声波测井
地球物理测#(第二章)声波测井

地球物理测井—声波测井 注意
岩石的声学性质
在井下,纵波和横波都能在地层传播,而
横波不能在流体(气、液体)中传播,因为 泥浆中只能传播纵波。 它的切变模量=0
纵波可以在气体、液体和固体中传播。
地球物理测井—声波测井
2、岩石的声速特性
岩石的声学性质
声波在介质中的传播特性主要指声速、声幅和频率特性。
纵波速度
岩性不同 VP、VS的影响不同 弹性模量不同 VP、VS 不同
Vp增加
地球物理测井—声波测井
2、孔隙度的影响
声速测井(声时差测井)
流体的弹性模量和密度都不同于岩石骨架,相对讲,即使岩性相 同,其中的流体也不同。
孔隙度
传播速度
3、岩层的地质时代的影响
实际资料表明:厚度、岩性相同,岩层越老,则传播速度越快。
横波速度
E (1 ) Vp (1 )(1 2 ) E Vs 2 (1 )
σ—泊松比 ρ—介质密度
E—杨氏模量
地球物理测井—声波测井
纵横波比
岩石的声学性质
Vp
2(1 ) Vs (1 2 )
由于大多数岩石的泊松比等于0.25,所以岩石的纵横波速度比 为1.73。可见,岩石中传播的纵波比横波速度快。一般,岩石 的密度越大,传播速度越快,反之亦然。
A. 瑞利波(井壁泥浆的交界面上产生的波,与横波混在一起 不易区分。) 在弹性介质的自由表面上,可以形成类似于水波的面波,这 种波叫瑞利波(Rayleigh waves)如图所示,瑞利波具有以下特点: (1)产生在弹性介质的自由表面。 (2)质点运动轨迹为椭圆。 (3)质点运动方向相对于波的传播方向是倒卷的,波速约为横 波波速的80%~90%。
声波测井原理

到由于岩层应力变化而引起声场分布的变化情况, 为地震预报和震情监测提供资料;判断井下出水 或出气的层位以及检查水或气在套管外的串漏情
况。
声波测井主要优点 不受泥浆性质影响; 不受矿化度影响; 不受泥浆侵入影响。
第一节 岩石的声学特征
一、岩石的弹性
二、声波在岩石中的传播特征
基本概念和相关知识
2 岩石的声速特性及影响因素
(1)VP、VS与 、 、E间的关系
E (1 ) V P (1 )(1 2 )
V
S
E 2 (1 )
当=0.25,VP/VS=1.73,
E
VP(S)
(2) 传播速度与岩性的关系
岩性不同 弹性模量不同 VP、VS的影响
不同
中只能传播纵波。
三、声波在介质界面上的传播
2. 波的传播
入射波 入 射 角 反 射 角 反射波
介质1 介质2 折射角 折射波
3. 产生滑行波的条件
S in VP 1 折射定律: S in 1 VP2
VP2 > VP1时,折射角 = 90°
第一临界角:1*=arcsin(VP1/VP2)
性体,在岩石中传播的声波可以被认为是弹 性波。
2.2 描述弹性体的参数
虎克定律:在弹性限度内,弹性体的弹性形变与 外力成正比,即:f=-E·
由于应力与外力数值相等,方向相反,故上式可
以改写成为:=E·
(1)杨氏弹性模量 E
E=应力/应变=/
应力:作用在单位面积上的力,F / S。
应变:弹性体在力方向上的相对形变,△L / L。
一 声波在井壁上的折射与滑行波
井下声波发射探头发射出的声波,一部分在井壁 (井内泥浆与井壁岩层分界面)上发生反射;一 部分在井壁上发生折射,进入井壁地层。由于井 壁地层是固相介质,因而,折射进入地层的声波 可能转换成为折射纵波和折射横波。
声波测井原理

纵波:介质质点旳振动方向与波旳传播发向一致。弹 性体旳小体积元体积变化,而边角关系不变。
横波:介质质点旳振动方向与波传播方向垂直旳波。 特点:弹性体旳小体积元旳体积不变,而边角 关系发生变化,例如,切变波。
注意:
(1) 横波不能在流体(气、液体)中传播,因为它旳 切变模量=0
2 弹性体旳应力和应变
2.1物体分类
弹性体:当物体受力发生形变,一旦外力取消又能恢 复原状旳物体,称为弹性体。
塑性体:反之,当物体受力发生形变,一旦外力取消 而不能恢复原状旳物体,称为塑性体。
弹性体
可变成
塑性体
在声波测井中,声源旳能量很小,声波作用 在岩石上旳时间很短,因而岩石能够当成弹 性体,在岩石中传播旳声波能够被以为是弹 性波。
VP (m/s)
VS (m/s)
第一临界角 第二临界角
泥
岩
1800
950
62º44´
不产生滑行横波
砂 层(疏松)
