实验17液体表面张力的测定

合集下载

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面产生的结果,是液体表面分子间的一种特殊力。

液体表面张力的大小对于液体的性质和应用有着重要的影响,因此准确测定液体表面张力系数具有重要的科学意义和实际应用价值。

实验目的:本实验旨在通过测定液体表面张力系数,了解液体的性质和分子间相互作用力,掌握测定液体表面张力的方法和技巧。

实验原理:液体表面张力系数的测定常用的方法有测量液体表面降低高度法和测量液滴形状法。

本实验采用测量液滴形状法。

实验仪器和药品:1. 精密天平2. 滴定管3. 滴定管架4. 滴定瓶5. 蒸馏水6. 乙醇溶液实验步骤:1. 将实验室温度调至恒定,避免温度对实验结果的影响。

2. 用精密天平称取一定质量的滴定瓶。

3. 在滴定管架上放置一只干净的滴定管。

4. 将滴定瓶倒置并将液体滴入滴定管中,直到滴定管口外溢。

5. 记录液滴的质量和滴定管口外溢的时间。

6. 重复以上步骤3-5,每次使用不同的液体进行实验。

实验数据处理:根据实验数据,可以计算液体表面张力系数。

液体表面张力系数的计算公式为:γ =(4Mg) / (πd^2t)其中,γ为液体表面张力系数,M为液滴的质量,g为重力加速度,d为液滴的直径,t为滴定管口外溢的时间。

实验结果与分析:通过实验测量和计算,得到了不同液体的表面张力系数。

结果显示,乙醇溶液的表面张力系数较大,说明乙醇溶液的分子间相互作用力较强;而蒸馏水的表面张力系数较小,说明蒸馏水的分子间相互作用力较弱。

结论:通过本实验的测定,我们成功地测量了不同液体的表面张力系数,并得出了相应的结论。

液体表面张力系数的测定对于了解液体的性质和分子间相互作用力具有重要意义,对于液体的应用和研究也具有实际价值。

实验中可能存在的误差:1. 实验过程中,滴定管口外溢的时间可能受到人为操作的影响,导致实验结果的误差。

2. 液滴的直径的测量可能存在一定的误差,影响了液体表面张力系数的计算结果。

液体表面张力系数的测定的实验报告

液体表面张力系数的测定的实验报告

液体表面张力系数的测量【实验目的】1、掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感器的灵敏度2、了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使用方法,并用它测量纯水表面张力系数。

3、观察拉脱法测量液体表面张力系数的物理过程和物理现象,并用物理学概念和定律进行分析研究,加深对物理规律的认识4、掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定液体的表面张力系数。

5、利用现有的仪器,综合应用物理知识,自行设计新的实验内容。

【实验原理】一、拉脱法测量液体的表面张力系数把金属片弯成如图 1(a)所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b)所示,然后把它浸到待测液体中。

当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F(当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。

由于液膜有两个表面,若每个表面的力为(为圆形液膜的周长),则有(2)所以(3)圆形液膜的周长L与金属圆环的平均周长相当,若圆环的内、外直径分别为。

则圆形液膜的周长L≈L’=(D1+D2)/2 (4)将(4)式代入(3)式得(5)硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。

当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。

即(6)式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为V/N;ΔU 为传感器输出电压的大小。

二、毛细管升高法测液体的表面张力系数1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。

而当接触角大于90°时,液体在管内就会下降。

这种现象被称为毛细现象。

本实验研究玻璃毛细管插入水中的情形。

测液体表面张力系数实验报告

测液体表面张力系数实验报告

测液体表面张力系数实验报告
x
测液体表面张力系数实验报告
一、实验目的
本次实验的目的是测量液体表面张力系数的变化。

二、实验原理
液体表面张力是液体表面的内表面能量耦合效应,是液体表面上分子之间的力的结果。

液体表面张力系数反应了表面化学热,即表面的内能,它以特定形式传递给表面上的任何物体,而这种传递的形式就是表面张力。

三、实验装置
采用表面活性度测定仪(表面张力计),可以快速准确的测量液体的表面张力系数,它把表面张力概括为液滴形状系数或液滴体积系数,因此可以考虑到液体的表面张力及其影响的因素,如化学热、温度、PH值等。

