冲裁模具设计
课程设计冲裁模具设计说明书

课程设计冲裁模具设计说明书1. 冲裁模具设计说明书1.1 引言该文档是冲裁模具设计项目的详细说明书。
该项目旨在设计和开发适用于特定产品的冲裁模具。
冲裁模具在生产中起着关键作用,能够快速、高效地加工材料,因此设计和制造过程需要非常详细和准确。
1.2 项目概述本项目旨在设计和制造一套适用于产品X的冲裁模具。
该冲裁模具将用于在生产中快速而准确地冲裁特定形状的材料。
2. 设计需求在冲裁模具设计过程中,需要满足以下几个主要需求:2.1 冲裁精度要求:冲裁模具的设计应确保能够实现产品X的精确冲裁,保证冲裁尺寸和形状的准确性。
2.2 生产效率要求:冲裁模具的设计应考虑生产效率,以提高生产速度和降低生产成本。
2.3 耐用性要求:冲裁模具应设计成耐用的结构,能够经受长时间大量的冲裁操作而不会失效或损坏。
2.4 安全性要求:冲裁模具的设计应考虑操作人员的安全,减少意外事故的发生。
3. 冲裁模具设计流程3.1 初步设计:根据产品X的要求,进行初步的冲裁模具设计,包括模具整体结构和基本尺寸的确定。
3.2 详细设计:在初步设计的基础上,进行详细的冲裁模具设计,包括冲头、冲座、导向系统、定位系统和冲裁力传递系统等的设计。
3.3 材料选型:根据冲裁模具的使用需求和工作环境,选择合适的材料进行模具的制造。
3.4 制造和装配:根据详细设计稿和选定的材料,进行冲裁模具的制造和装配工作。
3.5 调试和测试:完成冲裁模具的制造和装配后,进行调试和测试,确保冲裁模具的性能和精度满足要求。
4. 法律名词及注释4.1 版权:指对原创作品拥有的法律保护权。
4.2专利:指对发明创造的保护权,使得他人不得未经许可制造、使用或销售该发明。
4.3 商标:指用于区分商品或服务来源的标识,例如商标名称、商标图案等。
5. 附件本文档涉及以下附件:5.1 冲裁模具初步设计图稿5.2 冲裁模具详细设计图稿5.3 冲裁模具制造和装配过程的照片和记录。
冲裁模具凹模课程设计

冲裁模具凹模课程设计一、课程目标知识目标:1. 学生能理解冲裁模具凹模的基本结构及其在冲压加工中的应用。
2. 学生掌握凹模设计的基本原则,包括材料选择、形状设计、尺寸计算等。
3. 学生了解冲裁模具凹模的使用与维护要点,以及常见故障的解决方法。
技能目标:1. 学生能够运用所学知识,独立完成简单冲裁模具凹模的设计。
2. 学生能够运用CAD软件进行凹模的图纸绘制,具备初步的计算机辅助设计能力。
3. 学生通过小组合作,完成凹模设计的讨论、修正和优化,提高团队协作能力。
情感态度价值观目标:1. 学生培养对模具设计专业的兴趣,激发学习热情,形成主动探究的学习习惯。
2. 学生树立质量意识,注重细节,培养精益求精的工作态度。
3. 学生通过学习,认识到模具设计在制造业中的重要性,增强对制造行业的责任感。
课程性质:本课程为专业实践课,以冲裁模具凹模的设计原理和实践操作为核心内容。
学生特点:学生为高中二年级工业设计与制造专业,具备一定的机械基础知识,对模具设计有一定了解,但缺乏实践操作经验。
教学要求:结合学生特点,注重理论与实践相结合,强调实践操作能力的培养,提高学生的设计思维和创新能力。
通过课程目标的具体分解,使学生在掌握专业知识的同时,培养良好的职业素养。