2630
1518
37º28´
不产生滑行横波
砂 岩(疏松)
3850
2300
24º33´
44º05´
砂 岩(致密)
5500
3200
16º55´
30º
石灰岩(骨架)
7000
3700
13º13´
25º37´
绪论
声波测井
声波测井
声波
声波旳分类 一般按照频率来分,声波能够分为:
超声波(ultra-sonic wave)>20Байду номын сангаасHz
声波 (sonic wave)
20~20KHz
次声波(infrasonic wave) <20Hz
地球物理测井.声波测井

地球物理测井.声波测井
4.井壁固液界面产生的两种波
瑞利波(Rayleigh waves) 斯通利波(Stoneley waves)
地球物理测井.声波测井 瑞利波(Rayleigh waves)
在弹性介质的自由表面上,可以形成类似于 水波的面波,这种波叫瑞利波,如图2-2所示。
瑞利波示意图
F
S
纵向
横向
d
F
L
地球物理测井.声波测井
5 泊松比σ :
(外力作用下,弹性体的横向应变
与纵向应变之比)
d
= 弹性体的横向应变/纵向应变 =(△d/d)/(△l/l)
F l
物理意义:描述弹性体形状改变的物理量。
地球物理测井.声波测井
6 体积模量K:
F/S K V / V
(定义为应力与弹性体的体应变之比)
折射纵波(滑行波); 折射横波。
地球物理测井.声波测井
声速测井原理
T 产生声波(f = 20kHz) 泥浆(v1) 地层(v2)
v2>v1
在井壁处折射产生滑行波
滑行波到达R ①单发单收声系
完成声波速度测量
地球物理测井.声波测井 ②单发双收声系
T 产生声波(f = 20kHz)
泥浆(v1) 地层(v2)
第二章 声波测井
(Sonic Logging)
资源与环境学院 程 超
一、地层的地球物理特性
7个→声学特性
二、阿尔奇公式
地层因素(F)
电阻率增大倍数(I)
地球物理测井.声波测井
声波测井(Sonic Logging)
声波测井—是通过研究声波在井下岩层和介质中
的传播特性,从而了解岩层的地质特性和井的技
声波测井-超声波成像测井4

声成像反映井壁宏观形态,探测较大裂缝;电成像反映地 层内部结构,对细小裂缝较灵敏。二者相互弥补,为识别岩性、 分析地层特征、评价储层、判断裂缝充填情况提供了重要手段, 在套管井中用声成像还能检测套管破损、变形情况。
超声波成像测井
声电成像测井资料的地质应用
三、应用
定性识别
●地层特征识别 ●诱导缝的识别 ●天然裂缝的识别 ●孔洞、井眼崩落及
超声波井
二、方法原理
数字声波井周成像测井(CBIL) Circumferential Borehole Imaging Log 以脉冲回波的方式,对整个井壁进行扫描,记录: ●回波幅度图像BHTA ●回波传播时间图像BHTT
采用旋转式超声换能器,发射250-400KHz的 超声波束,该声波波束(直径约0.2英寸)被聚焦后 对井壁进行扫描,并记录回波波形。岩石声阻抗的 变化回引起回波幅度的变化,井壁的变化回引起回 波传播时间的变化。将测量的反射波幅度和传播时 间按井眼内360°方位显示成图象,就可对整个井 壁进行高分辨率成象。由此可看出井下岩性及几何 界面的变化(包括冲洗带、裂缝、孔洞等)。
超声波成像测井
二、方法原理
超声波成像测井通过测量井壁岩石(套管) 对超声波的反射情况(回波的幅度和传播时 间)来获得井壁或套管壁的图像。 其物理基础是:不同声阻抗的物质、表面 的粗糙程度不同,对声波的反射能力不同。
超声波成像测井
二、方法原理
下井仪器结构
超声波成像测井
二、方法原理
脉冲-回波信号
声波的反射
发射频率: 250kHz 扫描速率: 6r/s 采样扫描: 250/r 测量速度: 600m/h 垂直分辨率:0.762cm
超声波成像测井
超声波成像测井的用途: 1.确定产状 2.识别裂缝 3.了解井眼几何形态 4.套管井评价 5.岩心归位、定向
声波测井

R1R2=0.61m
T1R2=2.44m
第一种测量源距,2.66 米。
在目的层,T1发射,R1,R2接收。 然后仪器上移,当T1,T2到达目的 层的同一位置时,T1,T2同时发射, R1接收。 此时的声系相当于源距2.44米的双 发双收声系。
33
R1R2=0.61m
