半导体器件物理_复习重点
半导体器件物理复习纲要word精品文档5页

第一章 半导体物理基础能带:1-1什么叫本征激发?温度越高,本征激发的载流子越多,为什么?1-2试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征及引入空穴的意义。
1-4、设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E v (k)分别为:2222100()()3C k k k E k m m -=+和22221003()6v k k E k m m =-;m 0为电子惯性质量,1k a π=;a =0.314nm ,341.05410J s -=⨯⋅,3109.110m Kg -=⨯,191.610q C -=⨯。
试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量。
题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、准粒子、荷正电:+q ; 、空穴浓度表示为p (电子浓度表示为n ); 、E P =-E n (能量方向相反)、m P *=-m n *。
空穴的意义:引入空穴后,可以把价带中大量电子对电流的贡献用少量空穴来描述,使问题简化。
1-4、①禁带宽度Eg 根据dk k dEc )(=2023k m +2102()k k m -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =22106k m ;∴Eg =E min -E max =221012k m =222012m a π =23423110219(1.05410)129.110(3.1410) 1.610π----⨯⨯⨯⨯⨯⨯⨯=0.64eV②导带底电子有效质量m n2222200022833C d E dk m m m =+=;∴ 22023/8C n d E m m dk == ③价带顶电子有效质量m ’ 22206V d E dk m =-,∴2'2021/6V n d E m m dk ==- 掺杂:2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?2-3、什么叫受主?什么叫受主电离?2-4、何谓杂质补偿?杂质补偿的意义何在?题解:2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。
半导体器件物理复习文档

半导体器件物理复习文档PPT复习内容2.突变结:P区和N区之间的杂质分布变化陡峭的PN结。
3.线性缓变结:P区和N区之间的杂质分布变化比较缓慢,可看成是线性变化的PN结。
4.单边突变结:PN结一侧的掺杂浓度比另一侧的高得多,表示为P+N或PN+。
5.2.空间耗尽区(也即空间电荷区),耗尽层近似;耗尽近似是对实际电荷分布的理想近似,包含两个含义:(1)在冶金结附近区域,-xp(2)耗尽区以外的电荷密度处处为0。
6.正向注入(扩散),反向抽取(漂移)正偏时:扩散流大于漂移流,n区电子扩散到p区(-xp)处积累成为p区的少子;p区的空穴扩散到n区的(xn)处积累成为n区的少子。
这一过程称为正向注入。
反偏时:p区的电子漂移到n区,n区的空穴漂移到p区,这一过程称为反向抽取7.4.变容二极管,肖特基二极管,隧道二极管,长二极管,短二极管(1)工作在反偏状态下的二极管,势垒电容随反偏电压的增加而减小,称为变容二极管(2)金属和半导体形成整流接触时具有正向导通,反向截止的作用,称作肖特基二极管(3)n区和p区都为简并掺杂的pn结称为隧道二极管(4)pn结的p区和n区准中性区域的宽度远大于扩散长度时,则称这个二极管为长二极管(5)pn结轻掺杂一侧的准中性区域的宽度与扩散长度同数量级或更小时,则称这个二极管为窄基区二极管或短二极管8. 势垒电容Cj:形成空间电荷区的电荷随外加电压变化(结电容或耗尽层电容)二极管的反向偏置结电容随反向电压的增加而减小扩散电容Cd:p-n结两边扩散区中,当加正向偏压时,有少子的注入,并积累电荷,它也随外电压而变化.扩散区的电荷数量随外加电压的变化所产生的电容效应。
9.电荷存储和反向恢复时间:正偏时,电子从n区注入到p区,空穴从p区注入到n区,在耗尽层边界有少子的积累。
导致p-n结内有等量的过剩电子和空穴-电荷的存储。
突然反向时,这些存储电荷不能立即去除,消除存储的电荷有两种途径:复合和漂移。
半导体器件物理I复习笔记

精心整理半一复习笔记By潇然2 1.1平衡PN结的定性分析1.pn结定义:在一块完整的半导体晶片(Si、Ge、GaAs等)上,用适当的掺杂工艺使其一边形成n型半导体,另一边形成p型半导体,则在两种半导体的交界面附近就形成了pn结2.缓变结:杂质浓度从p区到n区是逐渐变化的,通常称为缓变结3.4.1.21.2.1.41.(1)(2)(3)(4)2.1.51.2.1.61.2.扩散电容1.7势垒电容在考虑正偏时耗尽层近似不适用的情况下,大致认为正偏时势垒电容为零偏时的四倍,即1.8扩散电容定义:正偏PN结内由于少子存储效应而形成的电容1.9PN结的瞬态1.10PN结击穿1.雪崩击穿(1)定义:在反向偏压下,流过pn结的反向电流,主要是由p区扩散到势垒区中的电子电流和由n区扩散到势垒区中的空穴电流所组成。
