《正弦函数、余弦函数的性质》教学设计
正弦函数余弦函数的性质教学设计

正弦函数余弦函数的性质教学设计教学设计题目:正弦函数和余弦函数的性质一、教学目标:1.理解正弦函数和余弦函数的定义和图像特点;2.掌握正弦函数和余弦函数的周期、振幅、相位等性质;3.能够利用正弦函数和余弦函数的性质解决实际问题。
二、教学内容:1.正弦函数和余弦函数的定义和图像特点;2.正弦函数和余弦函数的周期、振幅、相位等性质;3.正弦函数和余弦函数在实际问题中的应用。
三、教学流程:【导入】(5分钟)1.利用实物或幻灯片展示一个周期性的物体(如钟摆、运动员腕表);2.引导学生思考:你能观察出这个物体有哪些规律性的变化吗?3.引导学生回忆中学过的函数,提到是否有一些函数能够描述这种规律性的变化?【探究】(20分钟)1.引导学生尝试利用直尺、铅笔在纸上标出正弦函数和余弦函数的图像;2.让学生观察图像,找出正弦曲线和余弦曲线的相似之处和不同之处;3.分组讨论并总结正弦函数和余弦函数的定义和图像特点。
【归纳】(15分钟)1.教师引导学生对上述内容进行归纳总结,将正弦函数和余弦函数的定义和图像特点整理成导学笔记;2.教师对学生的总结进行点评,给予肯定和指导。
【深化】(15分钟)1.教师拿出钟表,让学生观察时针的运动;2.引导学生思考:时针的运动是否具有周期性?有什么规律性的变化?是否可以用函数来描述?3.通过时针的运动,引入正弦函数和余弦函数的周期概念。
【拓展】(20分钟)1.教师引导学生观察不同振幅、不同相位的正弦函数和余弦函数的图像;2.教师解释振幅和相位的概念,并给出具体的定义;3.引导学生思考振幅和相位对函数图像的影响。
【展示】(15分钟)1.教师运用课件或黑板展示正弦函数和余弦函数的定义和图像特点,以及周期、振幅、相位等性质;2.教师通过示例演示如何求解正弦函数和余弦函数的周期、振幅、相位等具体数值。
【练习】(30分钟)1.学生进行练习题的训练,巩固对于正弦函数和余弦函数性质的掌握;2.教师巡视指导,及时给予反馈和纠正。
1.4.2正弦函数余弦函数的性质1[教学设计]
![1.4.2正弦函数余弦函数的性质1[教学设计]](https://img.taocdn.com/s3/m/6a35c8274431b90d6c85c763.png)
1.4.2(1)正弦、余弦函数的性质(教学设计)教学目的:知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义; 能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期。
德育目标:让学生自己根据函数图像而导出周期性,领会从特殊推广到一般的数学思想,体会三角函数图像所蕴涵的和谐美,激发学生学数学的兴趣。
教学重点:正、余弦函数的周期性教学难点:正、余弦函数周期性的理解与应用 授课类型:新授课教学模式:启发、诱导发现教学. 教学过程:一、创设情境,导入新课:1.现实生活中的“周而复始”现象:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)现在下午2点30,那么每过24小时候是几点? (3)路口的红绿灯(贯穿法律意识)2.数学中是否存在“周而复始”现象,观察正(余)弦函数的图象总结规律正弦函数()sin f x x =性质如下:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的;–– π 2π 2π- 2π 5π π- 2π- 5π- O x y 1 1-2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒这个规律由诱导公式sin(2k π+x)=sinx 可以说明结论:象这样一种函数叫做周期函数。
文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。
余弦函数也具有同样的性质,这种性质我们就称之为周期性。
二、师生互动,新课讲解:1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。
《正弦函数余弦函数的性质》教学设计

《正弦函数余弦函数的性质》教学设计教学设计:正弦函数、余弦函数的性质【教学目标】1.知识与能力目标a.了解正弦函数和余弦函数的定义及其性质;b.掌握正弦函数和余弦函数的图像特点;c.理解正弦函数和余弦函数的周期性和对称性;d.熟练利用性质解决与正弦函数和余弦函数相关的问题。
