声波测井技术在岩土工程勘察中的应用
采矿工程中的声波探测技术在地下矿床勘探中的应用分析

采矿工程中的声波探测技术在地下矿床勘探中的应用分析声波探测技术在地下矿床勘探中具有重要的应用价值。
在采矿工程中,声波探测技术可以帮助地质工程师更好地了解地下矿床的结构和特征,从而提高采矿效率和减少资源浪费。
本文将对声波探测技术在地下矿床勘探中的应用进行详细分析。
首先,声波探测技术可以用于地下矿床的勘探和评估。
通过发送声波信号并接收其反射信号,地质工程师可以推断地下岩石的物理特性,如密度、弹性模量和波速等。
这些信息对于判断地下矿床的性质和储量非常重要。
例如,根据声波探测结果,可以判断地下是否存在大规模的矿体,以及如何优化采矿方案、减少采矿成本。
其次,声波探测技术还可以应用于地下矿床的预警和安全管理。
采矿过程中,地下矿床会受到各种力学和地质作用的影响,导致岩体发生变形和破裂,从而引发地质灾害,如岩层滑移、岩爆和冒顶等。
声波探测技术可以实时监测地下岩体的状态和变化,提供岩体稳定性的实时评估和预警。
通过及时采取相应的措施,可以有效避免矿井事故的发生,保障矿工的人身安全。
另外,在地下矿床的勘探和开采过程中,声波探测技术还可以用于地质结构的识别和定位。
地质工程师可以根据声波传播的速度和路径推断出地下岩层的分布和走向。
这对于制定钻探方案和安排开采工艺非常重要。
通过声波探测技术,可以选择更合理的开采工艺,减少不必要的爆破和钻孔费用,提高开采效率。
此外,声波探测技术还可以应用于地下水资源的勘探。
在采矿工程中,地下水是一个重要的因素。
地下水的分布和流动对采矿工程的开展有着重要的影响。
声波探测技术可以通过识别地下水层的存在和性质,帮助地质工程师更好地规划和管理地下水资源。
地质工程师可以根据声波传播的速度和反射,判断地下水层的厚度、含水量和水质等参数,从而制定合理的水资源开采和利用方案。
总结起来,声波探测技术在地下矿床勘探中具有广泛的应用前景。
通过声波信号的发送和接收,地质工程师可以获得地下矿床的物理特性、岩层结构、地下水资源等相关信息,从而为采矿工程的规划、勘探、开采和安全管理提供重要依据。
岩土力学中的声波测试技术及应用

岩土力学中的声波测试技术及应用第一章前言岩土力学作为地质工程学科的重要分支,研究岩土的力学性质和行为规律。
声波测试技术是岩土力学中一种常用的非破坏性检测手段,它可以通过声波在岩土体内传播的反射、折射、透射等现象,获取岩土体的物理参数等信息。
本文将对声波测试技术在岩土力学中的应用进行介绍。
第二章声波传播基础声波是指在介质中传播的机械波,它的传播速度与介质的密度、弹性模量、泊松比等参量有关。
在岩土力学中,声波可以通过固体、水和气体等多种介质传播,但固体介质的传播方式最为常见。
固体介质中的声波分为纵波和横波两种类型,纵波是指沿传播方向振动的压缩波,能够穿过液体和气体等任何介质,传播速度相对较大;横波是指沿传播方向垂直振动的剪切波,不能穿过液体和气体介质,传播速度相对较小。
在岩土力学中,通常采用纵波进行声波测试。
第三章声波测试仪器声波测试仪器是进行声波测试的基础设备,其主要包括发射器、接收器、信号处理系统和显示器等模块。
其中,发射器负责向岩土体内发射声波,接收器负责捕获岩土体内反射的声波信号,信号处理系统负责对捕获的信号进行放大、滤波、AD转换等处理,将测试结果以数字或图形形式显示在显示器上。
具体的声波测试仪器型号和技术规格应根据具体测试需求进行选择。
第四章声波测试应用4.1 岩土体评价声波测试可以通过测试不同深度和方向的声波速度,从而推算出岩土体的弹性模量、泊松比等物理参数,并绘制出声速曲线和射线图等图形,以显示岩土体的结构特征和质量状况。
同时,声波测试还可用于探测岩土体内的裂隙、孔隙和薄层等缺陷,以评价岩土的可靠性和稳定性。
4.2 岩土体勘探声波测试可以向岩土体内发送高频率的声波信号,并通过记录反射波、折射波和透射波等信息,获取岩土体的结构、材质、厚度和深度等信息。