四、实验步骤
1. 在表面张力计中先将配套的标准液体事先稀释1000倍,然后将稀释后的标准液体加入到吸盘中,进行测量;
2. 把需要测试的液体事先稀释1000倍,然后将稀释后的样品液体加入到吸盘中,进行测量;
3. 对所有测试液体进行同样的测量;
4. 将实验数据输入到电脑中,计算出液体的表面张力系数。

五、实验结果
实验结果如下:
液体表面张力系数:
样品1:18.6 mN/m
样品2:19.2 mN/m
样品3:19.6 mN/m
六、实验结论
通过实验测试,可以得出结论:不同液体的表面张力系数不同,因此液体的表面张力系数必须注意控制和稳定。

液体表面张力的测定实验报告

液体表面张力的测定实验报告

液体表面张力的测定实验报告液体表面张力的测定实验报告引言:液体表面张力是液体分子间相互作用力引起的一种现象,是液体表面上的分子受到表面内部分子的引力而产生的张力。

液体表面张力的大小直接影响着液体的性质和行为,因此对液体表面张力的准确测定具有重要意义。

本实验旨在通过测定液体表面张力的方法,探究不同因素对表面张力的影响。

实验目的:1. 了解液体表面张力的概念和测定方法;2. 探究不同因素对液体表面张力的影响。

材料与仪器:1. 水;2. 甘油;3. 玻璃片;4. 平衡臂;5. 砝码;6. 量筒;7. 毛细管;8. 实验台;9. 针筒;10. 温度计。

实验步骤:1. 准备工作:将实验台平放,确保水平度;用玻璃片将实验台上的水平面分成两个部分;2. 测定水的表面张力:将一根毛细管插入水中,观察水面弯曲的程度,调整砝码的重量,使平衡臂平衡,记录砝码的质量;3. 测定甘油的表面张力:重复步骤2,将毛细管插入甘油中,记录砝码的质量;4. 测定不同温度下水的表面张力:将水加热至不同温度,重复步骤2,记录砝码的质量,并测量水的温度;5. 分析实验数据:计算不同液体的表面张力,并比较不同温度下水的表面张力的变化。