2.过程与方法目标a.通过多种形式的讲解和演示,提高学生对正弦函数和余弦函数的概念的理解;b.引导学生进行小组合作和交流讨论,培养学生的合作学习意识和能力;c.鼓励学生进行思考和探究,培养学生的自主学习和问题解决能力;d.利用图像和实例帮助学生加深对正弦函数和余弦函数的理解。
【教学重点】正弦函数和余弦函数的定义及其性质。
【教学准备】教师:课堂教学设计、教学PPT、黑板、彩色粉笔、实物模型等。
学生:学习笔记、教材。
【教学过程】Step 1 导入与引入(10分钟)1.教师先介绍正弦函数和余弦函数的概念,并通过实际生活中的例子,比如海浪起伏、摆动等,引导学生了解正弦函数和余弦函数的特点和应用。
2.教师再通过黑板写出正弦函数和余弦函数的定义,引导学生思考函数的定义与图像的关系。
Step 2 讲解正弦函数和余弦函数的性质(15分钟)1.教师通过PPT或者黑板,讲解正弦函数和余弦函数的性质,如定义域、值域、周期、对称性等,并通过图像和实例加深学生的理解。
2.教师提问学生:正弦函数和余弦函数的定义域是什么?取值范围是什么?周期是多少?能否找到其他满足这些性质的函数?引导学生思考函数图像的特点。
Step 3 利用性质解决问题(15分钟)1.教师引导学生通过性质解决实际问题,比如:已知一个函数的定义域是[-π/2,π/2],值域是[-1,1],且函数是奇函数,能否确定这个函数是正弦函数?怎样确定?等。
2.教师安排学生小组活动,给出一些问题,要求学生根据性质解答,并交流讨论解题思路和方法。
Step 4 总结与拓展(10分钟)1.教师带领学生总结正弦函数和余弦函数的性质,并强调重点。
正弦函数、余弦函数性质的教学设计

)及 Y=Ac o s ( 十 ) 周期 的求 法及周 期 公式 .
2 教 学重点 、 难 点与 关键
3 . 1 实 例 引入 课 题
实际生 活 中有许 多周 而复始 的现象 , 如 一年有
春 夏秋冬 4 个季节 , 一周有 7 天, 钟表上 的指针周而
定义 : 对 于 函数 f ( x) , 如 果存 在 一 个 非零 常 数 T, 使 得 当 取 定 义 域 内 的每 一 个 值 时 , 都 有 f ( x+ T )一f( x ) , 那 么 函数 f ( x) 就 叫做周 期 函 数, 非 零常数 丁 叫做这个 函数 的周 期 .
复 始地运转 等. 除 以上 现象 , 同学 们 还能 说 出 哪些
周 而复始 的现象?数学 中有没有 这样 的现 象?
设计 意 图 由学生 熟知 的 实际现 象 引入 , 加
深 对 周 期 性 的认 识 .
引导学 生 分析 , 周期 函数 与奇 、 偶 函数 都 是定
义 域 内的总 体概 念 , 对 周期 函数 定义 进行 剖析 , 可 得 以下 三 点 : 1 )周 期 函 数 是 定 义 域 内 的 整 体 概 念, 即 是 定义 域 内的任 意 自变量 ; 2 ) T是 一个 确 定 的非零 常数 , 只要 存在 即可 ; 3 ) 在 函数 定 义域
3 . 2 生 成周 期 函数概 念
引导 学 生 观察 正 弦 函数 的 图象 , 从 正 弦 函数
重点 : 理 解 周 期 函数 概 念 ; 难点 : 正 确 归 纳周 期 函数 定义 , 会 用 定义 求 函数 y—As i n ( + ) 及 Y=Ac o s ( c + ) 的周 期 ; 关键 : 按照 由特 殊 到
正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质教案第一章:正弦函数的定义与图象1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图象1.2 教学内容正弦函数的定义:正弦函数是直角三角形中,对于一个锐角,其对边与斜边的比值。
正弦函数的图象:正弦函数的图象是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
1.3 教学活动讲解正弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制正弦函数的图象,并观察其特点。
1.4 作业与练习让学生完成一些关于正弦函数的练习题,包括选择题和解答题。
