九年级数学第25章《概率初步》全章导学案

合集下载

九年级数学_第25章概率初步复习导学案

九年级数学_第25章概率初步复习导学案

《概率初步》复习课导学案┃知识归纳┃1.事件在一定条件下,的事件,叫做随机事件.确定事件包括事件和事件.[注意] 随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.2.概率的意义一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=.[注意] 事件A发生的概率的取值范围≤P(A)≤,当A为必然事件时,P(A)=;当A为不可能事件时,P(A)=3.求随机事件概率的三种方法(1)法;(2)法;(3)法.4.用频率估计概率一般地,在大量重复试验中,事件A发生的频率稳定于,那么事件A发生的概率P(A)=┃考点攻略┃►考点一事件例1下列事件是必然事件的是()A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片►考点二用合适的方法计算概率例2在一个布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行摸球游戏,甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树形图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.►考点三用频率估计概率例3在一个不透明的布袋中,红色、黑色、白色的玻璃球共有120个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和55%,则口袋中白色球的个数很可能是________个.►考点四利用面积求概率例4如图25-2是一个被等分成6个扇形且可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是________.► 考点五 概率与公平性例5 四张质地相同的卡片如图25-3所示,将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.┃走进中考┃1. 十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯亮的概率是2. 在一个不透明的口袋中,装有除颜色外其余都相同的球15个,从中摸出红球的概率为 ,则袋中红球的个数为3. 有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程12ax x --+2=12x-有正整数解的概率为 . 4. 某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是5. 从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k 、b ,则一次函数y kx b =+的图象不经过第四象限的概率是 . ┃课后思考┃我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩(得分为整数,满分为100分)分成四组,绘成了如下尚不完整的统计图表. 组别成绩 组中值 频数 第一组90≤x <100 95 4 第二组80≤x <90 85 m 第三组70≤x <80 75 n 第四组 60≤x <70 65 21 根据图表信息,回答下列问题:(1)参加活动选拔的学生共有 人;表中m = ,n = ;(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;(3)将第一组中的4名学生记为A 、B 、C 、D ,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A 和B 的概率. 13第一组 8%第四组 42%第二组 ?第三组 30%。

部编版人教初中数学九年级上册《第25章(概率初步)全章导学案》最新精品优秀整章每课导学单

部编版人教初中数学九年级上册《第25章(概率初步)全章导学案》最新精品优秀整章每课导学单

最新精品部编版人教初中九年级数学上册第二十五章概率初步优秀导学案(全章完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的导学案(导学单)是高效课堂的前提和保障。

(最新精品导学案)第二十五章概率初步25.1随机事件与概率25.1.1随机事件1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断.2.归纳出三种事件的各自的本质属性,并抽象成数学概念.3.形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.4.总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件.阅读教材第127至128页,完成下列知识探究.知识探究1.在一定条件下,必然发生的事件,叫做________.2.在一定条件下,不可能发生的事件,叫做____________.3.在一定条件下,可能发生也可能不发生的事件,叫做________.自学反馈1.下列问题哪些是必然发生的?哪些是不可能发生的?①太阳从西边下山;②某人的体温是100 ℃;③a2+b2=-1(其中a,b都是实数);④水往低处流;⑤酸和碱反应生成盐和水;⑥三个人性别各不相同;⑦一元二次方程x2+2x+3=0无实数解.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__________.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性________摸到J、Q、K的可能性.(填“<”“>”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( ) A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( ) A.cab B.acb C.bca D.cba一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.活动1小组讨论例15名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况从签筒中随机(任意)地取一根纸签.请考虑以下问题:①抽到的序号是0,可能吗?这是什么事件?②抽到的序号小于6,可能吗?这是什么事件?③抽到的序号是1,可能吗?这是什么事件?④你能列举与事件③相似的事件吗?解:①不可能;不可能事件.②可能;必然事件.③可能;随机事件.④抽到的序号是2或3或4或5.必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.活动2跟踪训练1.下列事件中是必然事件的是( )A.早晨的太阳一定从东方升起B.北京的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( )A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4.下列事件:①袋中有5个红球,能摸到红球;②袋中有4个红球,1个白球,能摸到红球;③袋中有2个红球,3个白球,能摸到红球;④袋中有5个白球,能摸到红球.问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.①两直线平行,内错角相等;②刘翔再次打破110米栏的世界纪录;③打靶命中靶心;④掷一次骰子,向上一面是3点;⑤13个人中,至少有两个人出生的月份相同;⑥经过有信号灯的十字路口,遇见红灯;⑦在装有3个球的布袋里摸出4个球;⑧物体在重力的作用下自由下落;⑨抛掷一千枚硬币,全部正面朝上.活动1小组讨论例3袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的“20次摸球”合并在一起是否等同于“400次摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大,必须怎么做?解:(1)是随机事件,B的可能性大.(2)略.(3)不会影响.(4)进行大量的,重复的实验.活动2跟踪训练1.从一副扑克牌中,任意抽取一张,抽到的可能性较小的是( )A.黑桃B.红桃C.梅花D.大王2.小红花2元钱买了一张彩票,你认为小红( )中大奖.A.一定B.很可能。

