怎样找二面角的平面角
二面角求法总结

二面角求法总结一、定义法定义法是求二面角的基本方法,它通过定义二面角的平面角来求解。
具体来说,如果两个平面相交,那么它们会在交线上形成一个角,这个角就是二面角的平面角。
通过找到这个角的两边,我们可以使用三角函数来求解这个角的大小。
二、垂线法垂线法是一种常用的求二面角的方法,它通过找到一个垂直于两个平面的交线的直线,并将这个直线延长到一个已知点,然后使用三角函数来求解这个角的大小。
这个方法的关键在于找到正确的垂线,并且这个垂线应该是垂直于交线的。
三、射影面积法射影面积法是一种利用射影面积定理求解二面角的方法。
通过找到两个平面上的两条射线和它们之间的夹角,我们可以使用射影面积定理来求解这个角的大小。
这种方法需要先找到正确的射线和夹角,然后使用射影面积定理来计算结果。
四、三垂线定理法三垂线定理法是一种利用三垂线定理来求解二面角的方法。
如果一个平面内的直线与另一个平面垂直,那么这个直线与第一个平面的交点与第二个平面的交点的连线与原直线的夹角就是要求的二面角。
这种方法的关键在于找到正确的三垂线定理的应用条件,并且正确地应用三垂线定理来计算结果。
五、角平分线法角平分线法是一种利用角平分线定理来求解二面角的方法。
如果一个平面内的角平分线与另一个平面垂直,那么角平分线与原直线的夹角就是要求的二面角。
这种方法的关键在于找到正确的角平分线的应用条件,并且正确地应用角平分线定理来计算结果。
六、向量法向量法是一种利用向量的数量积和向量积来求解二面角的方法。
通过找到两个平面上的两个向量,我们可以使用向量的数量积和向量积来计算这两个向量的夹角,这个夹角就是要求的二面角。
这种方法的关键在于正确地找到两个向量,并且正确地应用向量的数量积和向量积来计算结果。
七、坐标法坐标法是一种利用坐标系来求解二面角的方法。
通过建立适当的坐标系,我们可以将二面角的问题转化为求解一个几何量的值的问题。
这种方法的关键在于建立正确的坐标系,并且正确地使用代数方法来计算结果。
二面角8种求法

二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。
笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。
例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。
例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。
二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。
如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。
例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。
例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。
三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
二面角及二面角的平面角

A1B 平面A1B1CD
平面ABC1D1 平面A1B1CD
探究1:
D1 A1
C1 B1
D A
C B
探究1:
D1 A1
C1 B1
D A
C B
探究1:
D1 A1
C1 B1
D A
C B
探究2: 已知AB 面BCD, BC CD
请问哪些平面互相垂直的,为什么?
AB 面BCD 面ABC 面BCD A
∴AO=2 3 ,AD=4
D
O
l
在Rt△ADO中,
∵sin∠ADO=
AO AD
2 3 4
3 2
∴ ∠ADO=60°
∴二面角 - l- 的大小为60 °
17
例1、已知锐二面角- l- ,A为面内一点,A到
的距离为 2 3 ,到 l 的距离为 4;求二面角 - l-
的大小。
解: 过 A作 AO⊥于O,过 O作 OD⊥ l 于D,连AD
2、垂面法 作与棱垂直的平面与
面
两半平面的交线得到
l
O
角
γA
B
的 3、三垂线定理法
作 法
借助三垂线定理或 其逆定理作出来
A
D
l
O
12
寻找平面角 S
D1
C1
B1 A1
N
M
A
D C
A
B
端点
B
DC
中点
寻找平面角
D1 B1
A1
M D
E
A
GF
B
C1 N
C
中点
小结:求二面角大小的步骤为: (1)找出或作出二面角的平面角; (2)证明其符合定义垂直于棱; (3)计算.