在岩土体勘探中,声波测试可以有效地实现对地下水位、地基承载力和建筑物基础等信息的探测和分析,为工程建设提供技术支持。
4.3 岩土体治理对于存在岩土体滑坡、塌陷、沉降和爆炸等灾害风险的区域,声波测试可以提供可靠的预警和监测手段。
论声波测井在地质勘察中的应用

论声波测井在地质勘察中的应用摘要:声波测井由于其仪器携带方便,测试方法简单,在地质勘察中获得了广泛应用。
本文阐述了声波测井原理,并通过一工程实例说明声波测井在工程地质勘察中的应用。
关键词:声波测井工程地质勘察应用1.引言在工程地质勘察中采用钻探方法,有时由于钻探工艺和操作水平等原因,岩芯采取率很低,或者在钻探过程中,由于机械破坏作用使岩体的物理状态发生了变化,使岩芯呈砂状和碎块状,对于现场技术人员很难判断地层的真实情况,甚至于造成误判和错判,但是通过一定的手段对孔壁的物理性质进行检测,可以判断地层岩石的真实情况,声波测井就是检测钻孔内孔壁情况的一种方法。
2.测试原理声波测井测试测试原理如图所示,发射换能器(T)将声波仪发射机输出的具有一定功率的电信号转化为声信号发出后,二个接收换能器(R1和R2)则分别接收声信号转变为电信号,输入到声波仪的输入系统中。
在发射点与二个接收点之间,会形成一个复杂的声场,发射出的声波经过井液射向井壁,一部分透过井壁进入岩石中(透射波),一部分反射回来(反射波),其中以临介角i入射这一部分则在井壁上产生滑行波,另外还有一部分直接沿井液传播(直达波)。
不同的声波走时都不相同,因井液的波速小于岩石的波速,所以滑行波最先到达接收器。
形成信号波形的初始起跳,一般称为”初至”。
分别读出二个接收换能器初始起跳的声时,按下式即可计算岩体的纵波波速:Vp=ΔL /(T2—T1)其中:Vp为纵波波速,单位m/s;ΔL为二个接收换能器的跨距,单位m;T2为二号接收换能器初始起跳的声时,T1为一号接收换能器初始起跳的声时,单位s。
一般说来,波速的大小主要与岩石的密度、表面破碎程度、裂隙或节理发育程度以及岩石的孔隙度、胶结程度、风化程度等因素有关。
由现场和实验室研究表明,岩体的密度高、单轴抗压强度大则纵波波速高;岩体越致密,岩体声速越高;结构面(层面、节理、裂隙等)的存在,使得声速降低;岩体风化破碎程度大则声速低。
岩土工程勘察声波测井技术

岩土工程勘察声波测井技术岩土工程勘察声波测井技术岩土工程勘察是指对地下建筑工程中所涉及的岩土、地下水等物理和力学性质进行调查、分析和研究,以确定地下情况及特性,并为地下工程设计和施工提供客观依据。
随着国民经济的快速发展,对地下工程的需求越来越大,而岩土工程勘察作为地下工程建设的基石,在工程实施过程中也经常发挥着重要作用。
然而,传统的岩土工程勘察方法往往存在效率低、精度不高等问题,为此,科技的不断进步推动了岩土工程勘察领域的技术更新与升级,声波测井技术就是其中的代表之一。
声波测井技术是一种利用地面或井下产生的声波对地下岩土物质性质进行判断的一种技术,它通过声波的传播速度、衰减特性等信息,对地下岩土物质的性质进行分析,在岩土工程勘察中应用十分广泛。
声波测井技术依据其不同的传播方式,可以分为三种类型:正向波测井、反射波测井和全波测井。
正向波测井是通过井头把声波在一个方向上较远地传输,然后观测波传播速度和能量损失情况,以推断地下岩土体密度、声波速度、压力等物理参数。
反射波测井则是将声波通过井壁向地下障碍物发射,观测声波反射时的波形和时间,通过反射波与入射波的交错变化及其关系,综合判断出地下物质的类型、厚度、速度反差、裂缝情况等。
全波测井则是同时用正向波和反射波两种方式进行声波测量,从而获取更全面的地下物质信息,是当前应用广泛的一种声波测井技术。
不同类型的声波测井技术在应用上也存在一些差异性,正向波测井由于其操作简单,对仪器本身的精度标定要求较低,在实际应用中通常用于探测未知地下结构的具体属性和性质。
反射波测井吸收了正向波测井的一些特点,同时在精度上有所提高,并且能够很好地解决各类特殊地质情况下的勘察问题。