第二章:余弦函数的定义与图象2.1 教学目标了解余弦函数的定义能够绘制余弦函数的图象2.2 教学内容余弦函数的定义:余弦函数是直角三角形中,对于一个锐角,其邻边与斜边的比值。
余弦函数的图象:余弦函数的图象也是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
2.3 教学活动讲解余弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制余弦函数的图象,并观察其特点。
2.4 作业与练习让学生完成一些关于余弦函数的练习题,包括选择题和解答题。
第三章:正弦函数和余弦函数的性质3.1 教学目标了解正弦函数和余弦函数的性质3.2 教学内容正弦函数和余弦函数的周期性:正弦函数和余弦函数都是周期函数,它们的周期都是2π。
正弦函数和余弦函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数。
正弦函数和余弦函数的单调性:正弦函数和余弦函数在一个周期内都是先增后减。
3.3 教学活动讲解正弦函数和余弦函数的性质,并通过实际例子进行解释。
让学生通过观察图象,总结正弦函数和余弦函数的性质。
3.4 作业与练习让学生完成一些关于正弦函数和余弦函数性质的练习题,包括选择题和解答题。
第四章:正弦函数和余弦函数的应用4.1 教学目标能够应用正弦函数和余弦函数解决实际问题4.2 教学内容正弦函数和余弦函数在物理学中的应用:正弦函数和余弦函数可以用来描述简谐运动,如弹簧振子的运动。
正弦函数余弦函数的性质教案

正弦函数余弦函数的性质教案1.正弦函数、余弦函数图像的画法(1)描点法:按照列表、描点、连线的顺序可作出正弦函数、余弦函数图像的方法.(2)几何法:利用单位圆中的正弦线、余弦线来作出正弦函数、余弦函数图像的方法.(3)五点法:观察正弦函数图像可以看出,(0,0),(,1),(π,0),(,-1),(2π,0)这五个点在确定正弦函数图像形状时起着关键的作用.这五个点描出后,正弦函数y=sin某,某∈[0,2π]的图像的形状就基本上确定了.(0,1),(,0),(π,-1),(,0),(2π,1)这五个点描出后,余弦函数y=cos某,某∈[0,2π]的图像的形状就基本上确定了.在精确度要求不太高时,我们常常先描出这五个点,然后用光滑的曲线将它们连结起来,就得到在相应区间内正弦函数、余弦函数的简图,这种方法叫做五点法.2.正、余弦函数的性质y=sin某y=cos某定义域RR值域[-1,1][-1,1]奇偶性奇函数偶函数单调性在每个区间[2kπ-,2kπ+]上递增,在每个区间[2kπ+,2kπ+]上递减(k∈Z)在每个区间[(2k-1)π,2kπ]上递增,在每个区间[2kπ,(2k+1)π]上递减(k∈Z)周期性2π2π有界性当某=2kπ-(k∈Z),y最小=-1,当某=2kπ+(k∈Z)时,y最大=1当某=(2k+1)π(k∈Z)时,y最小=-1,当某=2kπ(k∈Z)时,y最大=1(注:在单调性中,把函数说成在某象限是增函数或是减函数是不正确的).3.周期函数三角函数的周期性,是角的终边位置周期性的变化的反映,这种周期性清晰地表现在三角函数的图像中,对于周期函数,只要掌握它在一个周期的性质(提供研究问题的方案:先解答一个周期上的问题,再按周期性推广) 周期函数定义:设函数y=f(某)的定义域为D,若存在常数T≠0,使得对一切某∈D,且某+T∈D时,都有f(某+T)=f(某)成立,则称y=f(某)为D上的周期函数,非零常数T叫做这个函数的周期.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期。
《正弦函数、余弦函数的性质-周期性》教学设计

《正弦函数、余弦函数的性质-周期性》教学设计教学目标:一、知识与技能:1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期。
二、过程与方法:从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sinx图象的比较,概括抽象出周期函数的概念。
运用数形结合的方法研究正弦函数的周期性,通过类比研究余弦函数的周期性.三、情感、态度与价值观:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力.教学重点:1。