当反向偏压很大时,势垒区中的电场很强,在势垒区内的电子和空穴受到强电场的漂移作角,具有很大的动能,它们与势垒区内的晶格原子发生碰撞时,能把价键上的电子碰撞出来,成为导电电子,同时产生一个空穴。
(2)击穿电压,与NB成反比,意味着掺杂越重,越容易击穿;(3)(4)(5)2.(1)(2)(3)2.1BJT2.2BJT1.①In(X1②IE=Inγ0③In(X2的复合电流之和;此处可推导αT02.发射结的发射效率γ0对于NPN型晶体管,γ0定义为注入基区的电子电流与发射极总电流之比,即有(定义)代入Ip(X1)(B区空穴注入E区扩散电流)以及In(X2)(E区电子注入B区电子电流),得下式3.基区输运系数αT0对于NPN晶体管,定义为到达集电结边界X3的电子电流In(X3)与注入基区的电子电流In(X2)之比,即有(定义)代入复合电流与E→B电子的扩散电流,再利用扩散系数与扩散长度的关系消去寿命τ2.3非均匀基区晶体管的直流电放大系数1.形成过程:以NPN晶体管为例,在B区内,人为令靠近E区的部分掺杂浓度高,靠近C区的部分掺杂浓度低→产生浓度差,多子空穴从左扩散至右→左边空穴浓度低于杂质浓度,带负电荷;右边空穴浓度高于杂质浓度,带正电荷→产生向左的电场→电场强度一直增强,直到空穴的扩散运动强度等于漂移运动强度2.目的:少子在基区中不但有扩散运动,还有漂移运动,甚至以漂移运动为主→缩短少子的基区渡越时间,3.E→已知4.0时(即5.2.41.3.Webster效应(BaseConductanceModulation/基区电导调制效应)——基区大注入定义、影响:当VBE较大、注入电子时→基区中也有大量的空穴积累(并维持与电子相同的浓度梯度),这相当于增加了基区的掺杂浓度,使基区电阻率下降~基区电导调制效应→IEp增大→注射效率γ降低,β0下降注:是引起大电流β0下降的主要原因4.Kirk效应(BasePushOut/基区展宽效应)——发射区大注入效应①定义:在大电流时,基区发生展宽的现象②过程①是小注入,③是注入的电子正好中和集电区一边的正空间电荷③影响:a.基区存储少子电荷增加b.β0下降c.频率特性变差(严重影响高频特性)④措施:提高NC、设定最大Ic等5.发射极电流集边效应——使大注入加剧①定义:发射极电流集中在发射极的边缘②原因:基极电阻引起横向电压→E极输入电流密度由边缘至中央指数下降→IE将集中在发射结边缘附近③影响:a.使发射结边缘处电流密度↑,易产生边缘Webster效应及Kirk效应,β0下降b.局部过热c.影响功率特性④措施:a.采用插指结构b.NB不能太低(降低基极电阻)6.发射区禁带变窄①原因:E区重掺→禁带宽度变窄②影响:发射结注入效率γ下降总结:2.5BJT1.α2.β3.4.2.61.iCTeiCDe,为集电结势垒区输运系数,为集电区衰减因子综上,交流小信号相比于直流,其多了E结势垒电容CTe的充放电电流、E结扩散电容CDe的充放电电流、集电结渡越时间中电流衰减、C结势垒电容CTc的充放电电流影响:使电流增益下降、使信号延迟产生相位差2.晶体管共基极高频等效电路3.共基极交流电流放大系数α及截止频率fα的定量分析①发射区注入效率γ和发射结电容充电时间τe=re*CTe,其中re=Vt/IE,CTe为正偏势垒电容,故需要乘上常数②基区输运系数αT和基区渡越时间τb③集电极势垒区输运系数αdc和集电极耗尽区渡越时间τd,其中Xmc为C区空间电荷区宽度,usl为载流子极限速度④集电区衰减因子αc和集电结电容充电时间τc,代表通过集电区串联电阻rcs对势垒电容的充放电时间常数⑤共基极电流放大系数及其截止频率2.71.2.③与3.τd)2.81.2.2.91.2.线电流密度:发射极单位周长电流容量3.提高线电流密度措施①外延层电阻率选得低一些②直流放大系数β0或fT尽量做得大些③在允许的范围内适当提高集电结偏压及降低基区方块电阻2.10BJT的击穿电压与外延参数确定1.穿通①机理:随着收集结上反偏电压的不断增加,收集结空间电荷区扩展至整个基区②穿通时的BC结电压其意为:基极开路时击穿电压比真实的雪崩击穿电压小,缩小的比例为n次开方β3.提高Vpt的方法①提高WB、NB,与提高增益矛盾②减小NC,与提高fT矛盾实际设计中令Vpt>BVCBO,即防止C结雪崩击穿前先发生穿通4.外延结构晶体管特点同时满足击穿特性与频率特性(N+衬底降低rC),较好解决矛盾2.11BJT的安全工作区1.二次击穿2.1.UBC>02.1.内部:外部:①加大IB④在UCC2.BCIB1.EM-12.EM-23.EM-3①考虑Early效应新增两个②考虑小电流下势垒复合与基区表面复合新增四个③考虑大注入效应新增两个④考虑Kirk效应(基区展宽效应)4.三种模型参数。