谈谈二面角的三种求法

解题宝典所以x 12+y 12+x 22+y 22>(x 1-x 2)2+(y 1-y 2)2,当A ,B ,O 三点共线时,x 12+y 12+x 22+y 22=(x 1-x 2)2+(y 1-y 2)2,所以x 12+y 12+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.我们由该根式可联想到两点间的距离公式,于是设出A 、B 两点的坐标,即可将问题转化为证明|AO |+|BO |>|AB |,根据三角形两边之和大于第三边的性质来解题.运用几何法解题,需进行数形互化,结合几何图形来分析问题.五、运用基本不等式若a ,b >0a 、b >0,则a +b ≥2ab ,当且仅当a =b 时等号成立,该式叫做基本不等式.在解答不等式问题时,可以根据不等式的结构特征进行适当的变形,如凑系数、常数代换、添项、去项等,以配凑出两式的和或积,以便能利用基本不等式证明不等式.运用基本不等式时,要确保“一正”“二定”“三相等”的条件成立.例5.已知正实数x ,y 满足2x +5y =20,若不等式10x +1y≥m 2+4m恒成立,求实数m 的取值范围.解:在2x +5y =20的左右同除以20,得x 10+y4=1,则10x +1y =æèçöø÷10x +1y æèçöø÷x 10+y 4=54+5y2x +x 10y ≥94,当且仅当x =203,y =43取等号.则m 2+4m ≤94,解得-92≤m ≤12.由于10x +1y 为分式,所以将已知关系式变形为x 10+1y=1,即可通过常数代换,将10x +1y 化为和式54+5y 2x +x10y .而5y 2x 、x 10y的积为定值,这样便可运用基本不等式求得10x +1y 的最小值,从而求得m 的取值范围.解答不等式问题的方法很多,我们需根据不等式的结构特征进行变形、代换,联系相关的公式、性质、定理等将问题转化为几何问题、最值问题、运算问题等,并选用合适的方法进行求解.(作者单位:安徽省宣城中学)二面角问题的常见命题形式有:(1)求二面角的大小或范围;(2)证明两个平面互相垂直;(3)根据二面角的大小求参数的取值范围.这类问题主要考查同学们的空间想象能力和运算能力.那么,解答这类问题有哪些方法呢?下面结合实例进行归纳总结.一、直接法直接法是指直接从题目的条件出发,通过合理的运算和严密的推理,得出正确的结果.我们知道,二面角的大小可用其平面角表示,因此求二面角的大小,关键是求其平面角的大小.在求二面角时,需先仔细审题,明确题目中点、线、面的位置关系,灵活运用三垂线定理、勾股定理、正余弦定理、夹角公式,根据二面角以及平面角的定义,作出并求出平面角,即可运用直接法快速求得问题的答案.例1.如图1,在三棱锥S -ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直且平分SC ,分别交AC ,SC 于点D ,E ,且SA =AB ,SB =BC ,求二面角E -BD -C的大小.解:∵SB =BC ,E 是SC 的中点,∴SC ⊥BE ,∵SC ⊥DE ,BE ⊂平面BDE ,DE ⊂平面BDE ,∴SC ⊥平面BDE ,∵BD ⊂平面BDE ,∴SC ⊥BD ,∵SA ⊥底面ABC ,BD ⊂平面ABC ,∴SA ⊥BD ,又∵SC ⋂SA =S ,SC ⊂平面SAC ,SA ⊂平面SAC ,∴BD ⊥平面SAC ,又∵DC ⊂平面SAC ,DE ⊂平面SAC ,∴DC ⊥BD ,DE ⊥BD ,∴∠DEC 是所求二面角的平面角.∵SA ⊥底面ABC ,AB ⊂平面ABC ,AC ⊂平面ABC ,∴SA ⊥AB ,SA ⊥AC ,设SA =2,得AB =2,BC =SB =22,∵AB⊥BC ,∴AC =23,∴∠ACS =30°,又∵DE ⊥SC ,∴∠EDC =60°,林菊芳图139解题宝典即二面角E -BD -C 的大小为60°.可采用直接法解答本题.先利用三垂线定理,在二面角E -BD -C 的棱BD 上的点D 处,找到与BD 垂直的两条射线DC 和DE ,就能根据二面角的平面角的定义确定∠DEC 即为所求的角;再根据勾股定理求得∠DEC 的大小,即可解题.例2.如图2,凸六边形MBB 1NC 1C 的边长相等,BB 1C 1C 为矩形,∠BMC =∠B 1NC 1=90°.将ΔBCM ,ΔB 1C 1N 分别沿BC ,B 1C 1翻折,使平面ABC ,平面A 1B 1C 1分别与平面BB 1C 1C 垂直,如图3所示.