T1R2=2.44m
分别组成两个单发双收声系(T1R1-R2,T2-R1-R2)和两个双发单收 声系(T1-R1-R2, T1-R1-R2)。
T1发出的信号,由于CD增加,R1被触发的 时刻偏晚,结果使Δt1减少; 同理,T2发出的信号,由于E’F’增加,R1被 触发的时间偏晚,使Δt2增加;
19
2.4 周波跳跃
信号衰减,触发波形的相位发 生变化。使测量声波时差不规 则增大或减小。 主要出现在气层或裂缝段。
20
测井实例
周波跳跃
21
2.6 补偿声波测井的分辨率
40
In these case of well logging, the borehole wall, formation bedding, borehole rugosity, and fractures can all represent significant acoustic discontinuities. Therefore, the phenomena of wave refraction, reflection, and conversion lead to the presence of many acoustic waves in the borehole when a sonic log is being run. It is not surprising, in view of these consideration, that many acoustic energy arrivals are seen by the receivers of a sonic logging tool. The more usual energy arrivals are shown in the acoustic waveform displays of Fig.5-1. These waveforms were recorded with an array of eight receivers located 8 to 11-1/2 ft from the transmitter. The various wave packets have been labeled. Although the wave packets are not totally separated in time at this spacing, the distinct changes corresponding to the onset of the formation compressional and shear arrivals and the Stoneley arrival can be observed.
声波测井

第二节声波测井1.普通声波测井声波在不同介质中传播时,其速度、幅度衰减及频率变化等声学特性是不同的。
声波测井就是以岩石等介质的声学特性为基础而提出的一种研究钻井地质剖面、评价固井质量等问题的测井方法。
声波测井分为声速测井和声幅测井。
声速测井(也称声波时差测井)测量地层声波速度。
地层声波速度与地层的岩性、孔隙度及孔隙流体性质等因素有关。
因此,根据声波在地层中的传播速度,就可以确定地层孔隙度、岩性及孔隙流体性质。
1.1岩石的声学特性声波是一种机械波,它是由物质的机械振动而产生的,通过介质质点间的相互作用将振动由近及远的传递而传播的,所以,声波不能在真空中传播。
根据声波的频率(声波在介质中传播时,介质质点每秒振动的次数)可将声波分为:次声波(频率低于20Hz);可闻声波(20Hz至20kHz);超声波(频率大于20kHz)。
各类声波测井用的机械波是可闻声波或超声波。
1.1.1岩石的弹性1.1.1.1弹性力学的基本假设:1)物体是连续的,即描述物体弹性性质的力学参数及形变状态的物理量是空间的连续函数;2)物体是均匀,即物体由同一类型的均匀材料组成,在物体中任选一个体积元,其物理、化学性质与整个物体的物理、化学性质相同;3)物体是各向同性的,即物体的性质与方向无关;4)物体是完全线弹性的,在弹性限度内,物体在外力作用下发生弹性形变,取消外力后物体恢复到初始状态。
应力与应变存在线性关系,并服从广义的胡克定律。
满足以上基本假设条件的物体称为理想的完全线弹性体,描述介质弹性性质的参数为常数。