半导体物理学复习提纲(重点)教学提纲

第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§1.3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k)~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。
§1.4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1.5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2.1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3.1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。
1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
半导体物理复习资料

第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。
2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。
能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。
3.半导体中电子所受的外力dtdkh f ⋅=的计算。
4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。
施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。
深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。
深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。
3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。
在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。
设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。
半导体物理复习提纲

基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体能带中一定有不满带;绝缘体能带中只有满带和空带,禁带宽度较宽一般大于2eV ;半导体T=0 K 时,能带中只有满带和空带,T>0 K 时,能带中有不满带,禁带宽度较小,一般小于2eV 。
(能带状况会发生变化)半导体的导带没有电子,但其价带中电子吸收能量,会跃迁至导带,价带中也会剩余空穴。
在外电场的情况下,跃迁到导带中的电子和价带中的空穴都会参与导电。
而金属中价带电子是非满带,在外场的作用下直接产生电流。
2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e 和具有正有效质量|m n * | 、速度为v (k’)的粒子的情况一样,这样假想的粒子称为空穴。
3.半导体材料的一般特性。
(1)电阻率介于导体与绝缘体之间(2)对温度、光照、电场、磁场、湿度等敏感(3)性质与掺杂密切相关4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数?为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述?麦克斯韦-玻尔兹曼统计的粒子是可分辨的;费米-狄拉克统计的粒子不可分辨,而且每个状态只可能占据一个粒子。
低掺杂半导体中载流子遵循玻尔兹曼分布,称为非简并性系统;高掺杂半导体中载流子遵循费米分布,称为简并性系统。
费米分布:f (f )=ff +fff (f −f ff f f ) 玻尔兹曼分布:f (f )=ⅇ−f −f f f f f 空穴分布函数:f V (E )=1−f (E )=1exp (−E −E F k 0T )+1 (能态E 不被电子占据的几率) 当E-E F fk 0T 时有exp (E −EF k 0T )≫1,所以1+exp (E −E F k 0T )≈exp (E −E F k 0T ),则费米分布函数转化为f (E )=ⅇ−E −E Fk 0T ,即玻尔兹曼分布。
半导体物理复习资料全

第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
半导体物理知识点及重点习题总结