人教版九年级数学第25章《概率初步》25.2 用列举法求概率 第1课时 用列表法求概率(导学案)

人教版九年级数学第25章《概率初步》25.2 用列举法求概率 第1课时 用列表法求概率(导学案)

25.2 用列举法求概率第1课时用列表法求概率一、新课导入1.导入课题:同时抛掷两枚质地均匀的硬币或骰子,会出现哪些可能的结果?怎样才能不重不漏地列举所有可能出现的结果呢?本节课我们学习用列表法列举所有可能出现的结果并求概率.(板书课题)2.三维目标:(1)知识与技能初步掌握直接列举法计算一些简单事件的概率的方法.理解:包含两步,并且每一步的结果为有限的意义,这样的试验会出现的所有可能的结果.(2)过程与方法通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.(3)情感态度体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.3.学习重、难点:重点:用直接列举法和列表法列举所有可能出现的结果.难点:求概率.二、分层学习1.自学指导:(1)自学内容:教材第136页例1.(2)自学时间:5分钟.(3)自学方法:阅读课文分析,理解课本是怎样列举出所有可能的结果的,并学会课本上用不同字母表示不同事件的方法和记法.(4)自学参考提纲:①掷两枚硬币会出现哪些不同的结果?你能列举出来吗?有四种不同的结果:正正、正反、反正、反反.②先后两次掷硬币和一次同时掷下两枚硬币有什么区别?出现的可能性发生变化了吗?没有区别.出现的可能性没有变化. 2.自学:学生可参考自学指导进行自学. 3.助学 (1)师助生:①明了学情:深入课堂了解学生是否理解列举这几种结果的方法. ②差异指导:对共性问题进行适时点拨引导. (2)生助生:学生相互交流帮助解疑难. 4.强化:(1)归纳两步试验中列举全部结果的要点.(2)练习:①袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率:a.第一次摸到红球,第二次摸到绿球.b.两次都摸到相同颜色的小球;c.两次摸到的球中有一个绿球和一个红球. 解:a.14; b12.; c.12②合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B ,C ,D 随机坐到其他三个座位上,求学生B 坐在2号座位的概率.解:13③“石头、剪刀、布”是广为流传的游戏,游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,求双方出现相同手势的概率.解:131.自学指导:(1)自学内容:教材第136页例2至第137页.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲. (4)自学参考提纲:①同时掷两枚质地均匀的骰子,会出现哪些可能的结果? 列表列举所有可能的结果:②由表可知:同时掷两枚骰子,可能出现的结果有 36 种,并且它们出现的可能性相等.两枚骰子的点数相同的结果有 6 种,所以P(两枚骰子的点数相同)=16; 两枚骰子的点数和是9的结果有 4 种,所以P(两枚骰子的点数和是9)=19; 至少有一枚骰子的点数为2的结果有 11 种,所以P(至少有一枚骰子的点数为2)=1136. ③如果把例2中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,所得到的结果有变化吗?为什么?没有变化,因为试验的条件是相同的.④当一次试验要涉及 两 个因素,并且可能出现的结果数目较多时,通常采用列表法. 2.自学:学生可参考自学指导进行自学. 3.助学: (1)师助生:①明了学情:了解学生是否掌握了列表法.②差异指导:分类指导与集中辅导相结合. (2)生助生:学生之间相互交流帮助认知理解. 4.强化:(1)列表法适用的条件及表格设计方法.(2)练习:①有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽取1张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有36种,并且它们出现的可能性相等.其中第二次取出的数字能够整除第一次取出的数字(记为事件A )的结果有14种,所以()PA ==1473618. ②有5张看上去无差别的卡片,上面分别标有0,1,2,3,4.求: a.从中任取两张卡片,两张卡片上的数字之和等于4概率;解:列举出所有可能出现的结果:(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所有可能出现的结果共有10种,并且它们出现的可能性相等,其中满足两张卡片上的数字之和等于4(记为事件A )的结果有2种,所以()PA ==21105. b.从中任取2次卡片,每次取1张.第一次取出卡片,记下数字后放回,再取第二次.两次取出的卡片上的数字之和恰好等于4概率.解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有25种,并且它们出现的可能性相等,其中两次取出的卡片上的数字之和恰好等于4(记为事件B )的结果有5种,所以()PB ==51255. 三、评价1.学生的自我评价:说说列举所有结果时,怎样才能做到不重不漏.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、情感、方法、成果及不足进行归纳总结.(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):(1)本节课通过以学生喜闻乐见的掷硬币、掷骰子等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多关于概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.(2)教师引导学生交流归纳知识点,看学生是否可以不重不漏地列举出事件发生的所有可能,能否找出事件A 中包含几种可能的结果,并能求P (A ),教学时要重点突出方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是(D )A.12B.15C.136D.11362.(10分)纸箱里有一双拖鞋,从中随机取一只,放回后再取一只,则两次取出的鞋都是左脚的鞋的概率为14. 3.(10分)有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车,则两个人同坐2号车的概率为14. 4.(10分)有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 6 的概率最大,抽到和大于8的概率为325. 5.(10分) 如图,随机闭合开关K 1,K 2,K 3中的两个,求能让两盏灯泡同时发光的概率. 解:列举出闭合三个开关中的两个的全部结果:K1K 2,K 1K 3,K 2K 3. 所有可能的结果共有3种,并且这三种结果出现的可能性相等. 只有同时闭合K 1、K 3,才能让两盏灯泡同时发光(记为事件A ),所以()PA 13. 6.(20分)一个不透明的袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.求下列事件的概率:(1)两次取出的小球标号相同; (2)两次取出的小球标号和等于4. 解:两次取出小球的标号列举如下:共有16种可能的结果.(1)其中两次取出的小球标号相同(记为事件A )的结果有4种,所以()PA ==41164. (2)两次取出的小球标号和等于4(记为事件B )的结果有3种,即(1,3),(2,2),(3,1),所以()P B =316. 二、综合应用(20分)7.(20分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用列表的方法,表示出点P 所有可能的坐标; 解:如下表:(2)求点(x ,y )在函数y=-x +5图象上的概率.由表示可知,共有12种可能的结果,并且它们出现的可能性相等.其中满足在函数y=-x +5的图象上(记为事件A )的结果有4种,所以()P A ==41123. 三、拓展延伸(10分)8.(10分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?解:设两把锁分别为m 、n ,三把钥匙分别为a 、b 、c ,且钥匙a 、b 能分别打开锁m 、n.列举出所有可能的配对结果:共有6种可能的结果,且每种结果出现的可能性相等.其中一次打开锁(记为事件A )的结果有2种,所以()PA ==2163.。