而全波测井则是将正向波测井和反射波测井的优势结合起来,能够在多种复杂地质环境中为岩土工程勘察提供更加全面、准确的数据。
除了上述三种基本的声波测井技术以外,随着技术的不断进步,人们还将声波测井技术引入到井下水文地质勘察中,发展出了地下水位测井、压力测井、渗透率测井等多种新应用,极大地扩展了声波测井技术在岩土工程勘察中的应用范围。
声波测井技术在岩土工程勘察中应用

现代物业・新建设 2012年第11卷第9期浅谈声波测井技术在岩土工程勘察中的应用张建宏(新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。
对岩体工程勘察中声波测井技术的应用进行了分析。
关键词:岩土工程;勘察;声波测井中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02声波测井主要分为声幅测井与声波测井两大类。
一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。
1 声波测井在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。
而声速测井测的是地层中声波传播的时间。
声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。
由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。
根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。
2 岩石中声波的传播我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。
岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。
2.1 岩性如果岩石的岩性不同,那么声波传播速度也会有明显的区别。
岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。
2.2 岩石结构如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。
浅论岩土工程勘察中的声波测井技术

声波 测井 可分 为两 大类 , 即声波测 井和 声幅测井 。我们通 常所用 的是声波测井 , 是测量 声波在地层 中的传播速度 。 目 它 前 , 田测井主要是利用煤 、 煤 岩层的导电性、 放射性、 声特 性、 密 度等物性差异 , 进行相应的方法测井 。随着数字测井技术 的不 断提高 , 声速测井 己成为重要的测井方法之一 。可用弹性波纵 波 速 度 划 分 岩 体 风 化 带 、 释 软弱 夹 层 、 价 岩 体 完 整 性 、 算 解 评 计 相 关的动力 学参数 ;同时可用弹性波横波速度判别沙土液化, 参 与计 算岩 土抗剪 强度和相关动力学参数; 其他动力 学参数可 用 于评价地层的力学强度和结构特性。这些都可 以为工程建筑 设 计提 供 可 靠 的 参 考 依据 。
2 声 波在岩石 中的传播
我们所 研究 的对象 是地壳中不 同地质 年代 的矿 物成分及 结 构各异的岩石 , 还有 岩石 中有孔 隙和裂隙 , 且孔隙与裂 隙 而 的 大 小 、 状 与 分 布 都 是 随 机 的 , 时存 在 沉 积 的 层 理 、 裂 形 形 同 断 成 的节 理, 这些因素都将影响到岩石的物理性质 。岩石 的声速 是 指 声 波 在 岩 石 中的 传 播速 度 。通 过理 论 和 实 践 证 明 , 石 的 岩 声波速 度主要与密度 有关,并且随着岩石密度 的增大而增大 ,
34 确 定弹性 参数 .
根据 弹 性 力 学 的 知 识 , 可根 据 介 质 密 度 P介 质 中 声波 传 播 , 的纵波速度 v 与横波速度 v 确定介质的弹性参数 :
E :
V‘ V‘
一
22 岩石 结构 .
