〕〔4〕 活动:学生思考,讨论,交流,答复,教师及时评价. 回想对数的有关规定.对〔1〕假设M=N,当M 为0或负数时log a M≠log a N,因此错误; 对〔2〕根据对数的定义,假设log a M=log a N,那么M=N,正确; 对〔3〕假设log a M 2=log a N 2,那么M=±N,因此错误;对〔4〕假设M=N=0时,那么log a M 2与log a N 2都不存在,因此错误. 综上,〔2〕正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32(+(2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生答复,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法. 解法一:(1)设x=log 927,那么9x =27,32x =33,所以x=23; (2)设x=log 4381,那么(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1;(4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把以下各题的指数式写成对数式:(1)42=16;〔2〕30=1;〔3〕4x =2;〔4〕2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把以下各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求以下各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2〔log 5x 〕=1;(4)log 3〔lgx 〕=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2〔log 5x 〕=1,所以log 5x=2,x=52=25; (4)因为log 3〔lgx 〕=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法那么的应用. 拓展提升请你阅读课本75页的有关阅读局部的内容,搜集有关对数开展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下根底. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将以下指数式与对数式互化,有x 的求出x 的值. 〔1〕521-=51;〔2〕log 24=x;〔3〕3x =271; 〔4〕(41)x=64;〔5〕lg0.000 1=x;〔6〕lne 5=x. 解:〔1〕521-=51化为对数式是log 551=21-; 〔2〕x=log24化为指数式是(2)x =4,即22x=22,2x=2,x=4; 〔3〕3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; 〔4〕(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; 〔5〕lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;〔6〕lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5. 2.计算51log 53log 333+的值.解:设x=log 351,那么3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a alog log log ••(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ••=Nc c b blog log •=Nc clog =N. 设计感想(设计者:路致芳)。

高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数运算第一课时对数课件新人教A版必修13

高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数运算第一课时对数课件新人教A版必修13
(1)解析:因为 a=log35, 所以 3a+9a= 3log3 5 +( 3log3 5 )2=5+25=30.选 D.
log3 x, x 0, (2)若函数 f(x)= 3x , 1 x 0, 求 f(f(f(-2-
3x 2 , x 1,
2 ))).
(2)解:因为-2- 2 <-1,所以 f(-2- 2 )=- 32 2 2 =- 1 . 9
(4)因为 logx64=-2, 所以 x-2=64,所以 x= 1 .
8
题型二 对数的简单性质 [例2] 求下列各式中的x. (1)log3(x2-1)=0;
解:(1)因为 log3(x2-1)=0,
所以
x 2
x
2
1 1
0, 1,
所以 x=± 2 .
(2)log(x+3)(x2+3x)=1.
又- 1 ∈(-1,0],所以 f(f(-2-
2
))=f(-
1
)=
3
1 9
.
9
9
因为
3
1 9
>0,所以
f(
3
1 9
)=log3
3
1 9
=-
1
.即原式=-
1
.
9
9
学霸经验分享区
(1)指数式与对数式互化时的技能及应注意的问题 ①技能:若是指数式化为对数式,只要将幂作为真数,指数当成对数 值,而底数不变即可;若是对数式化为指数式,则正好相反. ②注意问题:利用对数式与指数式间的互化公式互化时,要注意字母 的位置改变;对数式的书写要规范:底数a要写在符号“log”的右下 角,真数正常表示. (2)对数性质的运用技能 logaa=1及loga1=0是对数计算的两个常用量,可以实现数1,0与对数 logaa及loga1的互化.

高中数学 2.2.1对数与对数运算(全课时讲练结合)新人教A版必修1

高中数学 2.2.1对数与对数运算(全课时讲练结合)新人教A版必修1

解 :lg 5 100 1 lg102
5
log2 25 log2 47
2 lg10
log2 25 log2 214
5
2
=5+14=19
5
练习(liànxí)课本P68 2
第三十一页,共47页。
练习(liànxí)P68 3.求下列(xiàliè)各式的值:
(1) log2 6 log2 3
【例 1】 计算下列各式的值: (1)lg 14-2lg73+lg 7-lg 18;
(3)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.
• (3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2
=2lg 10+(lg 5+lg 2)2
=2+(lg 10)2 =2+1
(2) lg xy2 z
(3) lg xy3 z
=lgx+2lgy-lgz;
=lgx+3lgy-
1 lgz; 2
(4)
x lg y 2 z
1 lg x 2 lg y lg z 2
第三十页,共47页。
例4 计算(jìsuàn)
(1) log2 (25 47 ) (2) lg 5 100
解 : log2 (25 47 )
log2
6 3
log2 2 1
(2) lg 5 lg 2 lg(5 2) lg10 1
(3)
log5 3 log5
1 3
(4) log3 5 log3 15
log
5
(3
1 3
)
log5 1
0
log3
5 15
log3 31 1
第三十二页,共47页。