基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k 关系决定。
1.4本征半导体既无杂质有无缺陷的理想半导体材料。
1.4空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 PN结
1.1 PN结是怎么形成的?
耗尽区:正因为空间电荷区内不存在任何可动的电荷,所以该区也称为耗尽区。
空间电荷边缘存在多子浓度梯度,多数载流子便受到了一个扩散力。
在热平衡状态下,电场力与扩散力相互平衡。
p型半导体和n型半导体接触面形成pn结,p区中有大量空穴流向n区并留下负离子,n区中有大量电子流向p区并留下正离子(这部分叫做载流子的扩散),正负离子形成的电场叫做空间电荷区,正离子阻碍电子流走,负离子阻碍空穴流走(这部分叫做载流子的漂移),载流子的扩散与漂移达到动态平衡,所以pn 结不加电压下呈电中性。
1.2 PN结的能带图(平衡和偏压)
无外加偏压,处于热平衡状态下,费米能级处处相等且恒定不变。
1.3 内建电势差计算
N区导带电子试图进入p区导带时遇到了一个势垒,这个势垒称为内建电势差。
1.4 空间电荷区的宽度计算
n d p a x N x N =
1.5 PN 结电容的计算
第二章 PN 结二极管
2.1理想PN 结电流模型是什么? 势垒维持了热平衡。
反偏:n 区相对于p 区电势为正,所以n 区内的费米能级低于p 区内的费米能级,势垒变得更高,阻止了电子与空穴的流动,因此pn 结上基本没有电流流动。
正偏:p 区相对于n 区电势为正,所以p 区内的费米能级低于n 区内的费米能级,势垒变得更低,电场变低了,所以电子与空穴不能分别滞留在n 区与p 区,所以pn 结内就形成了一股由n 区到p 区的电子和p
区到n 区的空穴。
电荷的流动在pn 结内形成了一股电流。
过剩少子电子:正偏电压降低了势垒,这样就使得n 区内的多子可以穿过耗尽区而注入到p 区内,注入的电子增加了p 区少子电子的浓度。
2.2 少数载流子分布(边界条件和近似分布) 2.3 理想PN 结电流
⎥⎦
⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛=1exp kT eV J J a s
⎪⎪
⎭
⎫ ⎝
⎛+=+=
0020
11p p d n n a i
n
p n p
n p s D N D N en L n eD L p eD J ττ
2.4 PN 结二极管的等效电路(扩散电阻和扩散电容的概念)?
扩散电阻:在二极管外加直流正偏电压,再在直流上加一个小的低频正弦电压,则直流之上就产生了个叠加小信号正弦电流,正弦电压与正弦电流就产生了个增量电阻,即扩散电阻。
扩散电容:在直流电压上加一个很小的交流电压,随着外加正偏电压的改变,穿过空间电荷区注入到n 区内的空穴数量也发生了变化。
P 区内的少子电子浓度也经历了同样的过程,n 区内的空穴与p 区内的电子充放电过程产生了电容,即扩散电容。
2.5 产生-复合电流的计算
2.6 PN结的两种击穿机制有什么不同?
齐纳击穿:重掺杂的pn结由于隧穿机制而发生齐纳击穿。
在重掺杂pn结内,反偏条件下结两侧的导带与价带离得非常近,以至于电子可以由p区直接隧穿到n 区的导带。
即齐纳击穿。
雪崩击穿:当电子或空穴穿越空间电荷区时,由于电场的作用,他们的能量会增加,增加到一定的一定程度时,并与耗尽区的原子电子发生碰撞,便会产生新的电子空穴对,新的电子空穴又会撞击原子内的电子,于是就发生了雪崩击穿。
对于大多数pn结来说,雪崩击穿占主导地位。
在电场的作用下,新的电子与空穴会朝着相反的方向运动,于是便形成了新的电流。
第三章 双极晶体管
3.1 双极晶体管的工作原理是什么?