周期函数的定义。
2.正弦余弦函数的周期性.教学难点:1.周期函数定义.2.运用定义求函数的周期。
教学过程:一、复习回顾,引入新知:1。
如何画出正余弦函数在[0,2 ]上的图象?2.如何画出正余弦函数在R上的图象?3.如何画出余弦函数图象,并思考正弦、余弦函数的图象联系?(关键:形状相同,位置不同)二、讲授新课:1. 创设问题,情景引入:(1)、观察正、余弦曲线,想一想与之前学习的函数相比最显著的特点是什么?学生根据常识会回答:周期性(2)、生活中有哪些周而复始现象?你能说出几个?【设计意图】:激发学习兴趣,让学生感受数学离生活很近。
如:(演示动画)1 昼夜更替、四季轮回、日出日落、宇宙星空运行。
2 今天周四,14天前周几?98天后周几?3 有一首古诗:离离原上草,一岁一枯荣,夜火烧不尽,春风吹又生。
(勾起高一学生对小学一年级学习情景的回忆和感慨,进而陶冶学生情操,激发学习积极性)……2、演示三个动画让学生从三角度观察进而归纳总结周期函数的定义。
这三个动画分别是:(1)演示[0,2π]上的图象不断重复(2)演示R上任意长度为2π的区间上的图象重复(3)演示任意一点加减2π后的函数值重复3、通过这三个动画使学生由直观到抽象,由感性到理性地思考:① 正弦函数值具有“周而复始”的变化规律,这一点可以从正弦线的变化规律中看出,还可以从诱导公式sin(2)sin ()x k x k Z π+=∈中得到反映,即当自变量x 的值增加2π的整数倍时,函数值重复出现.②周期函数的定义:对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期.(周期函数()f x 的周期不唯一,,kT k Z ∈都是它的周期,所有周期中最小的正数就叫做它的最小正周期)③由刚才的讨论可知正弦函数是周期函数,它的周期性为2(0)k k Z k π∈≠且,最小正周期是2π。
必修四第一章《正弦函数余弦函数的性质》教学设计(王卫)

§1.4.2正弦函数余弦函数的性质评1节.二、教学目标及解析目标:1、通过图象理解正弦函数、余弦函数的周期性、奇偶性、单调性、最值和对称性,体会数形结合方法;2、会求简单正弦函数、余弦函数的周期、单调区间、最值等。
解析:1、目标1在于让学生体会到数形结合、归纳的数学思想,能独立归纳出的正弦函数、余弦函数的性质。
2、目标2在于让学生学会运用性质对简单正弦函数、余弦函数的奇偶性、单调性、最值等的求解。
三、问题诊断分析本节课的教学中,学生可能出现如下几个问题:①函数周期性的定义是什么?②如何求出正弦函数、余弦函数的周期?③不理解正弦函数、余弦函数的单调区间?不能正确写出正弦函数、余弦函数的单调区间?学生出现这几个问题的原因是不理解正弦函数、余弦函数的本质,对函数的周期性、单调性理解不透彻。
学生运用数学知识解决实际问题的能力还不强;在处理问题时学生考虑问题不深入,往往会造成错误的结果。
解决这些问题的关键是结合图像变化趋势加以理解;结合定义,通过例题加以模仿。
在此过程中,需要学生感受归纳的数学思想,找出函数之间的共同点和规律,通过讨论、合作交流、辩论得到正确的知识。
四、教学条件支持本节课的教学中需要用到几何画板和智能黑板,因为使用几何画板有利于展示函数的图像,能够给学生直观的认识。
五、教学过程1、自学问题1:周期函数的概念是什么?问题2:正、余弦函数有怎样的奇偶性和单调性?问题3:正、余弦函数的最值与对称性分别是什么?2、互学导学问题1:周期函数的概念是什么?设计意图:让学生观察函数的图像,了解函数的变化规律,培养学生的归纳能力。
师生活动:学生思考并回答,教师指导。
小问题1:如何作出正弦函数、余弦函数的图象?答:描点法(几何法、五点法),图象变换法。
并要求学生回忆哪五个关键点。