其中E ,G 分别是BC ,CC 1的中点.(1)求证:多面体ABC -A 1B 1C 1为直三棱柱;(2)求二面角A -EG -A 1的平面角的余弦值.图2图3解:(1)略.(2)取B 1C 1中点F ,连接A 1F ,EF ,由(1)可知,多面体ABC -A 1B 1C 1是直三棱柱,∴平面A 1B 1C 1⊥平面BB 1C 1C ,∴A 1F ⊥平面BB 1C 1C ,同理可证AE ⊥平面BB 1C 1C ,过F 作FD ⊥EG 交EG 于点D ,连接A 1D ,∴∠A 1DF 为二面角A -EG -F 的平面角,又∵AE ⊥平面BB 1C 1C ,AE ⊂平面AEG ,∴平面AEG ⊥平面BB 1C 1C ,∴二面角A -EG -A 1的平面角为π2-∠A 1DF ,设A 1B 1=t ,则21=B 1=t ,CE =CB 2=C 1B 12=,A 1F =,∴EG=CE 2+CG 2=,∴FD =EF ∙sin =EF ∙CE EG =,∴A 1D=A 1F 2+FD 2=,∴cos α=cos æèöøπ2-∠A 1DF =sin ∠A 1DF =A 1F A 1D 我们先根据面面垂直的性质定理证明A 1F ⊥平面BB 1C 1C ;然后根据线面垂直的性质定理和二面角的定义确定二面角A -EG -F 的平面角∠A 1DF ;再根据勾股定理和正余弦函数的定义,即可运用直接法求得问题的答案.二、面积射影法当不易作出二面角的平面角时,可以考虑采用面积射影法求二面角的大小.先确定一个半平面在另一个半平面的射影;然后分别求得这两部分图形的面积,并将二者相除,所得的结果即为二面角的余弦值.要注意二面角α的范围为:.例3.如图4,正方体的棱长为3,顶点A 在平面α内,三条棱AB ,AC ,AD 都在平面α的同侧.若顶点B ,C 到平面α的距离分别为2,3,求平面ABC 与平面α所成锐二面角的余弦值.图4图5解:作BB 1⊥平面α于B 1,CC 1⊥平面α于C 1,连接BC ,B 1C 1,过点B 作BG ⊥CC 1,垂足为G 点,如图5所示.可得AC 1=AC 2-CC 12=32-()32=6,AB 1=AB 2-BB 12=32-()22=7,∴B 1C 1=BG =BC 2-CG 2=13+26,cos ∠B 1AC 1=AC 12+AB 12-B 1C122×AC 1×AB 1=7,sin ∠B 1AC 1=1-cos 2∠B 1AC 1=S ΔB 1AC 1=12×AC 1×AB 1×sin ∠B 1AC 1=12×6×7=3,S ΔBAC =12×AB ×AC =12×3×3=92,设平面ABC 与平面α所成锐二面角为θ,可得cos θ=S ΔB 1AC 1S ΔBAC =23,即平面ABC 与平面α所成锐二面角的余弦值为23.经常观察图形可发现,平面ABC 在另一个平面α内的射影为ΔB 1AC 1,于是作BB 1⊥平面α于B 1,CC 1⊥平面α于C 1,连接BC ,B 1C 1,分别求得ΔABC的面积和ΔBAC 的面积,并求得其比值,即可求得平面ABC 与平面α所成锐二面角的余弦值.三、空间向量法若根据已知条件可确定线面或线线垂直关系,即40解题宝典可以某一点为原点,三条互相垂直的直线为坐标轴,建立空间直角坐标系.给各个点赋予坐标,利用向量的夹角公式,通过空间向量运算,即可求得二面角的大小.例4.如图6所示,在多面体ABCDEF中,四边形ABCD为正方形,AB=2,AE=3,DE=5,二面角E-AD-C的余弦值为,EF//BD,且EF=λDB()λ>0,求平面ABF与平面CEF所成锐二面角的余弦值的取值范围.图6图7解:∵AB=AD=2,AE=3,DE=5,∴AD2+DE2=AE2,即AD⊥DE,∵在正方形ABCD中,AD⊥DC,DE⊂平面EDC,DC⊂平面EDC,∴AD⊥平面EDC,又∵AD⊂平面ABCD,AD⊂平面ADE,∴平面ABCD⊥平面EDC,且∠EDC是二面角E-AD-C的平面角,∴cos∠EDC,作OE⊥CD于点O,得OD=DE∙cos∠EDC=1,OE=2,又∵平面ABCD⊥平面EDC,OE⊂平面EDC,∴OE⊥平面ABCD,取AB中点M,连接OM,得OM⊥CD,如图7,以O为原点建立空间直角坐标系,可得A()2,-1,0,B()2,1,0,D()0,-1,0,C()0,1,0,E()0,0,2,DB=()2,2,0,EF=()2λ,2λ,0,EC=()0,1,-2,设平面CEF的一个法向量为m =()x1,y1,z1,∴ìíîm ∙EC=y1-2z1=0,m ∙EF=2λx1+2λy1=0,取x1=2,得{y1=-2,z1=-1,∴m =()2,-2,-1,又BF=()2λ-2,2λ-1,2,AB=()0,2,0,设平面ABF的一个法向量为n =()x2,y2,z2,∴ìíîn ∙AB=2y2=0,n ∙BF=()2λ-2x2+()2λ-1y2+2z2=0,取x2=2,得{y2=0,z2=2-2λ,∴n =()2,0,2-2λ,∴||cos m ,n =||m ∙n ||m ∙||nöøλ≠14,设t=λ-14æèöøt>-14且t≠0,∴t+2516t-32<-8或t+2516t-32≥1,∴1+4æèöøλ-14+2516æèöøλ-14-32∈æèöø12,1⋃(]1,5,∴||cos m ,n ∈èöø÷,13⋃æèçû13,,∴当λ=14时,||cos m,n =13,∴||cos m ,n ∈èû.即平面ABF与平面CEF所成锐二面角的余弦值的取值范围为èû.解答本题主要运用了空间向量法.首先利用面面垂直的性质定理得出OE⊥平面ABCD;然后找出两两垂直的三条直线,据此建立空间直角坐标系,求得各个点的坐标和各个平面的法向量(即垂直于平面的直线的方向向量),即可利用空间向量夹角公式解题.一般地,若容易作出二面角的平面角,往往可以采用直接法求二面角的大小.该方法比较常用,且较为简单,只需根据题意进行推理、运算,利用二面角的平面角的定义求解.如果不易找出或求出二面角的平面角,则往往需采用射影面积法和空间向量法,通过求平面图形的面积和平面的法向量,来求得二面角的大小.同学们要熟练掌握这些常用方法的特点和应用技巧,以在求解二面角问题时做到得心应手.(作者单位:湖北省团风中学)41。
高中二面角的平面角的详细讲解

高中立体几何中二面角的平面角的作法一、二面角的平面角的定义如图(1),α、β是由l出发的两个平面, O是l上任意一点OC ∈α,且OC ⊥l;CD∈β,且OD⊥l。
这就是二面角的平面角的环境背景,即∠COD是二面角α—l—β的平面角,从中不难得到下列特征:Ⅰ、过棱上任意一点,其平面角是唯一的;Ⅱ、其平面角所在平面与其两个半平面均垂直;另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么由特征Ⅱ可知AB ⊥β . 突出l、OC、OD、AB,这便是另一特征;Ⅲ、体现出完整的三垂线定理(或逆定理)的环境背景。
二、对以上特征进行剖析由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。
特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。
例1矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD 上的射影A′落在BC上,求二面角A—BC-—D的大小。
这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后“变”与“不变”。
在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。
但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。
由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。
另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给定量计算提供了优质服务。
通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“展平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。
“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。
二面角的找法