3.2 双极晶体管有几种工作模式,哪种是放大模式? 正向有源,反向有源,截止,饱和。
3.3 双极晶体管的少子分布(图示)
3.4 双极晶体管的电流成分(图示),它们是怎样形成的?
正向有源时同少子分布。
3.5 低频共基极电流增益的公式总结(分析如何提高晶体管的增益系数)
E
B E B E B E E B B E B B B E E x x D D N N
L x L x L D n L D p ⋅⋅+≈
⋅
+=
11
)
/tanh()/tanh(11
00γ
2
)/(2
111
)/cosh(1B B B B T L x L x +≈
≈α
⎪⎭
⎫ ⎝⎛-+
≈
kT eV J J BE s r 2ex p 11
00δ
δγααT =
ααβ-=
1
3.6 等效电路模型(Ebers-Moll 模型和Hybrid-Pi 模
型)(画图和简述)
3.7 双极晶体管的截止频率受哪些因素影响?
基区渡越时间。
利用有内建电场的缓变掺杂基区。
3.8 双极晶体管的击穿有哪两种机制?
第四章 MOS 场效应晶体管基础
4.1 MOS 结构怎么使半导体产生从堆积、耗尽到反型的变化?
反型:当在棚极加上更大的负电压时,导带和价带的弯曲程度更加明显了,本证费米能级已经在费米能级的上方了,以至于价带比导带更接近费米能级,这个结果表明半导体表面是p 型的,通过施加足够大的负电压半导体表面已经从n 型转为p 型了。
这就是半导体表面的空穴反型层。
4.2 MOS 结构的平衡能带图(表面势、功函数和亲和能)及平衡能带关系
ms s OX V φφ-=+00
4.3 栅压的计算(非平衡能带关系)
ms s OX G V V φφ++=
4.4 平带电压的计算
4.5 阈值电压的计算
*
dT a SD x eN Q =(max)'
2
1
4⎪
⎪⎭⎫ ⎝
⎛=a p f s dT
eN x φε
⎪⎪⎭
⎫ ⎝⎛=i a th p
f n N V ln φ
⎥⎦⎤⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛++-=p f g m ms
e E φχφφ2
ox
ox
ox t C ε=
dT d SD x eN Q =(max)'
2
1
4⎪
⎪⎭
⎫
⎝⎛=d n f s dT
eN x φε
⎪⎪⎭
⎫ ⎝⎛=i d
th n
f n
N V ln φ ⎥⎦⎤⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛-+-=n f g m ms
e E φχφφ2
ox ox
ox t C ε=
4.6 MOS 电容的计算 总的电容公式
a
th
s D
eN V
L ε=
a
p f s dT
eN x φε4=
4.7 MOSFET 的工作原理是什么? 4.8
电流-电压关系(计算) N 沟道:
T GS DS
V V sat V -=)(
P 沟道:
T SG
SD V V sat V +=)(
4.9 MOSFET 的跨导计算
4.10 MOSFET 的等效电路(简化等效电路)
4.11 MOSFET的截止频率主要取决于什么因素?
第五章 光器件
5.1电子-空穴对的产生率:
ν
ανh x I x g )()('= 5.2 PN 结太阳能电池的电流
⎥⎦
⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=1exp kT eV I I I s L 5.3光电导计算
p L p n p n G e p e τμμδμμσ)()(+=+=∆
5.4 光电导增益
5.5 光电二极管的光电流
)(n p L L L L W eG J ++=
5.6 PIN 二极管怎么提高光电探测效率?
5.7 发光二极管的内量子效率主要取决于哪些因素?
5.8 PN 结二极管激光器怎样实现粒子数反转(借助于能带图说明)
第六章 MOS场效应晶体管:概念的深入
6.1 MOSFET按比例缩小理论(恒定电场缩小),哪些参数缩小,哪些参数增大?
6.2 结型场效应晶体管的工作原理是什么?它有什么特点
6.3 设计一种半导体器件,说明其工作原理。
(1)结结构、能带结构(势垒)、电路结构(等效);(2)载流子分布、电流形成机制、伏-安特性;(3)增益系数、频率响应。