小问题2:研究一个函数的性质从哪几个方面考虑?答:定义域、值域、奇偶性、单调性、周期性、对称性等小问题3:正弦函数和余弦函数的图象分别是什么?二者有何相互联系?给出正弦、余弦函数的图象,让学生观察,并思考下列问题:世界上有许多事物都呈现“周而复始”的变化规律,如年有四季更替,月有阴晴圆缺.这种现象在数学上称为周期性,在函数领域里,周期性是函数的一个重要性质.小问题4:由正弦函数的图象可知, 正弦曲线每相隔2π个单位重复出现,这一规律的理论依据是什么?sin(2)sin ()x k x k Z π+=∈小问题5:为了突出函数的这个特性,我们把函数f(x)=sinx 称为周期函数,2k π为这个函数的周期.一般地,如何定义周期函数?由inx k x s 2sin =+π)(知: 知:最小正周期是π2.小问题8:就周期性而言,对正弦函数有什么结论?对余弦函数呢?由x k x cos )2cos(=+π知: 正、余弦函数是周期函数,2k π(k ∈Z, k ≠0)都是它的周期,最小正周期是2π.例1 求下列函数的周期: (1)y=3cosx,x ∈R ; (2)y=sin2x,x ∈R ;(3)y=2sin(2x -6π),x ∈R .(1) 因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx ≠3cosx,所以π不是周期.(2) 教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π).所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π; (2)周期为π; (3)周期为4π.变式1、P36练习第2题.小问题9:周期性是正、余弦函数所具有的一个基本性质,此外,正、余弦函数还具有哪些性质呢?我们将对此作进一步探究.问题2:正、余弦函数有怎样的奇偶性和单调性?设计意图:让学生观察函数的图像,了解函数的变化规律,数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,培养学生的归纳能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正弦函数、余弦函数的性质》教学设计
一、教材分析
1.教材的内容和地位
《正弦函数、余弦函数的性质》是人教A版数学必修4的第一章三角函数的内容,是学习了正弦函数、余弦函数的定义和图像之后,进一步学习正弦函数、余弦函数的性质。
该内容共两课时,这里讲的是第一课时,主要是探究正弦、余弦函数的定义域、值域(最值)和周期性,而对奇偶性、对称性和单调性的探究则放在第二节课。
正弦函数、余弦函数的图象和性质是三角函数里的重要内容,也是高考热点考察的内容之一。
本节课的学习过程中,数形结合的思想方法贯穿了本节内容的始终,利用图像研究性质,反过来再根据性质进一步地认识函数的图象,充分体现了数形结合的数学思想方法。
2.教学目标
根据《新课标》的具体要求,结合学生现有的认知水平,确定教学目标如下:
(1)知识与技能:通过观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题;
(2)过程与方法:培养学生分析、探索、类比和数形结合等数学思想方法在解决问题中的应用能力,培养学生自主探究的能力,深化研究函数性质的思想方法;
(3)情感、态度与价值观:让学生亲身经历数学的研究过程,感受数学的魅力。
3. 教学重点和难点
重点:通过观察正弦、余弦函数的图像研究正弦、余弦函数的性质;
难点:周期函数、最小正周期的意义。
二、学情分析
本课之前,学生已经学习了《必修一》,学习了函数的性质和研究函数的一般方法,学习了正弦函数、余弦函数的概念、图像以及诱导公式,这些都为本节课的学习打好了基础。
函数的定义域、(最值)值域、奇偶性、单调性等性质,学生类比指数函数、对数函数、幂函数的研究方法不难由观察图像得出结论,但对于函数的周期性,学生是第一次接触,对概念的理解可能会有困难。
三、教法学法分析
1.教法分析
本节课以学生为主体,教师引导学生通过观察正弦函数图像,自主探究,总结规律,再类
比正弦函数得到余弦函数的相应结论,并能应用规律分析问题,解决问题。
在教学中以引导启发为主,在学生观察比较的基础上,师生以问答形式共同研究探讨,让学生经历知识再发现、再创造的过程。
2. 学法分析
教师的“教”不仅要让学生“学会知识”,更重要的是要让学生“学会方法”,而正确的学法指导是培养学生这种能力的关键。
本节教学中通过观察函数图象,充分调动学生已有的学习经验,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。
四、教学过程分析
这节课的流程主要分为五个阶段:复习回顾;探究正弦函数的定义域、值域(最值);探究正弦函数的周期性;探究余弦函数的性质;巩固练习。
(一)、复习回顾,引入新知
师:回顾前面学习函数时,是如何研究它的性质?研究它的哪些性质?
