离散数学期末复习资料指导(专科)

合集下载

离散数学复习提纲

离散数学复习提纲

《离散数学》期末复习一、期末考试题型试题类型及分数分别为单项选择题和填空题各有15题,分数占60%;化简解答题与计算题及证明题,共占40%。

各章分数的比例大致与其所用课时比例相同。

单项选择题和填空题主要涉及基本概念、基本理论、重要性质和结论、公式及其简单计算。

单项选择题给出四个备选答案,其一正确。

填空题只需填写正确结论,不写计算、推论过程或理由。

化简解答题与计算题主要考核同学们的基本运算技能和速度,要求写出计算过程。

证明题主要考查应用概念、性质、定理及重要结论进行逻辑推理的能力,要求写出推理过程。

二、各章复习要求和重点第1章命题逻辑复习要求1. 命题及其联结词。

命题表述为具有确定真假意义的陈述句。

命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义,六个联结词。

2. 命题公式及分类。

在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;真值表3. 命题的判定及命题演算的推理理论。

推理方法有:真值表法;等值演算法;主析取范式法,构造证明法(直接证明法、附加前提证明法和间接证明法)本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.。

第2章一阶逻辑复习要求1.谓词与量词谓词,在谓词逻辑中,原子命题分解成个体词和谓词. 个体词是可以独立存在的客体,它可以是具体事物或抽象的概念。

谓词是用来刻划个体词的性质或事物之间关系的词 量词,是在命题中表示数量的词,量词有两类:全称量词∀,表示“所有的”或“每一个”;存在量词∃,表示“存在某个”或“至少有一个”2. 2.公式与解释谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定义见教材).命题的符号化结果都是谓词公式.例如∀x(F(x)→G(x)),∃x(F(x)∧G(x)),∀x∀y(F(x)∧F(y)∧L(x,y)→H(x,y))等都是谓词公式3. 解释(赋值),谓词公式A的个体域D是非空集合,则(1) 每一个常项指定D中一个元素;(2) 每一个n元函数指定D n到D的一个函数;(3) 每一个n元谓词指定D n到{0,1}的一个谓词;按这个规则做的一组指派,称为A的一个解释或赋值。

离散数学复习资料 最新 优质资料

离散数学复习资料  最新 优质资料

离散数学复习资料第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。

命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表“⌝”否定联结词,P是命题,⌝P是P的否命题,是由联结词⌝和命题P组成的复合命题.P取真值1,⌝P取真值0,P取真值0,⌝P 取真值1. 它是一元联结词.“∧”合取联结词,P∧Q是命题P,Q的合取式,是“∧”和P,Q组成的复合命题. “∧”在语句中相当于“不但…而且…”,“既…又…”. P∧Q取值1,当且仅当P,Q均取1;P∧Q取值为0,只有P,Q之一取0.“∨”析取联结词,“⎺∨”不可兼析取(异或)联结词, P∨Q 是命题P,Q的析取式,是“∨”和P,Q组成的复合命题. P⎺∨Q是联结词“⎺∨”和P,Q组成的复合命题. 联结词“∨”或“⎺∨”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P⎺∨Q”↔“(⌝P∧Q)∨(P∧⌝Q)”. P∨Q取值1,只要P,Q之一取值1,P∨Q取值0,只有P,Q都取值0.“→”蕴含联结词, P→Q是“→”和P,Q组成的复合命题,只有P取值为1,Q取值为0时,P→Q取值为0;其余各种情况,均有P→Q的真值为1,亦即1→0的真值为0,0→1,1→1,0→0的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P→Q”.“↔”等价联结词,P↔Q是P,Q的等价式,是“↔”和P,Q组成的复合命题. “↔”在语句中相当于“…当且仅当…”,P↔Q 取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P的真指派;若使P的真值为0,则称这组值称为P的假指派.命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材P.16的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真。