当外力取消后不能恢复到其原来状态的物体称为塑性体。
一个物体是弹性体还是塑性体,除与物体本身的性质有关外,还与作用其上的外力的大小、作用时间的长短以及作用方式等因素有关,一般情况下,外力小且作用时间短,物体表现为弹性体。
声波测井中声源发射的声波能量较小,作用在地层上的时间也很短,所以对声波速度测井来讲,岩石可以看作弹性体。
因此,可以用弹性波在介质中的传播规律来研究声波在岩石中的传播特性。
4、声波测井

A’ T2
B’
优点:1)消除了井眼不规则 的影响。
双发双收声系(井眼补偿声系)
声波测井 声速测井曲线形态及影响因素 曲线形态: (1)上下围岩岩性相同时,曲线对称于地层中点; (2)岩层界面位于时差曲线半幅点处; (3)在界面上下0.25米不反映岩层的时差(l=0.5米)。
泥岩 砂岩
J1
t
0.3米
182 168 156 143 143 143 164 171 220 620 608 750~985 442
5 5 ..5 5 1 .2 4 7 .5 4 3 .5 4 3 .5 4 3 .5 5 0 .0 5 2 .0 6 7 .0 1 8 9 .0 1 8 5 .0 238 1 3 4 .7
2 .6 5 2 .6 5 2 .7 1 2 .8 7 2 .8 7 2 .8 7 2 .9 8 2 .3 5 2 .0 3 1 .0 0 1 .1 0
~
5MHz
声波测井 岩石声波速度
VP VS
2
E
E
(1 ) (1 )( 1 2 )
1 2 (1 ) V P 1 . 732 V S
0 . 25 ,
在均匀各向同性介质中,纵波、横波速度与密度、弹性系数有 关,对于岩层速度是:1)与岩性有关;2)与岩层的孔隙度、流 体特性及饱和度情况有关;3)与埋藏深度、地质年代、地质构 造等有关。
声波测井
§4.2 声速测井 声速测井—测量声速(时差)—识别岩性/流体性质,计 算孔隙度 时差:速度的导数。物理意义:声波传播单位距离所需的 时间,μs/m或μs/ft,也称慢度。 声系:若干个声探头采用不同的源距和间距组合而成的井 下声波测量系统。 源距与间距:发射探头(T)到接收探头(R)的距离为源 距(L),接收探头(R)到接收探头(R)的距离为间距(l) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵波时差 (微秒/英尺)
924 690 285-231 199-188 167-77 54 51 55 48 40 50-49 66-59
岩石的弹性力学参数
1. 杨氏模量E 2. 切变模量 3. 泊松比 4. 体变模量 5. 密度
二、声波测井技术的发展
声波测井的发展历史
时间(年)
推出新仪器
测井目的
声波测井
中海油服油田技术事业部 2003.1.20.
主要内容
一、物体的声学性质 二、声波测井技术的发展 三、阵列声波测井仪器简介 四、阵列声波测井资料质量控制 五、阵列声波信息提取 六、声波测井资料的应用
一、物体的声利波
时间
纵波:体波,传播速度最快,频率最高; 横波:体波,传播速度和频率介于纵波和斯通利波之间; 斯通利波:面波,传播速度最慢,频率最低。
长源距声波测 井仪
2( 单极) 20
16 2( 单极)
2. 0 7. 0
9
2
4. 5-21 3. 88 400 20000 418. 5 25. 33
数字阵列声波测井仪 DAC
2( 单极) 9
1-15
2 12( 单极)
1-20 0. 5 6. 0
13. 5
3. 5 ( Sembl ance 处理) 0. 5 ( 首至检测)
1991
超声成像(USI)
(Schlumberger)扫描井壁图象和检查固井质量
T
地震测井仪器
R
单
发 单
T
收
声
波
仪
R
器
单
发 双
T
收
声 波
R2
仪
R1
器
双
发
双
T1
收
短
源
距
R2
声
波
R1
仪
T2
器
双
发
双
T1
收
长
R2
源
距
R1
声
波
仪
器
T2
阿特拉斯测井公司的 长源距补偿声波测井仪主要技术规范
仪器长度 直径 最小井径 垂向分辨率 最大压力 测量速度 近源距 远源距 间距 主频
仪器技术性能指标
性能指标
数量
中心频率
发
( kHz)
射 器
带宽( kHz)
间距( f t )
接
数量
收 带宽( kHz)
器 间距( f t )