实验结果与分析:通过实验测得水的表面张力为X N/m,甘油的表面张力为Y N/m。

可以看出,甘油的表面张力明显大于水,这是因为甘油分子间的相互作用力较强。

此外,实验还发现水的表面张力随温度的升高而减小,这是因为温度升高会使水分子的热运动增强,分子间的相互作用力减弱,从而降低了表面张力。

实验讨论:在实验过程中,我们发现了一些可能影响实验结果的因素。

首先,实验台的水平度对实验结果的准确性有一定影响,因此在进行实验前需要确保实验台平放。

其次,毛细管的直径和长度也会对实验结果产生影响,因为液体在毛细管中的上升高度与液体的表面张力成反比。

因此,在实验中需要选择合适的毛细管。

此外,实验中还需要注意温度的控制,因为温度的变化会直接影响液体的表面张力。

大学物理实验实验17_用拉脱法测液体表面张力系数

大学物理实验实验17_用拉脱法测液体表面张力系数

实验目的
1. 学习用焦利秤测量微小力的原理和方法。 2. 测定常温下水的表面张力系数。 3. 加深对液体表面性质的了解。
实验仪器
焦利秤(包括弹簧、带镜挂钩、测量杆) 砝码 金属圆环 玻璃皿 游标卡尺
右图为焦利秤的结构
1—主尺 2—游标 3—立柱 4—主尺旋钮 5—平台升降螺杆 6—平台 7—盛液杯 8—金属环 9 —玻璃管 10 —带镜挂钩 11—弹簧 D、G—水平刻线
用拉脱法测液体的 表面张力系数
物理实验教学中心
实验背景
表面张力(surface tension),是液体表面 层由于分子引力不均衡而产生的沿表面作用于任 一界线上的张力。
在自然界中,我们可以看到很多表面张力的 现象和对张力的运用。比如,露水总是尽可能地 呈球形,而某些昆虫则利用表面张力可以漂浮在 水面上。
4. 取下金属环,换上小砝码盘。使加入砝码盘的砝码总质量 依次为1g,2g,…,10g。 测出相应于各次砝码质量的“ 三线重合”的主尺示值yM1,yM2,…,yM10。计算相应于 ΔM=5g的各个ΔyMj = yMj+5− yMj,并计算。
5. 取下弹簧,把带钩测量杆的无钩端固定在主尺顶端的短臂 上。把带镜挂钩和金属环悬挂在测量杆下端。调节主尺旋 钮使“三线重合”,读出主尺示值y3。再重复第3步的操 作水,膜读的出最水大膜高断度裂为h时=刻y3 的−y“4。三记线录重h合、”室的温主和尺水示温值。y4。则
6.用游标卡尺测量金属环的内、外半径r1、r2。注意不能 使金属环变形。 7.计算表面张力。并估算合成不确定度。
注意事项
1.实验前一定要熟悉焦利秤的调整和读数。 2.预习时了解本实验的主要误差来源,以便在 实验中有效地减小误差。
思考题

我的液体表面张力的测定实验报告

我的液体表面张力的测定实验报告

标尺零点 水膜破裂 读数 S0 196.08 196.04 196.06 196.04 196.08 时读数 Si 198.10 198.12 198.18 198.14 198.14
Si -S0
2.02 2.08 2.12 2.10 2.06
S S
i
2
/(5 1) 0.47mm
B 0.02mm
S 2A 2B
=0.47mm
金属环外、内直径的测量(本实验直接给学生结果) 平均值(mm) d1 d2 33.04 34.94
0.0443 0.001 N/m
相对不确定度为 2.3%
注意事项
1.每次读数前必须保证三线对齐。 2.避免水膜提前破裂。
实验原理:
1、表面张力与表面张力系数:液体表面层分子有从液面挤入液 内的趋势,从而使液体有尽量缩小其表面的趋势,我们把沿着液 体表面使液面收缩的力称为表面张力。 作用于液面单位长度上的 表面张力,称为液体的表面张力系数。即:α=f/L α表面张力系数,单位 N·m-1。
2、表面张力系数的测定: 将一表面洁净的金属圆环竖直浸入水中, 然后慢慢提起一张水膜。 受力分析 当金属圆环将要脱离液面,即拉起的水膜刚好破裂时,则此时受 力: 1) 、F 为圆环所受弹簧将其拉出水面的拉力,方向向上;
k 5mg / L =4.55N/mm AL
L L
i
2
/(5 1) 0.51 mm
B 0.02mm L 2A 2B
=0.51mm
- 5g L 2
L

K

பைடு நூலகம்


2
次数 1 2 3 4 5

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告一、实验目的。

本实验旨在通过测定液体表面张力系数的实验,掌握液体表面张力系数的测定方法,加深对表面张力的理解,提高实验操作能力。

二、实验原理。

液体表面张力系数是表征液体分子间相互作用力的物理量,通常用$\gamma$表示。

液体表面张力系数的测定方法有很多种,常用的有悬铁环法、悬滴法、悬水滴法等。

本实验采用悬水滴法测定液体表面张力系数。

三、实验仪器和试剂。

1. 一台天平。

2. 一根细丝。

3. 一根细管。

4. 一根毛细管。

5. 一根水平的细管。

6. 一些水。

四、实验步骤。

1. 将一根细丝固定在天平上,使其水平。

2. 用细管将水滴在细丝上,形成一个悬水滴。

3. 用毛细管在悬水滴下方加入一些水,使悬水滴增大,直到悬水滴脱落。

4. 测量水滴的质量$m$,并记录下悬水滴的直径$d$。

五、实验数据处理。

根据实验数据,可以计算出液体表面张力系数$\gamma$的值。

根据悬水滴法的原理,液体表面张力系数$\gamma$与水滴的质量$m$、直径$d$和重力加速度$g$之间存在如下关系:$$\gamma = \frac{4m}{\pi d^2 g}$$。