【九年级】初三数学第25章概率初步导学案

【九年级】初三数学第25章概率初步导学案

【九年级】初三数学第25章概率初步导学案《概率初步》1第一节随机事导学案主编:詹丽华主编:班级:学号:姓名:学习目标:【知识与技能】理解不可避免、不可能和随机事物的特点。

【过程与方法】体验体验、操作、观察、归纳和分析的过程,并培养从复杂外观中提取本质特征并加以抽象的能力。

【情感、态度与价值观】通过亲身体验和示范,学生可以感受到数学就在他们身边,这样学生就愿意亲近数学,感受数学,喜欢数学。

【重点】随机事件的特征【难点】判断现实生活中什么是随机的。

学习过程:一、自主学习(一)复习巩固五名学生参加了比赛,并通过抽签决定每个人的出场顺序。

签名框中有五个形状和大小相同的纸质标签,分别标有出口的序列号1、2、3、4和5。

小军先抽签。

当他看不到纸签上的数字时,他随机(任意)从标志盒中取出一个纸签。

请考虑以下问题:1、抽到的序号有几种可能的结果?2.绘制的序列号为0。

可能吗?3、抽到的序号小于6,可能吗?4.绘制的序列号为1。

可能吗?5、你能列举与问题4相似的事吗?(二)独立调查小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。

请考虑以下问题,掷一次骰子,观察骰子向上的一面:1.可能出现的要点是什么?2、出现的点数是7,可能吗?213、出现的点数大于0,可能吗?4.分数为4分。

可能吗?(三)、归纳:1.必要手段上述两个实验中哪些是必然事:2.不可能的手段:上述两个实验中哪些是不可能事:不可避免的和不可能的统称为:3、怎样的事称为随机事呢?例如:(四)自我尝试:指出以下哪些事情是不可避免的、不可能的和随机的?1.通常加热到100°c时,水沸腾;2.姚明在罚球线上投篮命中;3.掷一次骰子,向上的一面是6点;4.测量三角形内角之和,结果为360°;5.经过城市中某一有交通信号灯的路口,遇到红灯;6.射手射击一次,击中靶心;7.太阳东升西落;8.人在没有水的情况下可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船比飞机快二、教师点拔1.什么是不可避免的?什么是不可能的?你确定吗?2、随机事是?3.本节学习的数学方法是动手操作和合理的想象力。