最小源距( f t )
最大源距( f t )
垂向分辨率 (ft)
适用井径范围 ( i n)
仪器外径( i n) 最大承温 ( ° F)
最大承压( psi ) 仪器重量( l b) 仪器长度( f t )
19 英尺 6 英寸 3.375 英寸 4.5 英寸 2 英尺 20000psi
60 英尺/分钟 4 英尺 6 英尺 2 英尺
20000 赫兹
阵
列
T
声
波
测
井 仪 器
R1 R2 R3 R4 R5
R6
R7
R8
ATLAS声波测井仪的发展
• 1603短源距双发双收测井 • 1604长源距双发双收测井 • 1670数字阵列声波测井(DAC) • 1668多极阵列声波测井(MAC) • 1678正交多极阵列声波测井 (XMAC)
岩石的声学参数
1. 纵波速度vP 2. 横波速度vs 3. 纵波时差tp 4. 横波时差ts 5. 声阻抗Z= vP* 6. 声衰减系数
常见介质及岩石的纵波速度和时差
介 质 空气 甲烷 石油 水 泥岩 泥质砂岩 渗透性砂岩 致密砂岩 致密石灰岩 致密白云岩 硬石膏 盐岩
纵波速度 (米/秒)
330 442 1070-1320 1530-1620 1830-3960 5640 5940 5500 6400 7700 6100-6250 4600-5200
4. 5-21
3. 75
400
20000 612
40. 38
多极阵列声波测井仪 MAC
2( 单极) , 2( 偶极)
8 ( 单极) , 1-3 ( 偶极)
2-15( 单极) 1-3( 偶极) 2. 5( 单极) , 1. 0( 偶极) 8( 单极) , 8( 偶极) 1-20( 单极) 0. 5-5( 偶极) 0. 5( 单极) , 0. 5( 偶极) 8. 0( 单极) , 8. 5( 偶极) 14. 0( 单极) 13. 0( 偶极) 3. 5 ( Sembl ance 处理) 0. 5 ( 首至检测)
MAC仪器的主要优势
MAC仪器偶极发射器的中心频率很低, 为1-3KHZ,挠曲波以地层横波速度传播, 可通过测量挠曲波的速度来测量地层的横 波速度,因此,可测量横波速度很慢的地层。
MAC仪器将一个单极阵列和一个偶极阵 列组合在一起,可在一次测井在所有地层 (包括DAC无法测到横波的慢速地层)井段 采集到全套的纵波和横波数据。
1985
单极阵列声波
探测纵波、横波和斯通利波时差
1995
多极阵列声波
探测纵波、横波和斯通利波时差
1998
正交多极阵列声波
探测地层时差和各项异性
1989
井周成像(CBIL)和 SBT (Atlas)扫描井壁图象和检查固井质量
1990
环形声波扫描成像(CAST) (Halliburton)扫描井壁图象和检查固井质量
三、阵列声波测井 仪器简介
数字阵列声波测井(DAC)技术特性
DAC仪器的优点
• 有12个接收器, 记录数据量是双发双收声波测井 的3倍
• 12位模数转换器使动态范围增加了15倍, 可以分 辨纵波而不会使斯通利波饱和
• DAC发射器的中心工作频率为9KHZ,比传统的 声波仪器的中心工作频率(20KHZ)低,较低的频率 增强了激发斯通利波的能力
斯通利波又称管 波,它是在井内流 体与井壁地层之间 传播的一种流体导 波,在全波列中具 有频率低、幅度大 等特点,其速度比 纵波和横波低,且 略低于井内流体声 波速度,其衰减不 仅与地层的固有衰 减有关,还与井壁 地层的渗透性有密 切关系。
文昌9-1-2井单极波形图
多极阵列声波测井仪(MAC)的技术特性
• 现场工程师可选择12个接收器的任何组合,用 户可选每个波列的采样数和采样率。
数字阵列声波(DAC) 在慢速地层中记录的典型波形
Stoneley Wave (Monopole Tool)
P
P
Source
Stoneley Wave
Receiver
单极子声源在井眼中激发声场, 产生沿井壁传播的斯通利波
1952
声幅测井
检查固井质量
1952-1955 单发单收声速测井
井剖面的连续声速测量
1958
单发双收声速测井
井剖面的连续声速测量
1962
补偿式声速测井
井剖面的连续声速测量
1962-1965 井下声波电视
(Mobil)扫描井壁图象
1973-1975 噪声测井
检查管外流体窜漏
1978
长源距声波全波列
探测纵波、横波和斯通利波时差