离散数期末复习

离散数期末复习

1
推理证明过程如下:
2
(∀x)(N(x) I(x)) P规则
3
(∃x)(N(x)
I(x)) T规则和
4
N(a)
I(a)
ES
1
规则和2
5
N(a)
T规则和3
6
I(a)
T规则和3
7
(∀x)(N(x) (Q(x)∇E(x)))
P规则
8
N(a) (Q(a)∇E(a)) US规则和6
• 8 Q(a)∇E(a)
空关系vs空集上的关系
空集上的关系:自反的,反自反的,对称的,反对称的, 可传递的。在空集上可定义任意元 关系。
性质:若A非空,空关系是反自反的,对称的,反对称的,可传递的; 若A是空集,该空关系是自反的,反自反的,对称的,反对称的,可传递的
空关系:对于任何集合A, 称空集为A上的空关系.
1. 3-1设A={1,2,3},R是ρ(A)上的二元关系,且R={<a,b>|a,b∈ρ(A),a∩b≠Φ},则R 不满足下列哪些性质?为什麽?
2. 自反性 2)反自反性 3)对称性 3. 反对称性 5)传递性 4. 解:1)因为Φ∈ρ(A),但Φ∩Φ=Φ 5. 所以<Φ,Φ>∉R,即R不满足自反性。 6. 因为{1}∈ρ(A)但{1}∩{1}={1}≠Φ 7. 即<{1},{1}>∈R,因此R不是反自反的. 8. 对任意x,y∈ρ(A),若x∩y≠Φ,即 9. <x,y>∈R,则y∩x≠Φ即<y,x>∈R即R满足对称性。
1. s(R)=R∪R~ 2. t(R)= ∪i=1nRi 3. 关系的性质: 4. R是自反的=(∀x)(x∈X <x,x>∈R) 5. R是反自反的=(∀x)(x∈X<x,x>∉R) 6. R是不自反的 7. (∃x)(∃y)(x,y∈X<x,x>∈R<y,y>∉R) 8. R是对称的=(∀x)(∀y)(x,y∈X <x,y>∈R <y,x>∈R) 9. R是反对称的=(∀x)(∀y)(x,y∈X<x,y>∈R <y,x>∈Rx=y)