六、实验结果与分析。

根据实验数据和计算公式,可以得到液体表面张力系数$\gamma$的数值。

通过对实验数据的分析,可以发现液体表面张力系数与水滴质量和直径呈反比关系,与重力加速度呈正比关系。

这与表面张力的性质相符合。

七、实验结论。

通过本实验的实验操作和数据处理,成功测定了液体表面张力系数$\gamma$的数值。

实验结果与理论预期相符,验证了悬水滴法测定液体表面张力系数的可行性。

八、实验中的注意事项。

1. 实验操作要细致,保证悬水滴的稳定性。

2. 测量数据要准确,避免误差的产生。

3. 实验结束后要及时清理实验仪器和试剂。

九、参考文献。

1. 《物理化学实验》。

2. 《实验化学》。

十、致谢。

感谢实验指导老师的悉心指导和同学们的配合,使本次实验取得了圆满成功。

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告
实验目的
本实验旨在测量液体表面张力系数的实验。

实验原理
液体表面张力是液体表面特有的张力,它是液体表面上的一种力,其大小由液体表面的分子张力决定。

液体表面张力系数是一个量度液体表面张力大小的指标,它是表面张力的力比器官张力而表示的数值。

实验仪器
本实验所需要的仪器有:液体表面张力表,定量称量瓶,水浴温度计,烧杯,电子天平,压力表,容量瓶,滴定管,分析天平,烧瓶,烧杯,热板,加热器,微粒检测仪,照相机等。

实验步骤
1. 使用定量称量瓶,准备液体样品,将其测量到烧杯中,然后
用水浴温度计将液体温度控制在室温下;
2. 将液体样品放入液体表面张力表中,使用电子天平精确测量
液体样品的质量,并将其记录在记录表中;
3. 设置压力表,测量液体表面张力,记录相应的数据,并将其
记录在记录表中;
4. 通过容量瓶测量液体样品的体积,并将其记录在记录表中;
5. 计算液体表面张力系数,即液体表面张力与液体表面重量的
比值;
6. 将测量的液体表面张力系数结果记录在实验记录表中,并绘
制出液体表面张力系数随温度变化的曲线图。

实验结果
实验结果表明,随着温度的升高,液体表面张力系数显著增大。

结论
通过本次实验,我们发现随着温度的升高,液体表面张力系数显著增大。

由此可见,液体表面张力系数与温度有关,较高的温度会使表面张力系数变大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

..物理化学实验备课材料实验17 液体表面张力的测定一、基本介绍液体的表面张力是指液体与它的蒸气成平衡时体系的界面张力。

液体表面张力常常是在空气中测定的。

当气相是一个处于低压或中压的惰性气体时,一般液体表面张力值与气相的组成几乎无关。

液体的表面张力,源于液体相界面分子受力不平衡,意为相表面的单位长度收缩力,用“σ"表示,其单位是焦耳/平方米(J·m-2)或牛/米(N·m-1).液体表面张力的测定,不仅可以加深对表面张力这一物系热力学性质的认识,而且可以研究表面活性剂的表面活性、分子的横截面积、分子长度等。

二、实验目的1、掌握最大气泡法测定表面张力的原理,了解影响表面张力测定的因素。

2、测定不同浓度正丁醇溶液的表面张力,计算吸附量, 由表面张力的实验数据求分子的截面积及吸附层的厚度。

三、实验原理1、溶液中的表面吸附从热力学观点来看,液体表面缩小是一个自发过程,这是使体系总自由能减小的过程,欲使液体产生新的表面ΔA,就需对其做功,其大小应与ΔA 成正比:-W′=σ·ΔA(1) 如果ΔA为1m2,则-W′=σ是在恒温恒压下形成1m2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m-2。

也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m-1。

在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质和加入量的多少。

根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。

在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:TC RTC Γ⎪⎭⎫ ⎝⎛-=d d σ (2) 式中,Г为溶质在表层的吸附量;σ为表面张力;C 为吸附达到平衡时溶质在介质中的浓度。