九年级数学上册第二十五章概率初步概率导学案新人教

九年级数学上册第二十五章概率初步概率导学案新人教

25.1.2 概率一、自主学习1.认真自学课本第130页至第131页内容,并完成以下的填空:(1)概率的定义:记为:(2)课本两个试验有什么共同的特点?每一次试验中,每一次试验中,,2、从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有种?抽到1的概率为多少?即:概率是P(抽到1号)= 3、掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?即: P(出现点数是1)=归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为注意:1.概率从数量上刻画了一个随机事件发生的可能性的大小. 2 .当A是必然发生的事件时,P(A)=当A是不可能发生的事件时,P(A)=归纳:事件发生的可能性,则它的概率越接近;反之,事件发生的可能性越,则它的概率越接近。

总之0≤P(A)≤1二、合作探究掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为3,(2)点数为偶数,(3)点数大于1小于5三、展示交流1、如图是一个转盘,转盘分成6个相同的三角形,颜色分为红、绿、黄三种颜色。

指针的位置固定,转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置(指针指向两个三角形的交线时,当作指向右边的三角形)。

求下列事件的概率:1)指针指向红色 .2) 指针指向黄色或绿色 .3)指针不指向绿色.2、课本133页练习。

在具体情境中了解概率意义四、随堂检测1.小冲、小明、小芳在一起做游戏时,需要确定游戏的先后顺序.•他们约定用“石头、剪子、布”猜拳的方式确定.在1•个回合中小芳•出“布”的概率是______.2.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏.游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,•其余商标牌的背面是一张哭脸.若翻到哭脸,就不得奖.参与这个游戏的观众有3•次翻牌机会(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,他第三次翻牌获奖的概率是().(A)14(B)15(C)16(D)3203.如图,对角线将一个长宽不等的矩形分成4个区域,分别涂上红、黄、蓝、白四色,中间装有匀速转动的指针,则指针在每个区域内的概率是()A.一样大B.蓝白区域大C.红黄区域大D.由指针转动的速度确定4好落在灰色地面上的概率.5.“抢椅子”游戏中5人争抢去坐4张椅子,那么每个人可能坐到椅子的概率是()A.15B.19C.14D.456.一套未入住的80㎡的住宅,其中卧室①12㎡,卧室②14㎡,卧室③18㎡,卫生间8㎡,厨房8㎡,其余为客厅,一只小猫在室内地面上任意走动,那么这只小猫在各个地方的概率是多少?中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.在△ABC 中,AB=3,BC=4,AC=2,D ,E ,F 分别为AB ,BC ,AC中点,连接DF ,FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11【答案】B【解析】试题解析:∵D 、E 、F 分别为AB 、BC 、AC 中点,∴DF=12BC=2,DF ∥BC ,EF=12AB=32,EF ∥AB ,∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=1.故选B . 2.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-【答案】D 【解析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-,所以112a -=-, 解得1a =-; 故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【解析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:12x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 4.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A .B .C .D .【答案】D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.6.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°【答案】C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD 中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.7.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002 x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.8.如图,正六边形ABCDEF内接于O,M为EF的中点,连接DM,若O的半径为2,则MD的长度为()ABC.2 D.1 【答案】A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【详解】连接OM、OD、OF,∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠∴==故选A.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.9.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.19【答案】D【解析】试题分析:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=kx(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣36【答案】B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x 轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.二、填空题(本题包括8个小题)11.如图,点,A B是反比例函数(0,0)ky k xx=>>图像上的两点(点A在点B左侧),过点A作AD x⊥轴于点D,交OB于点E,延长AB交x轴于点C,已知2125OABADCSS∆∆=,145OAES∆=,则k的值为__________.【答案】203【解析】过点B 作BF ⊥OC 于点F ,易证S △OAE =S 四边形DEBF =145,S △OAB =S 四边形DABF ,因为2125OAB ADC S S ∆∆=,所以2125DABF ADC S S ∆=四边形,425BCF ADCS S ∆∆=,又因为AD ∥BF ,所以S △BCF ∽S △ACD ,可得BF:AD=2:5,因为S △OAD =S △OBF ,所以12×OD×AD =12×OF×BF ,即BF:AD=2:5= OD :OF ,易证:S △OED ∽S △OBF ,S △OED :S △OBF =4:25,S △OED :S 四边形EDFB =4:21,所以S △OED =815 ,S △OBF = S △OED + S 四边形EDFB =815+145=103, 即可得解:k=2 S △OBF =203. 【详解】解:过点B 作BF ⊥OC 于点F ,由反比例函数的比例系数|k|的意义可知:S △OAD =S △OBF ,∴S △OAD - S △OED =S △OBF 一S △OED ,即S △OAE =S 四边形DEBF =145,S △OA B =S 四边形DABF,∵2125OAB ADC S S ∆∆=, ∴2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=,∵AD ∥BF ∴S △BCF ∽S △ACD ,又∵425BCFADCSS∆∆=,∴BF:AD=2:5,∵S△OAD=S△OBF,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=20 3.故答案为20 3.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.12.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.【答案】1095【解析】由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.【详解】详解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴BMAM=AMAE,即513=13AE,∴AE=1695,∴DE=AE﹣AD=1695﹣12=1095.故答案为1095.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA 是解题的关键.13.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)【答案】(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).14.在数轴上与2 所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.15.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.