离散数学复习资料

离散数学复习资料

离散数学复习资料离散数学是计算机科学与数学领域中的重要学科,它研究的是离散的数学结构和离散的数学对象。

在计算机科学领域,离散数学是构建算法和设计计算机系统的基础。

为了更好地复习离散数学,我们可以从以下几个方面入手。

一、集合论集合论是离散数学的基础,它研究的是集合及其运算。

在集合论中,我们需要了解集合的定义、基本运算和集合间的关系。

此外,还需要掌握集合的代数运算法则,如交、并、差和补集等。

复习时可以通过解题来加深理解,例如证明集合之间的等价关系、集合的幂集等。

二、逻辑与命题逻辑是离散数学中的重要分支,它研究的是推理和论证的规则。

在逻辑中,命题是最基本的逻辑单位。

复习时需要了解命题的定义和常见的逻辑运算符,如非、与、或、异或等。

此外,还需要熟悉命题的真值表和命题之间的逻辑等价关系。

通过解题和推理,可以提高对逻辑的理解和应用能力。

三、图论图论是离散数学中的一个重要分支,它研究的是图及其性质。

在图论中,我们需要了解图的基本概念,如顶点、边、路径、环等。

此外,还需要熟悉图的表示方法,如邻接矩阵和邻接表。

复习时可以通过解题来加深对图的理解,例如求最短路径、判断图的连通性等。

四、代数系统代数系统是离散数学中的一个重要内容,它研究的是代数结构及其性质。

在代数系统中,我们需要了解群、环、域等代数结构的定义和性质。

此外,还需要熟悉代数运算法则和代数结构之间的关系。

复习时可以通过解题来加深对代数系统的理解,例如证明一个集合构成一个群、判断一个环是否是域等。

五、概率论与统计学概率论与统计学是离散数学中的一个重要分支,它研究的是随机事件和随机变量的概率性质。

在概率论与统计学中,我们需要了解概率的定义和性质,掌握常见的概率分布和统计方法。

此外,还需要熟悉概率的运算法则和统计推断的基本原理。

复习时可以通过解题和实际问题的分析来加深对概率论与统计学的理解。

总之,离散数学作为计算机科学与数学领域中的重要学科,对于计算机科学专业的学生来说具有重要意义。

离散数学期末复习总要

离散数学期末复习总要

离散数学期末复习总要离散数学期末复习各个章节要点纲要(及定理)离散数学定义定理1.3.1命题演算的合式公式规定为:(1)单个命题变元本身是一个合式公式。

(2)如果A是合式公式,那么┐A是合式公式。

(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。

(4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。

1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。

1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。

若指定的一种指派,使P的值为真,则称这组指派为成真指派。

若指定的一种指派,使P的值为假,则称这种指派为成假指派。

含n个命题变元的命题公式,共有2n个指派。

1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。

1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。

1.3.6 设A为一命题公式,若A在它的各种指派情况下,其取值均为假,则称A为矛盾式或永假式。

1.3.7设A为一命题公式,若A在它的各种指派情况下至少存在一组成真指派,则称A为可满足式。

1.4.1 设X式合式公式A的子公式,若有Y也是一个合式公式,且X<=>Y,如果将A中的X用Y置换,得到公式B,则A<=>B。

1.4.2 设A,B为两个命题公式,A<=>B,当且仅当A ←→B为一个重言式。

P=>Q称做P蕴含Q或蕴含式,又称永真条件式。

蕴含式有下列性质:(1)对任意公式A,又A=>A;(2)对任意公式A,B和C,若A=>B,B=>C,则A=>C;(3)对任意公式A,B和C,若A=>B,A=>C,则A=>(B∧C); (4)对任意公式A,B和C,若A=>C,B=>C,则A∨B=>C.1.4.3设P,Q为任意两个命题公式,P<=>Q的充分必要条件式P=>Q,,Q=>P。

离散数学复习提纲(完整版)解析

离散数学复习提纲(完整版)解析

《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。

2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。

3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。

4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。

5、掌握命题逻辑的推理理论。

[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。

具体方法有两种,一是真值表法,二是等值演算法。

2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。

关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。

3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。

例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。

《离散数学》期末复习

《离散数学》期末复习

《离散数学》期末复习《离散数学》期末复习内容:第一章~第七章题型:一、选择题(20%,每题2分)二.填空题(20%,每题2分)三、计算题(20%,每题5分)四、证明题(20%,每题5分)五、判断题(20%,每题2分)第1章数学语言与证明方法1.1 常用的数学符号1.计算常用的数学符号式子1.2 集合及其表示法1.用列举法和描述法表示集合2.判断元素与集合的关系(属于和不属于)3.判断集合之间的包含与相等关系,空集(E),全集(?)4.计算集合的幂集5.求集合的运算:并、交、相对补、对称差、绝对补6.用文氏图表示集合的运算7.证明集合包含或相等方法一:根据定义, 通过逻辑等值演算证明方法二:利用已知集合等式或包含式, 通过集合演算证明1.3 证明方法概述1、用如下各式方法对命题进行证明。

直接证明法:A→B为真间接证明法:“A→B为真” ?“ ?B→ ?A为真”归谬法(反证法):A∧?B→0为真穷举法:A1→B, A2→B,…, A k→B 均为真构造证明法:在A为真的条件下, 构造出具有这种性质的客体B ?空证明法:“A恒为假” ?“A→B为真”平凡证明法:“B恒为真” ?“A→B为真”数学归纳法:第2章命题逻辑2.1 命题逻辑基本概念1、判断句子是否为命题、将命题符号化、求命题的真值(0或1)。