岩石胶 的结性差 、 疏松 , 声波速度较低 ; 而岩 石胶结性好 、 致密 , 声波速度较高。岩石中存在 的裂缝 、 则 溶洞等均会对声波 速度产生较大的影响。
声波测井技术与方法浅论

声波测井技术与方法浅论声波测井技术是油田地质勘探和油藏评价中常用的一种方法。
通过测量地下岩石中声波的传播速度和衰减程度,可以确定地下岩石的物理特性和岩性,从而推断出储层的含油性、渗透性和饱和度等重要参数,为油田开发与管理提供了重要的依据。
本文将对声波测井技术的原理、方法和应用进行浅论。
声波是一种通过介质传播的机械波,其传播速度和衰减程度受到介质性质的影响。
在地下岩石中,声波的传播速度和衰减程度受到地层岩石的密度、弹性模量和泊松比等因素的影响。
通过测量地下岩石中声波的传播速度和衰减程度,可以获得地层岩石的物理特性信息。
声波测井技术主要分为三类:传统声波测井、全波形声波测井和多次反射声波测井。
传统声波测井主要测量地下岩石中声波的传播速度和衰减程度,通过计算得到地层的岩石物性信息。
全波形声波测井则可以记录地下岩石中完整的声波信号,通过分析声波波形信息,可以获得更详细的地层物性信息。
多次反射声波测井则利用地下岩石中声波的多次反射和散射,通过分析多次反射和散射的声波信号,可以获得更深入的地层信息。
声波测井技术在油田地质勘探和油藏评价中具有广泛的应用。
在地质勘探中,声波测井可以帮助确定地层的层位、厚度和边界,并判断储层的连通性。
在油藏评价中,声波测井可以帮助确定储层的物理特性和岩性,评估储层的含油性、渗透性和饱和度等重要参数。
声波测井还可以用于判断地层的裂缝发育情况和地应力状态,对油藏的稳定性和开发方案提供指导。
声波测井技术也存在一些限制和挑战。
声波测井依赖于地层岩石的物理特性,对岩石的饱含状况和胶结物质的影响较为敏感,因此在化学腐蚀作用较大的含水含盐环境中的应用受到限制。
声波测井技术对地下岩石的水饱和情况和裂缝发育情况较为敏感,对于储层性质复杂或存在非均质性的地层,测井结果可能存在一定的误差。
声波测井技术的数据解释和处理也需要高水平的专业知识和经验。
声波测井技术的应用探析

声波测井技术的应用探析近年来,随着国家科技水平的不断进步以及经济实力的不断提升,石油勘探和石油开采都进入到了一个新的发展阶段。
其中声波测井技术作为一种新的技术手段,在石油勘探项目中的应用越来越广泛。
声波测井技术是指利用声波在岩层中的传播规律和传播特点来识别和分析地下的地质情况,为石油开采做必要的技术准备。
本文基于声波探测的基本原理,探讨声波测井技术在相关技术领域中的应用,并简要介绍声波测井技术的发展前景。
标签:声波测井石油勘探应用探析声波测井技术最先在20世纪50年代出现,历经了一系列的技术革新和技术发展,目前已经成为比较重要的测井方法之一。
声波测井的技术基础是利用声波在地下不同介质中传播规律的不同特点,来研究地下岩石的分布和地质条件,进而识别地下的地层特性,并进行相关的计算工作。
近些年,声波测井技术的发展速度比较快,同时也推动了其他测井技术的研究进展,提高了工程的施工进度和施工质量,给企业带来了经济效益的提升。
1声波测井的基本原理在物理上,声波是由于物体的机械振动产生的,是一种常见的运动形式,这也决定了声波的传播状态受到介质的相关参数的影响。
由于声波在固体中传播具有速度快、能量小等特点,所以声波可以在固体岩石探测中使用,固体岩石本身就是一种弹性介质,不同岩石的组合分布、不同种类的岩石中的声波传播具有不同的特点,所以可以用来研究地质情况。
在声波测井技术中所利用的仪器主要是声波测井仪,通过该装置发出一定频率的声波,然后收集声波的传播数据来探测地下岩层的分布情况,进而研究地质性质。
声波测井仪主要有地面装置、井下换能器和数据记录分析设备组成,记录分析设备是用来记录换能器收集声波时产生的时间差,这种方法有一定的测量精度。
此外,声波测井装置还引入了信号网络,利用网络信号的传输过程,实现井下地质情况的精确探测。
2声波测井技术的应用情况近年来,声波测井技术得到了不断的发展,经历了一系列的技术演变,由最初的声速测井和声幅测井到长距声波测井再到包含多个技术系统的超声波测井和多极子阵列声波测井技术,在这个技术发展历程中我们可以看出声波测井已经摆脱了单纯的声波应用,在这个技术基础之上又不断融合了声学理论、信号传播技术、计算机网络技术等现代最新的科技成果,其工作的效率、质量、精确程度不断得到提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。
关键词:声波测井技术;岩土工程勘察;应用
abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference.