二面角的找法定义法:在二面角的棱上找一点,在两个半平面内分别作垂直于棱的射线(如图(1)).垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角(如图(2)).三垂线法:在一个半平面内不同于棱上的点A 向另一个半平面作垂线,垂足为B ,由点B 向二面角的棱作垂线,垂足为O ,连结AO ,则∠AOB 为二面角的平面角(如图(3)).面积射影法:根据三角形面积(S )与其射影面积(S ′)之间的关系cos θ=S S '确定面ABC 与面A ′BC 所成的角θ(如图(4)).例题1、已知二面角α-l -β,其大小为90°,A ∈α,B ∈β,线段AB =2a ,AB与α成45°的角,与β成30°的角,过A 、B 作l 的垂线AC 、BD ,C 、D 分别是垂足,求二面角C -AB -D 的余弦值.解:定义法:在平面ABD 内,作DF ⊥AB 于F ,在平面ABC 内作FH ⊥AB 于F ,交BC 于点H ,连结DH .则∠HFD 为二面角C -AB -D 的平面角.∴ AB ⊥面HFD ,∴ AB ⊥HD .∵ α-l -β是直二面角,∴ AC ⊥l .∴ AC ⊥平面β.又∵ DH ⊂β,∴ AC ⊥DH ,又∵ AC ∩AB =A ,∴ HD ⊥平面ABC ,∵ HF ⊂平面ABC ,∴ HD ⊥HF ,∴ △DHF 为Rt △.∵ AC ⊥β,∴ ∠ABC 为AB 与β所成的角,∴ ∠ABC =30°.同理可得,∠BAD =45°.在△ABD 中,DF =21AB =a , BD =2a ,AB =2a ,在△ABC 中,BC =Ab cos ∠ABC =2a cos30°=3a , 在△BCD 中,CD =a ,DH =36=⋅BC BD CD a .在△DHF 中,HF =33a ,∴ cos ∠DFH =DF HF =33.∴ 二面角C -AB -D 的余弦值为33.三垂线定理法: ∵ α-l -β是直二面角,AC ⊥l ,∴ AC ⊥β.∴ 面ABC ⊥β,且BC 为交线.过D 作DH ⊥BC 于H ,则DH ⊥平面ABC ,过H 作HF ⊥AB 于F ,连结DF ,由三垂线定理,得DF ⊥AB ,∴ ∠HFD 为二面角C -AB -D 的平面角.∵ AC ⊥β,∴ ∠ABC =30°.同理可得∠BAD =45°.∵ 在△ABD 中,DF =21AB =a ,BD =22AB =2a ,在△BCD 中,CD =a ,DH =36a ,在△DHF 中,HF =33a .∴ cos ∠DFH =DF HF =33,∴ 二面角C -AB -D 的余弦值为33.2、在所给空间图形中ABCD 是正方形,PD ⊥面ABCD ,PD=AD .求平面PAD 和面PBC 所成二面角的大小.解:经P 在面PAD 内作PE ∥AD ,AE ⊥面ABCD ,两线相交于E ,连BE .∵ BC ∥AD ,则BC ∥面PAD .∴ 面PBC ∩面PAD =PE .∴ BC ∥PE .因PD ⊥面ABCD ,BC ⊥CD ,那么BC ⊥PC ,BC ⊥面PDC ,即有PE ⊥面PDC .PE ⊥PD ,PE ⊥PC ,∠CPD 就是所求二面角的平面角.因PD =AD ,而AD =DC ,∴ ∠CPD =45°.即面PAD 与面PBC 成角为45°.3、如图,几何体中,ABCD 是直角梯形,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21,求面SCD 与面SBA 所成二面角的正切值.解一:因AB 、CD 共面,AD =21BC ,故AB 、CD 相交,设其交点为E .∵ E ∈CD ,CD 面SCD ,∴ E ∈面SCD ,同理E ∈面SAB .那么E 在面SCD 、面SAB 的交线上.连SE 则面SCD ∩面SAB =SE .由题AE =AB =SA ,SA ⊥面ABCD ,故SE ⊥SB ,面SEB ⊥面EBC .又∵ EB ⊥BC ,CB ⊥面SEB ,SB 是SC 在面SEB 内射影,∴ SE ⊥SC .∠BSC 就是面SCD 与面SBA 所成二面角的平面角.在Rt △SBC 中tan ∠BSC =21=SB BC =22那么面SCD 与面SBA 所成二面角的正切值为22.解二:分别取SC 及SB 的中点E 、F ,连EF ,则EF21BC ,即EF AD .故ADEF 为平行四边形,那么DE ∥AF ,即DE ∥面SAB .经S 在面SCD 内作l ∥DE ,那么l 就是所求二面角的棱.因SA =AB 有AF ⊥SB .又SA ⊥面ABCD ,则面BSA ⊥面ABCD .又BC ⊥AB ,∴ BC ⊥面SAB ,即BC ⊥AF .故AF ⊥面SBC .那么l ⊥面SBC .l ⊥SB ,l ⊥SC .∠CSB 就是二面角的平面角.在Rt △CSB 中,tan ∠CSB =21=SB BC =22.