生:(预计)先画图,通过观察图象得性质,主要研究函数的定义域、值域、最值、单调性、奇偶性、对称性、定点等
师:本节课我们只研究前三个问题,对其它性质的研究放在下节课。
PPT 展示画正弦函数图像
【设计意图】:通过复习,建立新旧知识间的联系,为通过观察函数图象研究函数性质做好准备,让学生对周期性有个直观的印象,为周期性的出现做好铺垫。
(二)、探究正弦函数的定义域、值域(最值)
师:观察正弦函数的图象,填写下表(学生回答,相互补充,师生一问一答间得出结论) 1(1)sin 1,(2)3sin 2,.
x y x x R y x x R =+∈=-∈例:求下列函数的最大值和最小值,并求出取最大值和最小值时的集合.; 【设计意图】:通过观察函数图像,结合已有知识和方法,学生自己归纳总结正弦函数的性质,培养学生自主探究、研究问题、解决问题的能力。
(三)、探究正弦函数的周期性
师:从正弦函数的作图过程中,我们发现正弦函数值具有“周而复始”的变化规律,这个规律是之前所学函数不具有的,我们用“周期性”来刻画这一规律。
观察正弦函数的图象,发现将
正弦函数图象向左或向右平移2π个单位,图象保持不变,向左或向右平移4π个单位,图象也不变
(给出周期函数、周期的定义)
周期函数定义:一般地,对于函数f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数。
非零常数T 叫做这个函数的周期.
师:正弦函数的周期是多少?(2k π(k ∈Z 且k≠0))
师:概念中有哪些关键词?
(辨析概念) 思考:等式sin()sin 244π
+=π
π是否成立?如果成立,能不能说2π
是y=sinx 的周期?
判断下列说法是否正确:
(2)由诱导公式,所以的周期为2π;sin(2)sin 33x x +π=sin 3x
y =(1)时,则一定不是的周期;3x π=2sin()sin ,3
x x π+≠23π
sin y x =(
)(
)(3)若T(T≠0)是f(x) 的周期,则kT(k ∈Z 且k≠0)一定是f(x) 的周期;(
)
【设计意图】:引导学生关注定义中的关键词,从而加深对数学概念的理解.
例2:求下列函数的周期:
(1) y=3sinx(x ∈R); (2)y=sin2x(x ∈R); (2)y=2sin 1()26x π
-; (x ∈R)
变式练习:sin()(0,0)()y A x A x R =ω+ϕ≠ω≠∈ 结论:2sin(),(0,0)y A x A T π
=ω+ϕ≠ω≠=ω的周期是
【设计意图】:进一步加深对周期函数和周期的理解。
(四)、探究余弦函数的性质
PPT 展示正弦函数的性质(表格形式)
师:请画出余弦函数的图像,类比正弦函数的性质,试探究余弦函数的相关性质。
(学生活动:学生合作学习,得到余弦函数性质,完成表格)
(五)、巩固练习:
1.求下列函数的周期
(1)sin 3,;
(2)3cos ,;41(3)sin(2),;(4)),.1024x y x x R y x R y x x R y x x R ππ=∈=∈=-+∈=--∈ 2.已知函数()y f x =的周期是3,且当[0,3]x ∈时,2()1f x x =+.
(1)求(1),(5),(16);f f f (2)求当[3,6]x ∈时得解析式
(六)、总结回顾,提出课后思考
以问题的形式:本节课主要学习了哪些知识?让学生自己概括出所学内容。
正弦函数、余弦函数性质,周期函数、周期、最小正周期概念
【设计意图】:通过小结,深化学生知识理解、完善学生认知结构。
拓展思考:
1.是不是只有三角函数是周期函数呢?你还能找出其他的周期函数吗?
2.周期函数一定存在最小正周期吗?
1,3.()?0,x D x x ⎧=⎨⎩当是有理数,函数是周期函数吗当是无理数.
作业:
P46 习题1.4 A 组3, 10 B 组1, 3。