二、教学内容1. 凹模结构组成及工作原理- 冲裁模具的分类及凹模在其中的作用- 凹模的典型结构及其工作原理2. 凹模设计基础- 材料选择原则及常用材料性能- 凹模形状设计方法和原则- 凹模尺寸计算及其公差配合3. 凹模设计实践- 简单凹模设计案例分析- CAD软件操作教学,完成凹模图纸绘制- 小组讨论,凹模设计方案的修正与优化4. 凹模的使用与维护- 凹模安装、调试与使用注意事项- 凹模的日常维护与保养方法- 常见凹模故障分析与解决方法教学大纲安排:第一周:冲裁模具分类及凹模结构组成第二周:凹模设计基础,包括材料选择、形状设计和尺寸计算第三周:凹模设计实践,分组进行简单凹模设计及图纸绘制第四周:凹模使用与维护知识学习,结合实际案例分析教材章节关联:本教学内容与教材第十章“冲裁模具设计”相关,具体涉及第10.2节凹模结构设计、10.3节凹模设计计算及10.4节模具使用与维护等内容。
冲裁工艺与模具设计

冲裁工艺与模具设计一、冲裁工艺概述冲裁工艺是金属材料加工中常用的一种工艺方法,通过冲压设备将金属材料切割成所需形状的工件。
冲裁工艺的主要特点是高效、精确、成本低、生产量大等优势。
而模具设计作为冲裁工艺的重要一环,是确保冲裁工艺顺利进行的关键。
二、冲裁工艺的步骤冲裁工艺的实施通常分为以下几个步骤:1.设计冲裁模具:根据产品的形状和尺寸要求,设计合理的冲裁模具,包括上模、下模和导向装置等部分。
2.材料准备:选择合适的金属材料,并将其切割成符合尺寸要求的工件。
3.模具调试:安装模具,并进行调试以确保模具的正常运行和冲裁质量。
4.冲裁操作:将材料放置于冲床上,并按照预定的冲裁程序进行操作,实现对材料的精确切割。
5.检验与修整:对冲裁后的工件进行检验,如有必要,进行修整以达到产品的要求。
三、模具设计的关键要点模具设计是冲裁工艺中至关重要的环节,一个合理的模具设计能够提高冲裁工艺的效率和质量。
以下是模具设计中的关键要点:1.考虑工件的形状和尺寸要求,设计出合理的模具结构和尺寸。
2.根据冲裁材料的特性,选择合适的模具材料,确保模具的硬度、耐磨性和耐腐蚀性。
3.确定模具的开合方式和定位方式,保证模具的稳定性和操作方便性。
4.设计合理的导向和定位装置,确保冲裁过程中工件的稳定性和精度要求。
5.根据冲裁工艺的要求,设置合适的切割方式、刀具尺寸和刀具数量。
6.考虑模具的可制造性和维修性,方便模具的制造和维护。
四、冲裁工艺和模具设计的案例分析以下是一个具体的案例分析,说明冲裁工艺和模具设计的应用:案例:汽车冲床件生产过程中的冲裁工艺和模具设计在汽车行业,冲裁工艺和模具设计是非常重要的环节。
这里以汽车门护板的生产为例,介绍其冲裁工艺和模具设计。
1.冲裁工艺:门护板是汽车车门上的一个重要部件,其形状复杂,尺寸要求严格。
在冲裁工艺中,首先需要设计合理的冲裁模具,将加工前的板材按照门护板的形状进行切割。
然后,通过冲床设备进行冲裁操作,将板材冲裁成门护板的形状。
冲裁工艺及冲裁模具设计

冲裁工艺及冲裁模具设计1. 引言冲裁工艺是金属板料加工中常用的一种工艺,通过冲击或剪切来完成金属板料的切割、成型等加工操作。
冲裁模具那么是用于完成冲裁工艺的工具,由上模和下模组成。
本文将介绍冲裁工艺的根本原理及最正确实践,并讨论冲裁模具的设计要点。
2. 冲裁工艺原理冲裁工艺的根本原理是利用冲裁模具对金属板料进行冲击或剪切,以到达切割、成型等目的。
冲裁工艺可以分为单冲、连冲和复合冲三种形式。
2.1 单冲单冲是指每次冲击或剪切只完成一次切割或成型操作。