解法三:如图,将题所给几何体“装”入正方体,分别取M 、N 为SE 及GF 中点,连DM ,MN ,DNSC ∩DN =O ,连OM ,则面DMN ∥面SAB .SM ⊥面DMN ,又DM =MN ,∴ MO ⊥DN ,有DN ⊥SO .故∠SOM 为面DMN 与SDC 所成二面角的平面角,也是面SAB 与面SDC 所成二面角的大小.在Rt △SMO 中,tan ∠MOS =2221=MO SM =22.解法四:还将原几何体“装”入正方体.∵ 面SAB ∥面EHC ,故面SAB 与面SDC 所成二面角等于面EHC 与面SDC 所成二面角,这还是一个无棱二面角问题“找公共点”.延长SD 、EH ,使SD ∩EH =G ,连CG .则CG 就是面EHC 与面SDC 所成二面角的棱.由题正方体棱长为1,AD =21.连CE ,则CE =2,EG =2,CG =2.∴ ∠GCE =90°,GC ⊥EC .而SE ⊥面EHC ,故GC ⊥SC ,∠SCE 就是面EHG 与面SDC 所成二面角的平面角.tan ∠ECS =21=EC SE =22.故面SAB 与面SDC 所成二面角正切值为22. 作辅助面求解.(等价转化)解法五:分别取BC 及SB 的中点M 、N ,连AM ,MN ,AN ,则有MN ∥SC ,MA ∥CD ,故面AMN ∥面SDC .那么问题就转化为求面SAB 与面AMN 所成二面角,棱为AN .解法六:同上思路,找面,使之平行于一面而与另一面相交,图形如下:面GDF ∥面SAB面积射影分析:如上图所示两个面,面SAB 及面SDC 所成二面角,若为α,则应有cos α=SDCASB S S ∆∆其中面SDC 在面SAB 上射影为△SAB ,解三角形可求得 S △SDC =21SC ·46)2(22=-SC CDS △ABS =21SA ·AB =21那么cos α=364621= 即tan α=22.解法七:……也许还有好的方法,妙的思路……。
解二面角问题三种方法(习题及答案)

C A B DA A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。
(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。
要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。
下面举几个例子来说明。
例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。
例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。
这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。
2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。
(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。
总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。
并且能够很快地利用图形的一些条件来求出所要求的。
在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。
至于求角,通常是把这角放在一个三角形中去求解。
由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。
(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。
求二面角的6种方法【自己总结全面】

a O课题3:二面角求法总结一、知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。
3、二面角的大小范围:[0°,180°]4、 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍. 5、二面角做法:做二面角的平面角主要的方法有: 6、 (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; 7、 (2)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。
(3)射影法:凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。