keywords: acoustic logging technology; geotechnical engineering; application
中图分类号:tu74文献标识码:a 文章编号:
1前言
岩土工程勘察是查明拟建场地内及其附近有无影响场地稳定性的不良地质作用,划分场地土类型和建筑场地类别;查明场地范围内的地层结构及均匀性,提供各岩土层的物理力学指标等。
当前,随着数字测井技术的不断发展提高,声速测井作为一种重要的测井方法,在油田勘探和开发、工程物探等许多领域有广泛的应用。
采用声速测井技术,可用弹性波纵波速度划分岩体风化带、解释软弱夹层、评价岩体完整性、计算相关的动力学参数;可用弹性波横波速度判别沙土液化,参与计算岩土抗剪强度和相关动力学参数;其他动力学参数可用于评价地层的力学强度和结构特性。
2 声速测井的测试原理
由于不同岩层有不同的声波传播速度,采用声速测井技术(一般测量纵波速度),由仪器发射晶体发射的声波耦合后在地层中传播,经地层传播的声波被仪器接收晶体接收。
因为发射晶体和接收晶体的间距是一定的,所测得的声波传播时差与传播速度成反比。
根据需要可以把传播时差换算为声波速度,结合其他物理参数,还可以计算出横波速度,从而进行钻孔岩性划分、岩层风化和氧化带的确定、解释裂隙和软弱夹层、弹性参数的计算等。
2.1根据不同的声波传播速度,结合电阻率、自然伽玛等参数,对钻孔岩性进行划分。
2.2由于岩石因风化、氧化,胶结程度会变差,疏松甚至破碎,
在测得声波速度后,将其与新鲜完整岩石的声波速度进行比较,波速减小量反映了岩石的疏松、破碎程度,由此可确定岩层风化、氧化带。
2.3如果岩层有裂隙及软弱夹层,当声波传至此时会速度会有所降低,在测试时如声波出现异常,可据此来解释裂隙及软弱夹层。
2.4确定弹性参数。
根据弹性力学的知识,可根据介质密度ρ,介质中声波传播的纵波速度vp与横波速度vs确定介质的弹性参数:
e=ρvs2(3 vp2-4 vs2)/(vp2-vs2)
δ= vp2-2 vs2/2(vp2-vs2)
μ=ρvs2
k=ρ(vp2-4/3 vs2)
式中:e为介质的弹性模量;k为体积模量;u为切变模量;δ为泊松比。
声速测井一般提供的是纵波时差△tp,并可换算为纵波速度vp,而横波速度vs由经验公式计算:
vs= vp[1-1.1.5(1/ρ+1/ρ3)/e1/ρ]3/2
3 影响岩石声波速度的主要因素
岩石的声速指的是声波在岩石中的传播速度。
理论和实践证明,岩石的声波速度主要与密度有关,并且是随着岩石密度的增大而增大,其主要影响因素有以下几点:
3.1 岩石的密度对声波速度的影响。
在不同岩性的岩石中,由
于岩性的岩石密度不同,声波传播速度也会不同。
一般,石灰岩→砂岩→砂质泥岩→泥岩的密度依次减小,它们的声波速度也依次减小。
3.2岩石结构。
岩石胶结性差、疏松,声波速度低;而岩石胶结性好致密,则声波速度高。
岩石中的裂缝、溶洞等均会对声波速度产生较大影响。
3.3岩石孔隙间的储集物。
岩石中孔隙间的储集物不同,也会对岩石的声波速度产生影响。
3.4地层埋藏深度及地质时代。
地层埋藏的深浅及地层时代的新老均对声波在地层中的传播产生影响。
岩性和地质时代相同,地层埋深大、压力大,则声波速度高;反之,地层埋深浅、压力小,由声波速度低。