单冲工艺简单、易于操作,适用于中小批量生产。
但是,由于每次操作只能完成一道工序,效率相对较低。
2.2 连冲连冲是指通过连续不断地进行冲击或剪切,一次完成多个工序。
连冲工艺具有高效率的优势,适用于大批量生产。
然而,连冲工艺要求操作速度快,冲裁模具的设计要求也相对较高。
2.3 复合冲复合冲是指在一个工序中使用多个冲裁模具,同时完成多个切割或成型操作。
复合冲工艺通常用于生产复杂的零件,可以提高生产效率和产品质量。
复合冲工艺的设计需要充分考虑模具的排列和动作协调的问题。
3. 冲裁模具设计要点3.1 模具材料选择冲裁模具需要具备足够的硬度和耐磨性,以保证模具长时间使用不失效。
常用的模具材料有工具钢、合金钢等。
在选择模具材料时应综合考虑材料的强度、硬度、热导率和加工难度等因素。
3.2 模具结构设计冲裁模具的结构设计直接影响到冲裁工艺的稳定性和产品质量。
模具结构应合理布局、刚性足够,并考虑到易于组装和维护等因素。
另外,模具的导向装置和定位装置也需要合理设计,以确保模具在工作过程中的准确性和稳定性。
3.3 模具冷却系统设计冲裁模具在工作过程中会受到较大的热冲击,冷却系统的设计对于模具的寿命和工作效率起到重要的作用。
冷却系统应考虑到模具各部位热量分布的差异,并采取适宜的冷却方式和冷却介质,以提高模具的冷却效果。
3.4 模具润滑系统设计模具润滑系统的设计对于减少摩擦、延长模具寿命和提高产品质量非常重要。
冲裁工艺及冲裁模具设计

冲裁工艺及冲裁模具设计冲裁工艺是一种常用的金属加工方法,通过冲切将金属材料切割成所需形状和尺寸,通常用于制作金属零部件和工件。
冲裁工艺的成功与否,不仅与冲裁机床的性能和工艺操作的技能有关,也与冲裁模具的设计质量密切相关。
本文将重点介绍冲裁工艺及冲裁模具设计的相关内容。
冲裁工艺的基本原理是,通过在金属材料上施加一定的冲击力,使模具上的刀具快速切入材料中,沿着预定轨迹切割出所需形状的零件。
冲裁工艺具有以下几个特点:一是加工速度快,冲裁速度通常为每分钟几十次到几百次,可以高效地完成大批量生产;二是加工精度高,冲裁工艺可以实现较高的尺寸精度和形状精度;三是适用范围广,冲裁工艺适用于各种金属材料,如钢材、铝材、铜材等。
冲裁模具是实现冲裁工艺的关键工具,其质量和设计能力直接影响着冲裁工艺的效果和生产成本。
冲裁模具的设计要考虑以下几个方面的因素:首先,要根据零件的形状和尺寸确定冲裁模具的结构和形式。
常见的冲裁模具包括简单冲模、复杂冲模、连续冲模等多种形式。
对于形状复杂、尺寸较大的零件,通常需要采用复杂冲模,以满足工艺要求。
其次,要合理选择冲裁模具的材料。
冲裁模具的材料应具有较高的硬度和耐磨性,以保证长时间的使用寿命。
常见的冲裁模具材料有合金工具钢、硬质合金等。
同时,还应根据不同材料的特性,选择合适的冲裁模具涂层,以减小摩擦阻力,延长模具的使用寿命。
再次,要根据冲裁工艺要求确定冲裁模具的加工精度和工艺要求。
冲裁模具的加工精度直接影响着冲裁零件的尺寸精度和形状精度。
因此,在设计冲裁模具时,要考虑到刀具的选择、工艺参数的确定等因素,以保证冲裁零件的质量和成品率。
最后,要根据冲裁生产的需求,合理设计冲裁模具的结构和布局。
冲裁模具的结构应简洁、紧凑,以降低制造成本和提高生产效率。
同时,还要合理设计模具的装卸和调整方式,以便于模具的更换和维护。
综上所述,冲裁工艺及冲裁模具设计是金属加工中非常重要的环节。