【答案】1 【解析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.16.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果P运动一周时,点Q运动的总路程为__________.【答案】4【解析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C 时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A 时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【详解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,=①当点P从O→B时,如图1、图2所示,点Q②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵∴AQ=2∴OQ=2﹣1=1,则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2④当点P从A→O时,点Q运动的路程为AO=1,∴点Q故答案为4.考点:解直角三角形17.分解因式6xy2-9x2y-y3 = _____________.【答案】-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.18.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.【答案】a+b=1.【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.三、解答题(本题包括8个小题)19.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.【答案】1.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】原式=(+)•=•=2(x+2)=2x+4,当x =﹣时,原式=2×(﹣)+4=﹣1+4=1.【点睛】本题考查的知识点是分式的化简求值,解题的关键是熟练的掌握分式的化简求值.20.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30%100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40%100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.21.某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【答案】(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y与x之间的函数关系式为y=kx+b,根据题意得:1205014030k bk b+=⎧⎨+=⎩,解得:1170kb=-⎧⎨=⎩,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W 有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.22.先化简22442x xx x-+-÷(x-4x),然后从正整数作为x的值代入求值.【答案】当x=-1时,原式=1=11+2-;当x=1时,原式=11=1+23【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【详解】原式=22(2)4(2)x xx x x--÷-=()2(2)•(2)2(2)x xx x x x--+-=12x+∵xx为整数,∴若使分式有意义,x只能取-1和1当x=1时,原式=13.或:当x=-1时,原式=123.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【答案】(1)见解析;(1)见解析.【解析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEBAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF 的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【答案】(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t+,13t),代入直线AD 的解析式y=﹣34x+6得:t=7517;综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7541或7517. 考点:四边形综合题.25.先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 【答案】-1【解析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】解:2211a a a a ⎛⎫-÷⎪--⎝⎭(1)(1)12a a a a a ---=•-1(1)12a a a a a -+-=•- 2a=, 当2a =-时,原式212-==-. 【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.26.如果a 2+2a-1=0,求代数式24()2a a a a -⋅-的值.【答案】1【解析】221a a +=2224422a a a a a a a a -⎛⎫-⋅= ⎪--⎝⎭=()()()()2222222a a a a a a a a a +-=+=+-=1.故答案为1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.5 【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AGBF BE=,又∵AE=BE,∴AE2=AG•BF=2,∴,∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.2.据中国电子商务研究中心()发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.81159.5610⨯元B.1011.595610⨯元C.111.1595610⨯元D.81.1595610⨯元【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,⊙O的直径AB垂直于弦CD,垂足为E.若60B∠=︒,AC=3,则CD的长为A.6 B.CD.3 【答案】D【解析】解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB 垂直于弦CD,60B∠=︒,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.1 【答案】C【解析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.5.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【答案】D【解析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.6.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4【答案】C【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根,∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.7.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( ) A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >> 【答案】C【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2ba-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>. 故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.8.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个 【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;观察图象得当x=-2时,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.710【答案】D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:710.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.函数y=ax2+1与ayx=(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .【答案】B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);ayx=位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);ayx=位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.二、填空题(本题包括8个小题)11.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线21y x k2=+与扇形OAB的边界总有两个公共点,则实数k的取值范围是.【答案】-2<k <12。