【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)

【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)

一、选择题1.将指数式2a =b 写成对数式为A .log 2b =aB .log a b =2C .log 2a =bD .log b 2=a【答案】A【解析】指数式2a =b 所对应的对数式是:log 2b =a .故选A .2.若log a b •log 3a =5,则b =A .a 3B .a 5C .35D .53 【答案】C3.如果log 3x =log 6x ,那么x 的值为A .1B .1或0C .3D .6【答案】A【解析】∵log 3x =log 6x ,36log 1log 1==0,而对数函数3log y x =,6log y x =在x >0时,具有单调性,因此x =1.故选A .4.1411log 9+1511log 3= A .lg3B .–lg3C .1lg3D .–1lg3【答案】C 【解析】原式=191log 4+131log 5=131log 2+131log 5=131log 10=log 310=1lg3.故选C .5.若x =12log 16,则x = A.–4 B .–3 C .3 D .4【答案】A【解析】∵x =12log 16,∴2–x =24,∴–x =4,解得x =–4.故选A .6.log 8127等于A .34B .43C .12D .13【答案】A【解析】log 8127=3lg334lg34=.故选A . 7.计算lg (103–102)的结果为A .1B .32C .90D .2+lg9【答案】D8.若x log 34=1,则4x +4–x 的值为A .3B .4C .174D .103【答案】D【解析】∵x log 34=1,∴43log x =1,则4x =3,∴4x +4–x =3+11033=,故选D . 9.273log 16log 4的值为 A .2 B .32 C .1 D .23【答案】D【解析】原式=164332734433log 2log log 23log log 3==.故选D .二、填空题10.已知log 3(log 2x )=1,那么x 的值为__________.【答案】8【解析】由log 3(log 2x )=1,得log 2x =3,解得x =8.故答案为:8.11.已知lg2=a ,lg3=b ,用a ,b 的代数式表示lg12=__________.【答案】2a +b【解析】lg12=lg (3×4)=lg3+2lg2=2a +b .故答案为:2a +b .12.求值:2log 510+log 50.25–log 39=__________.【答案】0【解析】原式=()25log 100.25⨯–2=25log 5–2=2–2=0.故答案为:0.13.若lg2=a ,lg3=b ,则log 418=__________.(用含a ,b 的式子表示)【答案】22a b a+14.若log 32=log 23x ,则x =__________.【答案】223(log ) 【解析】∵log 32=log 23x ,∴32321log log x =,∴223(log )x =.故答案为:223(log ). 三、解答题15.计算(log 43+log 83)(log 32+log 92)的值.【解析】(log 43+log 83)(log 32+log 92)=lg3lg3lg2lg2lg4lg8lg3lg9⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=lg3lg3lg2lg22lg23lg2lg32lg3⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ =1111524364+++=. 16.解方程:log 2(x –1)+log 2x =1.【解析】∵log 2(x –1)+log 2x =1,∴log 2(x –1)x =1, ∴x (x –1)=2,解得x =–1或x =2,经检验,得x =–1是增根,x =2是原方程的解,∴x =2.17.计算:(1)lg 12–lg 58+lg12.5–log 89•log 34+0.5log 32; (2)0.21log 35-–(log 43+log 83)(log 32+log 92).(2)0.21log 35-–(log 43+log 83)(log 32+log 92) =5÷51log 35–(log 6427+log 649)(log 94+log 92)=15–5362lg3lg2lg2lg3⨯ =15–1512=554. 18.解关于x 的方程:lg (x 2+1)–2lg (x +3)+lg2=0.【解析】∵lg (x 2+1)–2lg (x +3)+lg2=0,∴()2221lg (3)x x ++=0,∴()2221(3)x x ++=1,解得x =–1或x =7,经检验满足条件.∴方程的根为:x =–1或x =7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lo g b
a
1
a,b(0,1)(1, )
证明:l o g a b
lo g c b lo g c a
lo g b a
lo g c a lo g c b
lo g a b • lo g b a 1
巩固练习(备用)
1.(1)设x log 2 3,