通过合理的冲裁工艺和冲裁模具设计,可以提高生产效率,降低生产成本,提高冲裁零件的质量和生产效率。
冲裁模(冲压模具)课程设计说明书

模具设计的具体步骤
确定冲裁模的类型和尺寸 设计冲裁模的轮廓和结构 确定冲裁模的冲压力和冲压速度
设计冲裁模的模具材料和热处理工艺 设计冲裁模的冷却系统和润滑系统 设计冲裁模的模具寿命和维护保养方法
冲裁模的制造工艺
冲裁模的设计:根据产品要求进行设计,包括尺寸、形状、材料等 冲裁模的制造:采用数控机床进行加工,保证精度和效率 冲裁模的装配:将各个部件组装成完整的冲裁模 冲裁模的调试:在装配完成后进行调试,确保其性能和精度达到要求
采用环保材料和工艺, 减少对环境的影响
提高冲裁模的自动化 程度,降低人工成本
提高模具寿命的方法和途径
优化模具设计: 合理选择材料、 结构、尺寸等, 提高模具的强度 和耐磨性
提高加工精度: 采用先进的加工 技术和设备,提 高模具的加工精 度,减少误差
加强维护保养: 定期检查、清洗、 润滑模具,及时 发现并处理模具 的磨损和损坏
冲裁模的使用和维护
冲裁模的使用 步骤:安装、 调试、运行、
停机
冲裁模的维护 方法:定期检 查、清洁、润 滑、更换易损
件
冲裁模的安全 操作:遵守操 作规程,注意
安全防护
冲裁模的常见 故障及处理方 法:如卡模、 漏油、噪音等, 需及时处理, 确保生产安全
常见问题的处理和解决方法
冲裁模调试过程中, 如果出现模具损坏, 应及时更换或修复。
设计前的准备工作
确定冲裁模的用途和功能 收集冲裁模的设计要求和技术参数 确定冲裁模的材料和尺寸 准备冲裁模的设计图纸和工具
模具设计的基本流程
确定冲裁 模的设计 要求
设计冲裁 模的尺寸 和形状
确定冲裁 模的材料 和加工工 艺
设计冲裁 模的装配 和调试方 法
冲裁工艺及模具设计

冲裁工艺及模具设计冲裁工艺简介冲裁工艺是一种常见的金属加工工艺,用于将金属板材加工成所需的形状。
这种工艺通常通过模具将压力施加到金属板上,以使其形成所需的凸起或凹陷。
冲裁工艺广泛应用于汽车制造、家电制造和航空航天等行业。
冲裁工艺的主要特点是高效、精确和重复性好。
通过合理的工艺参数和模具设计,可以实现高速、连续和自动化生产。
冲裁工艺还可以在一次冲裁过程中完成多个工序,提高生产效率。
冲裁工艺步骤冲裁工艺一般包括以下步骤:1.材料准备:选择适合的金属板材,并根据设计要求进行切割和整理。
2.模具设计:根据产品要求和工艺参数设计合适的冲裁模具。
3.模具制造:根据模具设计图纸制造模具,并进行热处理和调试。
4.工艺参数设置:根据产品要求和材料特性,确定合适的冲裁工艺参数,例如冲击力、冲裁速度和冲裁深度等。
5.冲裁加工:将金属板材放置在冲裁机上,通过模具施加压力进行冲裁加工。
6.产品整理:对冲裁后的产品进行去毛刺、倒角和抛光等处理,使其达到设计要求。
7.质量检验:对冲裁产品进行质量检验,确保其尺寸和外观质量符合要求。
8.包装和发货:将合格的冲裁产品进行包装,并按照客户要求进行发货。
模具设计要点模具设计是冲裁工艺中的关键环节,合理的模具设计可以提高冲裁质量和生产效率。
以下是一些模具设计的要点:1.合适的模具材料:模具材料应具有足够的硬度和耐磨性,以承受冲击和摩擦力。
常用的模具材料有工具钢和硬质合金等。
2.确定合适的模具结构:模具结构应根据产品要求和冲裁工艺参数确定。
常见的模具结构有单工位模具、连续模具和复合模具等。