九年级数学上册 第25章 概率初步 精品导学案 新人教版

九年级数学上册 第25章 概率初步 精品导学案 新人教版

概率初步课题:第二十五章概率初步小结序号学习目标:1、知识和技能:1)。

.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。

2)。

用所学的概率知识去解决某些现实问题。

2、过程和方法:1)初步形成评价与反思的意识。

2)通过举例,进一步发展学生随机观念和统计观念。

3)体验解决问题策略的多样性,发展实践能力和创新精神。

3、情感、态度、价值观:1)积极参与回顾与思考的过程,对数学有好奇心和求知欲。

2)形成实事求是的态度。

学习重点:引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图。

学习难点:结合事例,理解实验频率与理论概率的关系。

导学过程一、课前预习:阅读教材152页有关内容,思考下列问题:1、将本章知识结构图绘制的详细一些。

2.独立思考,回答“回顾与思考“中提出的问题。

二、课堂导学:1、导入同学们,学完本章后,初中阶段统计与概率部分就全部学完了,你能总结出在本章的学习中你学到的知识吗?2、出示任务、自主学习1)。

.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。

2)。

用所学的概率知识去解决某些现实问题。

3、合作探究阅读教材152页有关内容,回答下列问题:1.将本章知识结构图绘制的详细一些。

2.独立思考,回答“回顾与思考“中提出的问题。

三、展示反馈完成《问题导学》140—142页自主测评1---5题四、学习小结:本节课我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概率知识的结果框架图,在自我回忆和总结中找出实验频率与理论概率的关系。

五、达标检测:1.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛 B.小麦的亩产量一定为1000公斤C.在仅装有5个红球的袋中摸出1球,是红球 D.农历十五的晚上一定能看到圆月2.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性大3.抛掷两枚各面分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件:;写出这个实验中的一个必然事件:.4.如图4,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是.5.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应设个白球,个红球,个黄球.6.某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球的袋中摸出1个球,再从装有编号为1、2、3的三个红球的袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你认为这种方法公平吗?请说明理由.7。

最新人教版初三数学九年级上册第25章 概率初步 全单元教案设计

最新人教版初三数学九年级上册第25章 概率初步 全单元教案设计

第二十五概率初步25.1 随机事件与概率25.1.1 随机事件教学目标:知识技能了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.25.1.2 概率教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2抛掷次数n50 100 150 200 250 300 350 400 450 500“正面向上”的频数mm“正面向上”的频率n想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动. 想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P 141表25-3).0.5 1 正面向上的频率nm投掷次数n10050 250150500450300 350 200图25.1-1表25-3试验者抛掷次数(n)“正面朝上”次数(m)“正面向上”频率(m/n)棣莫弗2048 1061 0.518布丰4040 2048 0.5069费勒10000 4979 0.4979皮尔逊12000 6019 0.5016皮尔逊24000 12012 0.5005通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率中,如果事件A发生的频率n(probability), 记作P(A)= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.25.2 用列举法求概率第1课时运用直接列举或列表法求概率1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率【类型一】摸球问题(2014·江苏宿迁)一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:1 21(1,1)(1,2)2(1,2)(2,2)由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=34,故选D.【类型二】学科内综合题(2014·四川甘孜州)从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:01 20——(0,1)(0,2)1(1,0)——(1,2)2(2,0)(2,1)——共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果. 【类型三】学科间综合题(2014·广西柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A .0.25B .0.5C .0.75D .0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:灯泡1发光 灯泡1不发光 灯泡2发光 (发光,发光) (不发光,发光) 灯泡2不发光(发光,不发光)(不发光,不发光)根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P (至少有一个灯泡发光)=34,故选择C.方法总结:求事件A 的概率,首先列举出所有可能的结果,并从中找出事件A 包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平(2014·湖南怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.解:(1)P(标号是1)=1 3.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之和)列表如下:第一次和第二次12 3123 4234 5345 6∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.第2课时用树状图求概率教学目标1.让学生在具体情境中了解概率的意义,运用画树状图来计算简单事件发生的概率。

初中数学九年级上册《25.10 概率初步》导学案

初中数学九年级上册《25.10 概率初步》导学案

第二十五章概率初步年级:九年级内容:第二十五章章概率初步复习(一)课型: 复习课学习目标1、立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.2、让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3、通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.学习重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.学习难点:把数学知识转化为自身素质. 增强用数学的意识.教材分析一、知识脉络二、基础知识1必然事件。

2不能事件.3确定事件.4不确定事件(随机事件)5表示,叫做该事件的概率.6概率的理论计算有:①;②三、知识应用例1、任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1、2、3、4、5、6),“6”朝上的概率是多少?【分析】考虑两个方面,一是所有可能出现的结果有几种,二是“6”朝上的结果有几种。