23x 2x
23x 2x
的值.
(2)已知 lo7g [lo3(glo2xg)]0, 求 x的.值
探究:
loagm
Nn
nl m
oagN
loga
N
logc N logc a
(a ,c (0 ,1 ) ( 1 ,)N , 0 )
loagb•lobga1a,b(0,1)(1, )
lo g am
证明:
N
n
n m
log a
N
lo g a m N n x a m x N n
a mx N n lo g a N n m x
1
1
2loag x2loagy3loag z
讲解范例 例2 计算
(1) lo2g(2547) 解 : lo2g(2547)
log2 25log2 47 log2 25log2 214
=5+14=19
(2) lg 5 1 0 0

:
lg
5 100
1 lg 10 2 5
2 lg 10 5
2 5
课堂小结: 对数的运算性质
⑵ log3 1 log3 3 log3 27 4 ⑶ ln e lg100 3 ⑷ lg14 2 lg 7 lg 7 lg18 ?
3
知识回顾
2.指数与对数都是一种运算,而且它 们互为逆运算,指数运算有哪些性质?
3.对数运算有那些性质呢?
对数的运算性质
证明: lo g aM N lo g aM lo g aN
讲解范例
例1 用 log a x, loga y, log a z 表示下列各式:
(1)alxzo;yg
x2 y (2)loag3z
解(1)loagxzyloag (x)yloagz
loax g loay g loazg
1
1
解(2)lo g a
x2
3
y z
loga(x2y2)loga z3
1
1
loax g2loay g2loazg3
如果 a > 0,a 1,M > 0, N > 0 有: lo g aM N lo g aM lo g aN⑴
logaM NlogaMlogaN⑵ logaM nnlogaM (n R )⑶
说明: 1) 简易语言表达:”积的对数=对数的和”……
2) 有时可逆向运用公式 3)真数的取值必须是(0,+∞)
由对数的定义可以得:M ap, N aq
∴ M ap N aq
apq loga M Npq
即证得
M lo g a N
lo g aM
lo g aN
证明:
logaMnnlogaM
证明:设 loagMp,
由对数的定义可以得:M ap, ∴ Mn anp loagMnnp
即证得
lo g aM n n lo g aM (n R )
4)注意 loga (MN) ≠ logaMlogaN loga(MN) ≠ logaMlogaN
巩固练习: p751.2.3
提高练习:
ab2
1 ⑴ 若 lgxlga2lgb 3lgc,则 x__c _ 3 ___
1
⑵ 12log612log6 2 的值为__2____
⑶ log2 84 3log2 84 3 __2___________
2.2.1对数与对数运算(2)
知识回顾
1. 对数与指数是怎样互化的?
当a0,a1时,ax N xloga N
课前练习:
⑴给出四个等式:
1) lg(lg 10) 0; 2) lg(ln e) 0; 3)若 lgx=10,则 x=10; 4)若 lnx=e,则 x=e2
其中正确的是___1)_,_2_) __
2 计算:
1). 2log52log53 log51012log50.3613log58
2 ) . (lo g 43 lo g 83 )(lo g 32 lo g 92 ) lo g 143 2
2
作业:
P68练习:1, 2,3. P74习题2.2A组:3,4,5.
M loga NlogaMlogaN logaM nnlogaM (n R )
语言表达: 两个正数的积的对数等于这两个正数的对数和 两个正数的商的对数等于这两个正数的对数差 一个正数的n次方的对数等于这个正数的对数n倍
证明: logaM NlogaMlogaN
证明:②设 loagMp, loga Nq,
证明:①设 loagMp, loga Nq, 由对数的定义可以得:
M ap, N aq ∴MN= a p a q apq
loaM g N pq
即证得 lo g aM N lo g aM lo g aN
对数的运算性质
如果 a > 0,a 1,M > 0, N > 0 有:
lo g aM N lo g aM lo g aN⑴
x

1 m
log a
N
n
n m
log a
N
换底公式的证明
log a
b
log c log c
b a
证明:lo g c b p , lo g c a q , lo g a b k
b cP,a cq,b ak
log a b
log cq
cp
p q
log c b log c a
lo g a b

相关文档
最新文档