同一岩性,老地层比新地层声波速度高。
3.5 岩石含水率对声波速度的影响。
水对岩石的声波速度产生重要影响,随含水量增加,岩石的纵波速度和横波速度增大,但是由于岩性不同,其岩石矿物成分、胶结状况和结晶程度等因素差异很大,因此,随含水量增加,岩石的声波速度增高的速率则不完全相同,水对岩石声波速度的影响经回归分析得到如下关系:v=v0+kw
式中:v——不同含水量状态下岩石纵波或横波速度,m/s;
v0——干燥状态下岩石纵波或横波速度,m/s;
k——水对岩石声波速度影响系数;
w——含水量。
4 工程应用实例
某工区地形比较平坦开阔,局部有缓丘及冲沟发育。
覆盖层主要为黄褐色粘土、粉质粘土和乱石层,而基岩以泥岩为主,局部夹薄层透镜状砂岩,产状平缓,倾角3-5°。
应勘察技术要求,用声波测井法判别划分钻孔岩性、确定岩层风化和氧化带以及确定各地层动力学参数。
4.1利用波速法计算岩土的动力参数
根据实测获得的声波传播速度(横波速度 vs和纵波速度vp)即可计算岩(土)体的动弹性力学参数,为工程设计提供参考。
计算公式如下:
ed=(2 vp2-vs2)/2(vp2-vs2)
gd= vs2
式中:ed为动弹性模量,mpa;gd为动剪切模量,mpa;d为动泊松比;vp为纵波速度,m/s;vs为横波速度,m/s。
根据现场采集数据,处理后计算得各地层动力学参数如表1。
表1 工区各介质勘察钻孔声速测井成果
从表1可以看出,砂岩、泥岩的纵波速度较高,黏土的纵波速度较低,在综合分析解释的基础上,其既可校正地解释岩性和岩层,又可检验其推测精度。
泊松比反映的是岩体弹性性能,即在应力作用下产生纵向相对与横向相对变形量之比的倒数,反映的是岩体“软”“硬”程度。
泊松比越小,岩石越坚硬。
纵波与横波比值能判定岩石的完整性。
波速是岩土物理性质的重要参数,波速大小在一定程度能反映岩土密实度、孔隙度、风化程度和裂隙发育程度。
岩石密度小、孔隙大、裂隙多使波在传播中发生绕射,声线“拉”长,旅行时间延长,速度降低。
5声速测井技术在岩土工程勘察中存在的不足
5.1声波在具有裂缝和溶洞的地层中传播时,会因产生多次反射而使能量明显衰减,此时滑行波的幅度亦会减小。
要解决这一问题,可以提高探头的发射功率,用以增大滑行波的能量。
5.2 动力学参数虽能评价岩体完整性、软硬程度、风化程度、裂隙发育等,但目前尚缺乏全国性的统一标准和规范对岩石分类,大多是一些某单位或某部分的经验值或推荐公式,因此迫切需要统一的分类标准和规程早日出台。
6结束语
综上所述,声速测井技术作为一种直接的勘察方法,其除了能够计算各种弹性参数外,还能够进行岩性划分、圈定岩体风化带和氧化带、解释岩层的裂隙及软弱夹层等,在岩土工程勘察中发挥了重要作用。
实践证明,声速测井应用效果良好,产生了较好的经济和社会效益。
参考文献:
[1]赵振宇.论声波测井在地质勘察中的应用[j].城市建设理论研究,2011(25).
[2]刘海涛,任广智.浅层地震反射波法与声波测井在岩土工程中的应用[j].工程地球物理学报,2009(04).
[3]谢孔金,王霞,刘全峰.声波测井技术在工程岩体围岩分级中的应用[j].建筑科技与管理,2009(02).谢孔金王霞刘全峰注:文章内所有公式及图表请以pdf形式查看。