命题的定义和联结词(?, ∧, ∨, →, ?)2、判断命题公式的类型赋值或解释.成真赋值,成假赋值;重言式(永真式)、矛盾式(永假式)、可满足式:。

2.2 命题逻辑等值演算1、用真值表判断两个命题公式是否等值2、用等值演算证明两个命题公式是否等值3、证明联结词集合是否为联结词完备集2.3 范式1、求命题公式的析取范式与合取范式2、求命题公式的主析取范式与主合取范式(两种主范式的转换)3、应用主析取范式分析和解决实际问题2.4 命题逻辑推理理论1、用直接法、附加前提、归谬法、归结证明法等推理规则证明推理有效第3章一阶逻辑3.1 一阶逻辑基本概念1、用谓词公式符号命题(正确使用量词)2、求谓词公式的真值、判断谓词公式的类型3.2 一阶逻辑等值演算1、证明谓词公式的等值式2、求谓词公式的前束范式第4章关系4.1 关系的定义及其表示1、计算有序对、笛卡儿积2、计算给定关系的集合3、用关系图和关系矩阵表示关系4.2 关系的运算1、计算关系的定义域、关系的值域2、计算关系的逆关系、复合关系和幂关系3、证明关系运算满足的式子4.3 关系的性质1、判断关系是否为自反、反自反、对称、反对称、传递的2、判断关系运算与性质的关系3、计算关系自反闭包、对称闭包和传递闭包4.4 等价关系与偏序关系1、判断关系是否为等价关系2、计算等价关系的等价类和商集3、计算集合的划分4、判断关系是否为偏序关系5、画出偏序集的哈期图6、求偏序集的最大元、最小元、极小元、极大元、上界、下界、上确界、下确界7、求偏序集的拓扑排序第5章函数1.判断关系是否为函数2.求函数的像和完全原像3.判断函数是否为满射、单射、双射4.构建集合之间的双射函数5.求复合函数6.判断函数的满射、单射、双射的性质与函数复合运算之间的关系7.判断函数的反函数是否存在,若存在求反函数第6章图1.指出无向图的阶数、边数、各顶点的度数、最大度、最小度2.指出有向图的阶数、边数、各顶点的出度和入度、最大出度、最大入度、最小出度最小入出度3.根据握手定理顶点数、边数等4.指出图的平行边、环、弧立点、悬挂顶点和悬挂边5.判断给定的度数列能否构成无向图6.判断图是否为简单图、完全图、正则图、圈图、轮图、方体图7.求给定图的补图、生成子图、导出子图8.判断两个图是否同构6.2 图的连通性1.求图中给定顶点通路、回路的距离2.计算无向图的连通度、点割集、割点、边割集、割边3.判断有向图的类型:强连通图、单向连通图、弱连通图6.3 图的矩阵表示1.计算无向图的关联矩阵2.计算有向无环图的关联矩阵3.计算有向图的邻接矩阵4.计算有向图的可达矩阵5.计算图的给定长度的通路数、回路数6.4 几种特殊的图1、判断无向图是否为二部图、欧拉图、哈密顿图第7章树及其应用7.1 无向树1.判断一个无向图是否为树2.计算无向树的树叶、树枝、顶点数、顶点度数之间的关系3.给定无向树的度数列,画出非同构的无向树4.求生成树对应的基本回路系统和基本割集系统5.求最小生成树7.2 根树及其应用1.判断一个有向图是否为根树2.求根树的树根、树叶、内点、树高3.求最优树4.判断一个符号串集合是否为前缀码5.求最佳前缀码6.用三种方法遍历根树。