3.合理的模具尺寸:模具的尺寸应精确匹配产品要求,避免尺寸过大或过小造成冲裁失效或模具损坏。
4.设计合适的模具导向方式:模具的导向方式影响着冲裁产品的精度和稳定性。
常用的导向方式有滑块导向、模柱导向和滑块导柱导向等。
5.考虑模具的冷却系统:在模具设计中应考虑合适的冷却系统,以提高冲裁效率和模具寿命。
冲裁工艺优化为提高冲裁工艺的效率和质量,可以进行工艺参数的优化。
冲裁工艺和冲裁模具设计

冲裁工艺和冲裁模具设计冲裁工艺和冲裁模具设计是现代工业生产中非常重要的技术和工艺。
冲裁工艺是通过冲击力将金属板材进行成型和切割的一种加工方法,而冲裁模具是实现这一过程的重要工具。
本文将详细介绍冲裁工艺和冲裁模具设计的相关内容。
一、冲裁工艺冲裁工艺是将金属板材置于冲裁机上,通过冲击力使金属板材发生塑性变形,从而完成对金属板材的成型和切割。
冲裁工艺主要有以下几个特点:1.高效率:冲裁工艺可以在较短的时间内完成对金属板材的加工,提高了生产效率。
2.高精度:冲裁工艺可以实现对金属板材的精确控制,可以生产出精度高的零部件。
3.多功能:冲裁工艺可以完成各种形状和尺寸的金属板材的加工,具有很强的适应性。
冲裁工艺的具体步骤主要包括:设计冲裁模具、选择合适的冲裁机床、放置金属板材、进行冲裁加工、检验成型品质量等。
冲裁模具是实现冲裁工艺的关键工具,其设计对于冲裁工艺的成败起着至关重要的作用。
冲裁模具设计需要考虑以下几个方面:1.模具结构设计:模具结构要能够满足冲击力的作用,同时要能够保证金属板材的成型和切割要求。
模具结构设计要考虑到成型品的形状和尺寸,以及模具的寿命和维修保养情况。
2.材料选择:冲裁模具需要使用高强度和高硬度的材料,以保证模具具有足够的耐用性和稳定性。
3.冷冲模具和热冲模具:根据金属板材的性质和成型要求,可以选择使用冷冲模具或热冲模具。
冷冲模具适用于低温成型,热冲模具适用于高温成型。
4.模具加工工艺:模具加工需要使用先进的机械加工设备和工艺,以保证模具的加工精度和质量。
冲裁模具设计需要注意以下几个关键点:1.模具的定位和固定:模具在冲裁过程中必须能够保持稳定的位置和固定度,以保证成型品的准确度。
2.模具的导向和导板:模具在冲裁过程中需要进行一定的导向运动,导向和导板设计要合理,以减少摩擦力和磨损。
3.模具的副导向和顺应性:模具在冲裁过程中需要具有一定的副导向和顺应性,以保证成型品的形状和尺寸要求。
4.模具的排屑和冷却:模具在冲裁过程中需要及时排出金属屑和冷却润滑,以保证模具的使用寿命和成型品的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冲裁设计
1、冲裁件工艺分析
工件外形及尺寸如图1所示,材料为Q235,厚度t=1mm
图1.工件外形示意图
根据工件外形分析可知,此工件只有落料和冲孔两个工序。
材料为Q235钢,具有良好的冲压性能,适合冲裁。
工件结构相对简单,工件有两个凸出部分,其中尺寸B1、B2均满足大于2.3t(t为工件厚度,数据均查表得到)的要求;有一个Φ10mm的孔及半径R15的圆弧,最小壁厚为10mm,最小孔边距b=1.3t+0.1L 计算可知b=4.3<10,故最小孔边距满足要求;工件上没有尖锐的角,均满足R ≥0.25t的要求;工件的尺寸全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。
图2 冲压工艺性分析示意图