【讨论解决】1列树状图求出概率P=( )例2、 两人要去某风景区游玩, 每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度, 也不知道车子开过来的顺序. 两人采取了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车, 当第一辆车开来时 他不上车, 而是仔细观察车的舒适度, 如果第二辆车的状况比第一辆车好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题: ⑴三辆车按出现的先后顺序工有哪几种不同的可能? ⑵ 你认为甲、乙两人采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么? 【分析】由于各车的舒适度不同,而且开过来的顺序也事先未知,因此不同的乘车方案使自己乘坐上等车的可能性不一样.我们只要将三种不同的车开来的可能性顺序全部列出来,再对照甲乙二人不同的乘车方案,就可以得出两人乘坐上等车的可能性. 【讨论解决】⑴三辆车开来的先后顺序有 种可能,分别是:( )、( )、( )、( )、( )、( );⑵由于不考率其他因素,三辆车6种顺序出现的可能性相同.甲、乙二人分别乘坐上等车的概率,用列表法可得.于是不难看出,甲乘上等车的概率是(31);而乙乘上等车的概率是(21). ∴乙采取的方案乘坐上等车的可能性大.【说明】解决本题的关键是通过 的方法将三辆车开来的顺序列出来,再根据甲、乙两种不同的乘车方案求出他们乘坐上等车的概率.另外本题也可以通过画数状图来求解.例3、 某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.⑴写出所有选购方案(利用树状图或列表方法表示);⑵ 如果⑴中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?⑶ 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台. 【分析】本题实际上是要在A ,B ,C 三种型号的甲品牌电脑中选择一种,再从D ,顺序 甲 乙E 两种型号的乙品牌电脑中选择一种,我们可以在所有选购方案中按照题意要求就可以确定符合条件的方案.【解】⑴ 树状图如下:或列表如下 :有6种可能结果: .⑵ 因为选中A 型号电脑有 种方案,即 ,所以A 型号电脑被选中的概率是(31) .(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得(要求学生写出过程)【分析】本题通过画树状图确定了所有选购方案后,再运用方程组对所有的方案进行取舍,从而确定符合题意的方案,题目设计巧妙,各问之间环环相扣,并且渗透了方程思想,是一道不可多得的好题.四、问题式小结:1、本章包括哪些内容?2、应用本章知识解决哪些问题? 五、【目标检测】(1) 从一副没有“大小王”的扑克牌中随机地抽取一张,点数为“5”的概率是(2) 在( )a 2( )4a( )4中,任意填上“+”或“—”共得到 种不同的代数式,能构成完全平方式的概率是(3)布袋中有红黄蓝三种颜色的球各一个,A、从中先摸出一个球,记下他的颜色,将他放回布袋,搅匀,再摸出一个球,记下他的颜色,求得到的两颜色中有一红一黄的概率;B、如果摸出第一个球之后不放回布袋,再摸第二个球,这时得到的两个颜色中有一红一黄的概率是多少?数学选择题解题技巧1、排除法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.1.1随机事件(1)自学目标:1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。

2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。

重、难点:随机事件的特点并能对生活中的随机事件作出准确判断。

自学过程:一、课前准备:1.在一定条件下必然发生的事件,叫做;在一定条件下不可能发生的事件,叫做;在一定条件下可能发生也可能不发生的事件,叫做;2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。

3.什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自主探究:活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。

签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。

小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。

请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。

请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(1)上述两个活动中的两个事件(2)怎样的事件称为随机事件呢?(3)与必然事件和不可能事件的区别在哪里?三、巩固新知:1.下列事件是必然发生事件的是()(A)打开电视机,正在转播足球比赛(B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球(D)农历十五的晚上一定能看到圆月2.下列事件中是必然事件的是( )A.早晨的太阳一定从东方升起B.安阳的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D·小红今年14岁了她一定是初中生3.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( ) A.可能性很小B.绝对不可能C.有可能D.不太可能4.下列各语句中是必然事件的是( )A.两个分数相加和一定是整数B.两个分数相乘积一定是整数C.两个互为相反数的和为0 D.两个互为相反数的积为05.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生6.下列事件:A.袋中有5个红球,能摸到红球B.袋中有4个红球,1个白球,能摸到红球C.袋中有2个红球,3个白球,能摸到红球D.袋中有5个白球,能摸到红球问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?7.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。

(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。

(9)抛掷一千枚硬币,全部正面朝上。

四、尝试小结:25.1.1 随机事件(2)自学目标:1.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

2.历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。

重、难点:1.对随机事件发生的可能性大小的定性分析2.理解大量重复试验的必要性。

自学过程:一、课前准备:1.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出1个小球,请你写出这个摸球活动中的一个随机事件_________________.2.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K的可能性.(填“<,>或=”)3.下列事件为必然发生的事件是( )(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数(C)打开电视,正在播广告(D)抛掷一枚硬币,掷得的结果不是正面就是反面4.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( )(A)点数之和为12 (B)点数之和小于3(C)点数之和大于4且小于8 (D)点数之和为135.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )(A)抽出一张红心(B)抽出一张红色老K(C)抽出一张梅花J (D)抽出一张不是Q的牌6.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a、抽到一名住宿女生;b、抽到一名住宿男生;c、抽到一名男生.其中可能性由大到小排列正确的是( )(A)cab(B)acb(C)bca(D)cba一、自主探究:1、袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。