离散数学 期末复习 复习材料

离散数学 期末复习 复习材料
证明R是X上的等价关系,
并求由该等价关系所产生的1的等价类[1]R和5的等 价类[5]R。
证明:①.对aX,均有(a-a)/3=0z成立,即<a,a> R, 所以,R是自反的。
②. 对a,b X如果 <a,b> R,则有(a-b)/3=kz成立, 于是(b-a)/3=-kz成立,即<b,a> R,所以,R具有对 称性。
二、典型题例讲解
例1 有向图G=<V,E>如下图所示,分别求: (1). G的邻接矩阵。 (2).利用邻接矩阵求G中到的长度为3的通路条数。
并写出v1到v4的长度为3的路径。
谢谢大家!!
5) 逆关系 ✓ 定义
6) A上关系的性质 ✓ 自反、反自反、对称、反对称、传递性 ✓ 如何从关系图和关系矩阵来判别。
7) 关系的闭包 ✓ 自反闭包r(R)、对称闭包s(R) 、传递闭包 t(R) ✓ 关系闭包的性质与应用
8) 等价关系 ✓ 概念:判断及证明。典型例子:同余关系 ✓ 等价类与性质 ✓ 划分,划分与等价关系的转换
⑦ P(c)┑Q(c)
T,⑥,UI
⑧ ┑P(c)
T,⑤⑦,拒取式
⑨ x┒P(x)
T,⑧,EG
故,原推证成立,证毕。
第三部分 集合
期 末复习
一、本章主要内容 1) 集合及其运算
a) 集合与元素 b) 集合之间的关系:包含与相等 c) 特殊集合:空集、全集、幂集 d) 集合的运算:并、交、差、补、对称差 e) 基本集合恒等式:与谓词逻辑基本恒等式类
3) 谓词逻辑的等值演算 a. 谓词逻辑的基本等值式 b) 谓词逻辑等值演算的换名规则 c) 谓词逻辑的前束范式
4) 谓词逻辑的推理理论 a) 推理的形式结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:{4、5、6、7}或{x|xZ并且3x7}。
例2,判定下列各题的正确与错误:
(1)a{{a}};
(2){a}{ a,b,c };
(3){ a,b,c };
(4){ a,b,c };
(5){a,b}{a,b,c,{ a,b,c }};
(6){{a},1,3,4}{{a},3,4,1};
(7){a,b}{a,b,{ a,b }};
解:(1)R的关系矩阵为
R的关系图为
(2)因为R是自反的,反对称的和传递的,所以R是A上的半序关系。(A,R)为半序集,(A,R)的哈斯图如下:
(3)当B={2,3,4,5},B的极大元为2,4;极小元为2,5;B无最大元与最小元;B也无上界与下界,更无最小上界与最大下界。
例6,下列映射中哪些是满射,哪些是单射,哪些是双射?
[解析]
关系的性质既是对关系概念的加深理解与掌握,又是关系的闭包、等价关系、半序关系的基础。对于四种性质(自反性、对称性、反对称性、传递性)的判定,可以依据其定义,也可以依据教材中49页上总结的关于关系矩阵和关系图的规律。
对于传递性的判定,难度稍大一点,这里要提及两点:一是不破坏传递性定义,可认为具有传递性。如空关系具有传递性,同时空关系具有对称性与反对称性,但是不具有自反性。另一点是介绍一种判定传递性的“跟踪法”,即若(a1,a2)R,(a2,a3)R,,(ai-1,ai)R,则(a1,ai)R;如若(a,b)R,(b,a)R,则有(a,a)R,且(b,b)R。
2、数理逻辑部分(命题逻辑、谓词逻辑);
3、图论部分(图的基本概念、树及其性质)。
学习建议
离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。
一、各章复习示例与解析
第一章集合
例1,将“大于3而小于或等于7的整数集合”用集合表示出来。
离散数学期末复习指导(专科)
中央电大理工部计算机教研室
离散数学是中央电大计算机应用专业信息管理方向开设的必修统设课。该课程使用新的教学大纲,在原有离散数学课程的基础上削减了教学内容(主要是群与环、格与布尔代数这两章及图论的后三节内容),使所学的知识达到必需、够用,更加适合大学专科层次的教育。目前该课程没有新教材,借用原教材。使用的教材为中央电大出版的《离散数学》(刘叙华等编)和《离散数学学习指导书》(虞恩蔚等编)。
另外,由已经得到的主析取(合取)范式,根据 原理,参阅《离散数学学习指导书》71页例15,也可以求得主合取(析取)范式。
解:(1)求主析取范式,
[方法1]利用真值表求解
G
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
1
0
1
0
1
1
1
1
1
因此
(1)
(2)
(3)
(4)
[解析]
映射的概念与映射种类的判定:映射的种类主要指单射、满射、双射与非单非满射。判定的方法除定义外,可借助于关系图,而实数集的子集上的映射也可以利用直角坐标系表示进行,尤其是对各种初等函数。
答:(1),(3)是非单非满射;(2)是满射;(4)是双射。
第三章 命题逻辑
例1,试证明公式 为恒真公式。
离散数学主要研究离散量结构及相互关系,使学生得到良好的数学训练,提高学生抽象思维和逻辑推理能力,为从事计算机的应用提供必要的描述工具和理论基础。其先修课程为:高等数学、线性代数;后续课程为:数据结构、数据库、操作系统、计算机网络等。
课程的主要内容
本课程分为三部分:集合论、数理逻辑和图论。
1、集合论部分(集合的基本概念和运算、关系及其性质);
答:r(R1)= R1IA={(a,b),(b,c),(c,a),(a,a),(b,b),(c,c)}