(4)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(5)无交线的二面角处理方法(6)向量法二、二面角的基本求法及练习1、定义法(从两面内引两条射线与棱垂直,这两条射线可以相交也可异面,从而面面角就转化为线线角来求)从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.怎样找二面角的平面角
一、当图中明显给出二面角的棱时
1、利用定义
在棱长为1的正方体1111D C B A ABCD -中,求平面BD A 1与平面BD C 1所成的二面角的余弦值。
2、利用三垂线定理和逆定理
当图中给出或能作出二面角的一个面内一点垂直于另一个面的直线时,则可通过垂足(或这点)作棱的垂线,连结所得垂足与前平面内的点(或前垂足),根据三垂线定理或其逆定理就可得出二面角的平面角。
在四棱锥P -ABCD 中,ABCD 是平行四边形,P A ⊥平面ABCD , P A =AB =2, ∠ABC =30°,求二面角 P -BC -A 的大小。
3、借助垂直平面
通过作两个平面的公垂面得到交线,这时棱与公垂面垂直,从而两交线所成的角就是二面角的平面角
设在棱形ABCD 中,,3
A π
∠=P A ⊥平面ABCD ,且12
AP AB =
=,求二面角B -PC -D 的大小。
二、当图中未给出二面角的棱时
一、若给出了两个平面的公共点
①若能找到分别含在两个平面内的互相平行的直线,则可通过两个平面的公共点作上述两直线的平行线,此直线即为二面角的棱。
从而转化为给出棱时的二面角的问题。
过正方形ABCD的顶点A,作线段P A 平面ABCD,若P A=AB。
求平面ABP和平面CDP所成的二面角。
②若在二面角的两个面内找不到含在两个面内的两平行直线,可设法找这两个平面的另一个公共点。
可分别在两个平面内找能相交于另一点的直线,这两条直线的交点与前一个公共点的连线即为二面角的棱。
从而转化为给出二面角的棱时的二面角的问题。
已知正三棱柱ABC-A
1B
1
C
1
的侧棱BB
1
,CC
1
上分别有点D,E使EC=BC=2DB
求截面ADE与底面ABC所成的二面角的大小。
③补形法,其目的是使补形后两个平面有公共交线
在四棱锥P-ABCD中,ABCD为正方形,P A⊥平面ABCD,P A=AB=a,求平面PBA 与平面PDC所成二面角的大小。
④借助垂直平面
在∆ABC 中,AD ⊥BC 于D 。
E 是线段AD 上的一点,且AE =
2
1
ED ,过E 作MN //BC ,且MN 交AB 于M ,交AC 于N 。
以MN 为棱将∆ABC 折成二面角A 1-MN -D 。
设此二面角为α(0<α<π)。
连A 1B ,A 1D , A 1C 。
求∆ A 1MN 与∆ A 1BC 所成二面角的余弦。
二、图中没有给出二面角的公共点时 ①.借助同位二面角或内错二面角 在正方体ABCD -A 1B 1C 1D 1中,设M ∈AA 1,且A 1M :MA =3:1。
求截面B 1D 1M 与底面ABCD 所成锐二面角的正切。
②.借助垂直平面
设E ,F ,G 为正方体ABCD -A 1B 1C 1D 1所在的棱B 1C 1,CC 1,C 1D 1的中点。
求平面EFG 与底面ABCD 所成锐二面角的余弦。
(3)求二面角的通用方法
设平面M 与平面N 所成的锐二面角为,一封闭曲线C 在平面M 内。
它在平面N 上的射影为曲线C 1,若曲线C ,C 1所围成的面积分别是S 原形,S 射影。
则S 射影=S 原形cos 。
该办法只解用于解选择题或填空题。
1.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,取CC 1的中点E ,求平面DEB 1与底面A 1B 1C 1D 1
所成二面角的余弦
2.设正方体ABCD -A 1B 1C 1D 1中,M 为AA 1上点,A 1M :MA =3:1,求截面B 1D 1M 与底面ABCD 所成二面角。
3. 设三角形ABC 的边长为a ,点A 在平面α内,AB 与平面α所成的角为3
π
,AC 与平面α
所成的角的正弦为
3
,求平面ABC 和平面α所成的二面角。
4.设正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为DD 1 ,A 1D 1的中点,作截面EFB 1C ,令二面角E -B 1C -C 1的大小为θ,求cos θ的值.
θθ。