当 TC ⎪⎭⎫ ⎝⎛d d σ<0时,Г>0称为正吸附;当 TC ⎪⎭⎫⎝⎛d d σ>0时,Г<0称为负吸附。

吉布斯吸附等温式应用范围很广,但上述形式仅适用于稀溶液。

引起溶剂表面张力显著降低的物质叫表面活性物质,被吸附的表面活性物质分子在界面层中的排列,决定于它在液层中的浓度,这可由图2-26-1看出。

图2-26-1中(1)和(2)是不饱和层中分子的排列,(3)是饱和层分子的排列。

当界面上被吸附分子的浓度增大时,它的排列方式在改变着,最后,当浓度足够大时,被吸附分子盖住了。

所有界面的位置,形成饱和吸附层,分子排列方式如图2-26-1(3)所示。

这样的吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。

如果在恒温下绘成曲线σ=f (C )(表面张力等温线),当C 增加时,σ在开始时显著下降,而后下降逐渐缓慢下来,以至σ的变化很小,这时σ的数值恒定为某一常数(见图2-26-2)。

利用图解法进行计算十分方便,如图2-26-2所示,经过切点a 作平行于横坐标的直线,交纵坐标于b ′点。

以Z 表示切线和平行线在纵坐标上截距间的距离,显然Z 的长度等于 C ·TC ⎪⎭⎫ ⎝⎛d d σ, RTZ C RT C ΓCC Z C Z C T T T=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-=⎪⎭⎫⎝⎛d d d d d d σσσ (3)以不同的浓度对其相应的Г可作出曲线,Г=f (C )称为吸附等温线。

根据朗格谬尔(Langmuir)公式:kCkCΓΓ+=∞1 (4)图1 被吸附的分子在界面上的排列图 图2 表面张力和浓度关系图Г∞为饱和吸附量,即表面被吸附物铺满一层分子时的Г,∞∞∞+=+=k ΓΓC k ΓkC ΓC 11 (5) 以C /Г对C 作图,得一直线,该直线的斜率为1/Г∞。

由所求得的Г∞代入可求得被吸附分子的截面积S o =1/Г∞~N (~N 为阿佛加得罗常数)。

若已知溶质的密度ρ,分子量M ,就可计算出吸附层厚度δρδMΓ∞=(6)2、最大气泡法测表面张力用最大泡压法测表面张力方法如下:测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。

本实验采用最大泡压法,实验装置如图一所示。

图3中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。

图3 最大泡压法测液体表面张力仪器装置图将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。

若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为:g h p p p ρ∆=-=系统大气max式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。

气泡在毛细管口所受到的由表面张力引起的作用力为2πr •γ,气泡刚脱离管口时,上述二力相等:r g h r p rr πρππ22max 2=∆=γπρππr g h r p r 22max 2=∆=g h rργ∆=2若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各自的和,则有如下关系:2121h h ∆∆=γγ 即1221h K h ∆=∆=γγ对同一支毛细管来说,K值为一常数,其值可借一表面张力已知的液体标定。

本实验用纯水作为基准物质,20.0℃时纯水的表面张力为7.275×10-2N/m(或J/m2)。

四、仪器和试剂表面张力测定装置(包括恒温槽)1套;容量瓶100ml1个,50ml5个;1ml刻度移液管1支;吸耳球1个;正丁醇(二级);去离子水。

五、实验步骤1、溶液配制按表分2次配制9份溶液,第一次1~5号,第二次配制6~9号表-正丁醇表面张力测定溶液配制方法2、仪器准备与检漏将表面张力仪容器和毛细管先用洗液洗净,再顺次用自来水和蒸馏水漂洗,烘干后按图2-26-3按好。

将水注入抽气管中。

在A管中用移液管注入50mL蒸馏水,用吸耳球由G处抽气,调节液面,使之恰好与细口管尖端相切。

然后关紧G处活塞,再打开活塞H,这时管B中水流出,使体系内的压力降低,当压力计中液面指示出若干厘米的压差时,关闭H,停止抽气。

若2min~3min内,压力计液面高度差不变,则说明体系不漏气,可以进行实验。

3、测定毛细管常数样品管内置蒸馏水,毛细管竖直放置,毛细管口与液面相切。

开H对体系抽气,调节抽气速度,使气泡由毛细管尖端成单泡逸出,且每个气泡形成的时间为10s~20s(数显微压差测量仪为5s~10s)。

若形成时间太短,则吸附平衡就来不及在气泡表面建立起来,测得的表面张力也不能反映该浓度之真正的表面张力值。

当气泡刚脱离管端的一瞬间,压力计中液面差达到最大值,记录压力计两边最高和最低读数,连续读取三次,取其平均值。

再由手册中,查出实验温度时,水的表面张力σ,则毛细管常数K值最大水p K ∆=σ4、表面张力随溶液浓度变化的测定在上述体系中,用移液管移入0.100mL 正丁醇,用吸耳球打气数次(注意打气时,务必使体系成为敞开体系。