s(R1)= R1R1-1={(a,b),(b,c),(c,a),(b,a),(c,b),(a,c)}
R12={(a,c),(b,a),(c,b)}
R13={(a,a),(b,b),(c,c)}
t(R1)= R1R12R13={(a,b),(b,c),(c,a),(a,c),(b,a),(c,b),(a,a),(b,b),(c,c)}
(8)如果AB=B,则A=E。
[解析]
此题涉及到集合中子集的概念,集合的包含关系,空集与集合的关系。解题时要注意区分两个集合之间的关系以及集合中元素与集合之间的关系的不同。
集合之间的关系分为包含关系(子集、真子集)、相等关系、幂集等,判断时要准确理解这些概念,才能正确地运用这些知识。
集合与它的元素之间的关系有两种:一个元素a属于一个集合A,记为aA;一个元素A不属于一个集合A,记为aA。要注意符号的记法()与集合包含符号记法(,)的不同。
[解析]
判定公式的恒真性,包括判定公式是恒真的或是恒假的。具体方法有两种:
一是真值表法,对于任给一个公式,主要列出该公式的真值表,观察真值表的最后一列是否全为1(或全为0),就可以判定该公式是否恒真(或恒假),若不全为0,则为可满足的。
二是推导法,即利用基本等价式推导出结果为1,或者利用恒真(恒假)判定定理:公式G是恒真的(恒假的)当且仅当等价于它的合取范式(析取范式)中,每个子句(短语)均至少包含一个原子及其否定。
空关系R2的自反闭包,对称闭包和传递闭包均为。
例5,设集合 ,A上的二元关系R为:
(1)写出R的关系矩阵,画出R的关系图;
(2)证明R是A上的半序关系,画出其哈斯图;
(3)若 ,且 ,求B的最大元,最小元,极大元,极小元,最小上界和最大下界。
[解析]
理解与掌握半序关系与半序集概念的关键是哈斯图。哈斯图画法掌握了,对于确定任一子集的最大(小)元,极大(小)元也就容易了。这里要注意,最大(小)元与极大(小)元只能在子集内确定,而上界与下界可在子集之外的全集中确定,最小上界为所有上界中最小者,最小上界再小也不小于子集中的任一元素,可以与某一元素相等,最大下界也同样。
证明:
(1)SP规则P
(2)S规则D
(3)P规则Q,根据(1),(2)
(4)P(QR)规则P
(5)QR规则Q,根据(3),(4)
(6)Q规则P
(7)R规则Q,根据(5),(6)
(8)SR规则D,根据(2),(7)
第四章谓词逻辑
例1,在谓词逻辑中将下列命题符号化:
(1)凡正数都大于0;
(2)存在小于3的素数;
证明:
第二章关系与映射
例1,设集合A={1,2,3,4,5},试求A上的模2同余关系R的关系矩阵和关系图。
[解析]
关系的概念是第二章的基础,又是第一章集合概念的应用。因此应该真正理解并熟练掌握二元关系的概念及关系矩阵、关系图表示。
这道题要把R表示出来,先要清楚“模2同余关系”的概念,如果x,y模2同余,就是指x,y除以2的余数相同。于是,
答:正确的是(2)、(4)、(5)、(7);其余的都是错误的。
例3,设A,B是两个集合,A={1,2,3},B={1,2},请计算(A)–(B)。
[解析]
集合的概念一般在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,由集合A的所有子集组成的集合,称为A的幂集,记作(A)或2A;一是掌握幂集元数为2n,n为集合A的元数。
xPxQ和xQxP
证明集合恒等式的另一种方法是利用已知的恒等式来代入。本题就是用的这个方法。
通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在A–B=A~B证明中的特殊作用。
[解析]
集合的表示方法一般有两种,一种称为列举法,一种称为描述法。
列举法将集合的元素按任意顺序逐一列在花括号内,并用逗号分开。“大于3而小于或等于7的整数”有4、5、6、7,用列举法表示为{4、5、6、7};
描述法是利用集合中的元素满足某种条件或性质用文字或符号在花括号内竖线后面表示出来。上例用描述法表示为{x|xZ并且3x7},其中Z为整数集合。
“没有不能表示成分数的有理数”与“所有的有理数都能表示成分数”是同一个命题的不同的叙述方法,因此本命题也可以符号化为 。
(4) ,其中F(x):x是参加考试的人,G(x):x取得好成绩。与(3)类似,本命题可以符号化为 。
这个例子中几个命题的符号化均有典型性,请同学们注意分析。
例2,设I是如下一个解释:
R={(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)}
求出了关系R的表达式,就可以进一步求出关系矩阵和关系图了。
答:R的关系矩阵为:
R的关系图为:
例2,设集合A={1,2,3,,10},A上的关系R={(x,y)|x,yA,且x+y=10},试判断R具有哪几种性质?
这里要求的析取范式中所含有的每个短语不是极小项,一定要与求主析取范式相区别,对于合取范式也同样。
证明:
证法一:真值表法,见《离散数学学习指导书》60页例6(4)的解答。
证法二:
ቤተ መጻሕፍቲ ባይዱG=((PQ)(QR))(PR)
=(PQ)(QR)PR
=(((PQ)(PR)(QQ)(QR))P)R
=((PQP)(PRP)(QRP))R
(3)没有不能表示成分数的有理数;
(4)参加考试的人未必都能取得好成绩。
相关文档
最新文档