我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B。

(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做?三、反馈练习1.从一幅扑克牌中,任意抽取一张,抽到的可能性较小的是( )A.黑桃B.红桃 C.梅花D.大王2.小红花2元钱买了一张彩票,你认为小红中大奖的可能性( )A.一定B.很可能C.可能 D.不大可能3.在不透明的袋装中有999个白球和1个红球,它们除颜色外其余都相同.从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出白球的可能性不大D.摸出的球有可能是红球4.200张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?5.80件产品中,有50件一等品,20件二等品,10件三等品,从中任取一件,取到哪种产品的可能性最大?取到哪种产品的可能性最小?为什么?6、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?7、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?8、已知地球表面陆地面积与海洋面积的比均为3:7。

如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?四、尝试小结:25.1.2 概率的意义自学目标:1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.重、难点:1.在具体情境中了解概率意义.2.对频率与概率关系的初步理解自学过程:一、课前准备:1、当A是必然事件时,P(A)= ;当A是不可能事件时,P(A)= ;任一事件A的概率P(A)的范围是;2.事件发生的可能性越大,则它的概率越接近________;反之,•事件发生的可能性越小,则它的概率越接近_________.3、一般地,在大量重复试验中,如果,那么这个常数p就叫做事件A的概率,记作。

4、在上面的定义中,m、n各代表什么含义?mn的范围如何?为什么?5.下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件?(1)抛出的铅球会下落 (2)某运动员百米赛跑的成绩为2秒(3)买到的电影票,座位号为单号 (4)x2+1是正数(5)投掷硬币时,国徽朝上6.频率与概率有什么区别与联系?二、自主学习:1.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格;(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?2.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;(3)试估算口袋中黑、白两种颜色的球各有多少只?三、达标检测:1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是______.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为______.3.袋中有5个黑球,3个白球和2个红球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为______.4.袋子中装有24个黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?(要判断哪一个概率大,只要看哪一个可能性大.)5.设计如下游戏:将转盘分为A、B、C区域(如图所示)转动转盘一次,•指针在A区域小王得40分,小明失40分,指针在B区域,小王失60分,小明得60分,指针在C区域,小王失30分,小明得30分,这一游戏对小王有利吗?四、尝试小结:25.2.1 用列举法求概率自学目标:1.理解P (A )=n m(在一次试验中有n 种可能的结果,其中A 包含m 种)的意义. 2.应用P (A )=nm解决一些实际问题.3.复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法—列举法 求概率的简便方法,然后应用这种方法解决一些实际问题. 重、难点1.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)= nm,以及运用它解决实际问题. 2.通过实验理解P(A)=nm并应用它解决一些具体题目 自学过程一、课前准备:1.甲、乙、丙三人随意排成一列拍照,甲恰好排在中间的概率是___ ___.2.五张标有1、2、3、4、5的卡片,除数字外其它没有任何区别,现将它们背面朝上,从中任取一张得到卡片的数字为偶数的概率是_ _____.3.小明有道数学题不会,想打电话请教老师,可是他只想起电话号码的前6位(共7位数的电话),那么他一次打通电话的概率是____ __.4.小明和小颖按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应该取走__ ____支.5概率是什么?P(A)的取值范围是什么?在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫做什么?6. A=必然事件,B 是不可能发生的事件,C 是随机事件.诸你画出数轴把这三个量表示出来.二、自主学习:1.从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种? 其抽到1的概率为多少?2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?3.如图所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率(1)指针指向绿色;(2)指针指向红色或黄色(3)指针不指向红色. 分析:转一次转盘,它的可能结果有4种—有限个,并且各种结果发生的可能性相等.因此,它可以应用“ P(A)= nm”问题,即“列举法”求概率.三、巩固练习1.中国象棋红方棋子按兵种小同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( ) (A)161 (B)165 (C)83 (D)85 2.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( ) (A)21 (B)31 (C)41 (D)61 3.袋中有5个大小一样的球,其中红球有2个、黄球有2个、白球1个.(1)从袋中摸出一个球,得到红球、白球、黄球的概率各是多少?(2)从袋中摸出两个球,两球为一红一黄的概率为多少?4.将正面分别标有数字6、7、8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?5.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率.(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字为大于3且小于6.四、归纳小结25.2.2 用列举法求概率自学目标:1.会用列表法求出简单事件的概率。

相关文档
最新文档