否则,压力计中的液体将会被吹出),使溶液浓度均匀,然后调节液面与毛细管端相切,用测定仪器常数的方法测定压力计的压力差。

然后依次加入正丁醇溶液,测量顺序由稀到浓,每次测量前用样品冲洗样品管和毛细管数次。

六、数据记录计算各浓度正丁醇溶液的表面张力,并作γ-c 曲线。

1.原始数据:2.计算表面张力毛细管常数K t=20.9℃, γ(H 2O)=72.5×10-3N/m△h =26mm ,由公式γ(H 2O)=K △h 得 K =2.7885 N/m 2。

3.求γ,Г和c/Г。

4 0.155 0.206 0.257 0.308 0.504. γ-c,Г-c,c-c/Г曲线。

5、计算分子面积A。

七、实验注意事项1、溶液的表面张力受活性杂质(一些有机物)影响很大,为此必须保证所用样品(乙醇和蒸馏水)的纯度和仪器的清洁,滴定管和表面张力仪的活塞最好不要涂凡士林油。

2、配制完的溶液需摇晃使之与水混合均匀。

U型管压力计中的水量以整个高度的一半为宜。

每次测定前,用待测液认真清洗样品管和毛细管(毛细管的清洗需借助于吸耳球),安装毛细管时要垂直并与液面刚好相切,气泡逸出速率尽可能缓慢,以每分钟不超过40个为宜。

读取压力计的压差时,应取气泡连续单个逸出时的最大压力差。

3、测定过程中有时会出现毛细管不冒泡的情况,首先检查装置是否漏气和减压管中的水是否足量,其次再用吸耳球检查毛细管是否被固体堵塞,否则多半是被油脂等污染,需用丙酮或其它有机溶剂清洗干净。

4、测定时要注意保持恒温,各样品均要在恒温槽中恒温后才能测定。

八、思考题1、用最大气泡法测定表面张力时为什么要读取最大压力差?答:根据本实验的原理可知,测量过程中读取的压力差即是毛细管逸出气泡的附加压力,即越小,越大。

当等于毛细管半径时,取得最小值,而压力差取最大值。

本实验正是利用进行测定液体表面张力。

2、为什么玻璃毛细管一定要与液面刚好相切,如果毛细管插入一定深度,对测定结果有何影响?答:如果毛细管尖端插入液下,会造成压力不只是液体表面的张力,还有一部分插入液体的压力。

毛细管的管口与液面刚好相切时,平衡时所满足的关系是:若毛细管插入一定深度(设距液面深度为),则气泡逸出时还需克服此深度的静压力(为待测液的密度)。

因此平衡时满足的关系式变为:若假设,则产生最大泡压时,满足:由此测量的比正常情况下的最大压力差大。

3、测量过程中如果气泡逸出速率较快,对实验有无影响?为什么?答:测量过程中如果气泡逸出速率较快,对实验结果有影响。

因为最大气泡压力法测量表面张力实验原理成立的先决条件是必须满足平衡条件的要求,这样才能有:公式的成立,如果气泡逸出速率很慢,可以认为接近平衡;如果气泡逸出速率快,平衡关系被破坏。

4、在本实验装置中,液体压力计内的介质是水,选用水银是否可以?答:液体压力计内的介质不能选用水银。

因为水银的密度远大于水的密度。

根据:一式可知,选用水银作压力计的介质时,的数值将会很小,难于精确测量。

另外微小的读数误差会产生很大的实验误差。

5、为何毛细管的尖端要平整?选择毛细管直径大小时应注意什么?答:毛细管的尖端要平整可以保证气流流畅,压力不受阻。

相关文档
最新文档