2、冲压工艺方案确定
该工件包括落料、冲孔两个基本工序,可有以下三种工艺方案:
方案一:先落料后冲孔,采用单工序模生产。
方案二:落料-冲孔复合冲压,采用复合模生产。
方案三:冲孔-落料级进冲压,采用级进模生产。
方案一属于单工序冲压。
模具结构简单,制造方便,但需要两道工序,成本相对较高,生产率低,一般不宜采用。
方案二、方案三均采用一副模具,操作简单,生产效率高,考虑到一定的精度要求,并且分析可知凸凹模允许的最小壁厚大于3.5mm ,模具的强度可以得到保证,故采用方案二所述的复合冲裁方式。
3、主要设计计算
(1) 排样方式的确定及其计算
根据工件外形分析,采用图三所示单排样法,其中根据工件厚度t 及材料种类,取工件间a1=1.2mm ,沿边a=1.5mm 。
图3 排样示意图
根据工件尺寸及图三所示的搭边尺寸计算,得到冲裁面积A=1178.25mm 2,条料宽度B=50+1.5X2=53mm ,步距S=30+1.2mm=31.2mm 一个步距材料利用率%3.713)
(501.2)(301178.25100%=+⨯+=⨯=BS nA η (2) 冲裁力与卸料力的计算
初步采用平刃凸模和凹模进行冲裁,则冲裁力为
τLt K P p 3.1=
其中L 为工件的轮廓长度,t 为工件厚度,τ为材料抗剪强度。
则计算可得: 冲裁力 KN 03.6930011773.10=⨯⨯⨯=P
脱料力 KN 45.305.00011=⨯==P P K P
顶料力 KN 14.406.00022===P P K P
冲压力 KN 62.76210=++=P P P P
K p —是考虑到冲裁模刃口的磨损、凸模与凹模间隙的波动、润滑情况、材料力学性能与厚度公差的变化等因素而设置的安全系数,一般取1.3;
K 1—卸料力系数,其值为0.02~0.06,薄料取大值,厚料取小值,取0.05;
K 2—顶件力系数,其值为0.04~0.08,薄料取大值,厚料取小值,取0.06。
(3) 压力中心的确定及相关计算
模具压力中心是指冲压时诸冲压力合力的作用点位置。
为了确保压力机和模具正常工作,应使冲模压力中心与压力机滑块的中心重合。
否则,会使冲模和压力机滑块产生偏心载荷,使滑块和导轨间产生过大的磨损,模具导向零件加速磨损,降低模具和压力机的使用寿命。
解析法计算依据: 各分力对某坐标轴的力矩之代数和等于诸力的合力对该轴的力矩。
求出合力的坐标位置),(000y x O ,即为所求模具的压力中心。
图4 压力中心计算示意图
将坐标点设在圆孔中心,则落料冲孔复合模的压力中心坐标为:
75.131510151525.72235153215205.2715220155.173525.73520-=+++⨯+⨯+⨯⨯+⨯⨯-⨯⨯-⨯-⨯⨯-⨯⨯-=π
ππx
00=y
考虑到工件冲裁力不是很大,以及简化模具的设计,将模具中心设在距离圆孔左边15mm 处。
(4) 冲裁模刃口尺寸计算
在确定工作零件刃口尺寸计算方法之前,首先要考虑工作零件的加工方法及模具装配方法。
结合该模具的特点,工作零件的形状相对较简单,适宜采用线切割机床分别加工落料凸模、凹模、凸模固定板以及卸料板,这种加工方法可以保证这些零件各个孔的同轴度,使装配工作简化。
因此工作零件刃口尺寸计算就按分开加工的方法来计算。
冲孔根据冲孔凸模为设计基准,首先确定凸模刃口尺寸,使凸模基本尺寸接近或等于工件孔的最大尺寸,再增大凹模尺寸以保证最小合理间隙Zmin 。
工件制作精度为IT13,凸模和凹模均采用IT7级加工制造,工件的公差尺寸图如图6所示:
图6 工件公差尺寸
根据工件的材料及厚度,查表得到凸凹模合理间隙0.16-0.22 mm ,考虑到防止冲孔时废料跳出,取冲孔的间隙值为上值得2/3,根据工件制造精度,查表取摩擦系数X=0.5,
1)根据凸凹模间隙计算得,凸凹模制造偏差:
落料:03m m .016.0-22.05.0m in -m ax 5.0=⨯===)()(
凸凸凹Z Z δδ
冲孔:02mm .016.0-22.03
25.0min -max 5.0=⨯===)()(凸凹凸Z Z δδ 2)计算各刃口尺寸
① 尺寸062
.050-为第一类落料尺寸 计算得: mm 69.4962.050.-50)X ΔL (L 03.003.0=⨯=-=+)(凹凹δ
mm .534916.0-62.050.-50)Zmin -X ΔL (L 0.0303.0--=⨯=-=-)(凹凸凹δ
② 尺寸0
52.030-为第一类落料尺寸
计算得: mm 47.2952.050.-30)X ΔL (L 03.003.0=⨯=-=+)(凹凹δ
mm .582916.0-52.050.-30)Zmin -X ΔL (L 0.0303.0--=⨯=-=-)(凹凸凹δ
③ R15为第一落料半边尺寸,为保证R15与尺寸30的轮廓线相切,则凸凹模与凹模尺寸取0
52.030-相应刃口尺寸的一半。
计算得到:015.00015.087.1474.295.00
++=⨯=)(凹R 0015.0-00.015-79.1458.295.0=⨯=)(凸凹R
④ 尺寸0
43.015-为第一类落料尺寸
计算得:mm 4.785134.050.-51)X ΔL (L 03.003.0=⨯=-=+)(凹凹δ
mm 625.1416.0-34.050.-51)Zmin -X ΔL (L 0.0303.0--=⨯=-=-)(凹凸凹δ
⑤ 尺寸0
36.05.7-为第一类落料尺寸
计算得:mm 32.763.050.-5.7)X ΔL (L 03.003.0=⨯=-=+)(凹凹δ
mm 16.716.0-63.050.-5.7)Zmin -X ΔL (L 0.0303.0--=⨯=-=-)(凹凸凹δ
⑥ 3.010φ为第一类落料尺寸
计算得到:
d 凸=(d+X Δ)凸δ-0=(10+0.5×0.36)
02.00-mm=10.18002.0-mm d 凸凹= (d 凸+X Δ+Zmin)d δ+0=(10.18+0.5x0.36+0.1)020.00+mm=10.46020.00+mm
⑦ 对于R2,取双向公差为±0.125 则凸模尺寸取R2-0.016,R 凸凹=(R 凹+0.5*Zmin )+0.01=2.08+0.016 ⑧ 尺寸2.035±属于第一类落料尺寸,方便计算,将其改为0
4.02.35-
计算得到:
mm 94.3408.0-63.050.-2.35)Zmin/2-X ΔL (L 0.03015.02/--=⨯=-=-)(凹凸凹δ mm 28.3508.02.35)2/min Z L (L 015.0015.02/=+=+=+)(凹凸凹凹δ
L 凹尺寸由调整凹模与凸模固定板的相对位置保证。
四 主要零部件设计
(1) 凸凹模
图7 凸凹模
图
8 冲孔凸模 (2) 凹模
图9 凹模
图10 整体模具示意图。