三角形易错题集锦(带答案解析)

合集下载

三角形易错题集锦(带答案解析)

三角形易错题集锦(带答案解析)

三角形易错题一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为_________ .2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= _________ cm.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 _________ .4.如图: a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 _________ .5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是 _________ .6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长 l 的取值范围是 _________ .7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= _________ .8.图 1 是一个三角形,分别连接这个三角形三边的中点得到图 2;再分别连接图 2 中间小三角形的中点,得到图 3. (若三角形中含有其它三角形则不记入)(1) 图 2 有 _________ 个三角形;图 3 中有 _________ 个三角形(2)按上面方法继续下去,第 20 个图有 _________ 个三角形;第 n 个图中有 _________ 个三角形. (用 n 的代数式表示结论)9.一个三角形两边长为 5 和 7,且有两边长相等,这个三角形的周长是 _________ .10.两边分别长 4cm 和 10cm 的等腰三角形的周长是 _________ cm.参考答案与试题解析一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为 8 .考点:多边形内角与外角.专题:计算题.分析:根据内角和公式,设该多边形为 n 边形,内角和公式为180°• (n ﹣ 2),因为最小角为100°,又依次增加的度数为10°,则它的最大内角为( 10n+90) °,根据等差数列和的公式列出方程,求解即可.解答:解:设该多边形的边数为 n.则为=180 • (n ﹣ 2),解得 n1=8, n2=9,n=8时,10n+90=10×80+90=170,n=9 时,10n+90=9 × 10+90=180, (不符合题意)故这个多边形为八边形.故答案为: 8.点评:本题结合等差数列考查了凸 n 边形内角和公式.方程思想是解此类多边形有关问题常要用到的思想方法,注意凸 n 边形的内角的范围为大于0°小于180°.2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= 2 或 3 或 2.5 cm.考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:按照 AB 为底边和腰,分类求解.当 AB 为底边时, BC 为腰;当 AB 腰时, BC 为腰或底边.解答:解: (1) 当 AB=3cm 为底边时, BC 为腰,由等腰三角形的性质,得 BC= (8 ﹣ AB) =2.5cm;(2) 当 AB=3cm 为腰时,①若 BC 为腰,则 BC=AB=3cm,②若 BC 为底,则 BC=8 ﹣ 2AB=2cm.故本题答案为: 2 或 3 或 2.5cm.点评:本题考查了等腰三角形的性质,分类讨论思想.关键是明确等腰三角形的三边关系.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 5<x≤ .考点:等腰三角形的性质;三角形三边关系.分析:根据题意以及三角形任意两边之和大于第三边列出不等式组求解即可.解答:解:等腰三角形的底边为 20 ﹣ 2x,根据题意得,,由①得,x≤ ,由②得, x>5,所以,腰长 x 的取值范围是5<x≤ .故答案为: 5<x≤ .点评:本题考查了等腰三角形两腰相等的性质,三角形的三边关系,列出不等式组是解题的关键.4.如图:a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 3 .考点:平行线之间的距离;三角形的面积.分析:过 A 作AD⊥BC 于 D,则 AD 的长就是 a b 之间的距离,根据三角形的面积公式求出 AD 即可.解答:解:过 A 作 AD⊥BC 于 D,∵ 三角形 ABC 的面积为 6, BC=4,:×BC ×AD=6,×4×AD=6,AD=3,∵ a∥ b,:a 与b 的距离是 3,故答案为: 3.点评:本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出 AD 的长.5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是2≤x≤4 .考点:三角形三边关系.分析:小明、小亮家的地理位置有两种情况:(1)小明、小亮家都在学校同侧;(2)小明、小亮家在学校两侧.联立上述两种情况进行求解.解答:解: (1)小明、小亮家都在学校同侧时,x≥2;(2)小明、小亮家在学校两侧时, x≤4.因此 x 的取值为2≤x≤4.点评:本题注意考虑两种不同的情况,能够分析出每一种情况的范围,再进一步综合两种情况的结论.6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长l 的取值范围是 6<l<10 .考点:分析:解答:非负数的性质:算术平方根;非负数的性质:偶次方;三角形三边关系.由,可得 + (b ﹣ 3) 2=0,则 a=2, b=3,可得第三边 c 的取值范围是 1<c<5,从而求得周长 l 的取值范围.解:∵ ,∴ + (b ﹣ 3) 2=0,∴ a=2, b=3,∴ 第三边 c 的取值范围是 1<c<5,∴ △ ABC 周长 l 的取值范围是 6<l<10.故答案为: 6<l<10.点评:此题主要考查了非负数的性质,其中首先灵活应用了非负数的性质,然后利用三角形三边之间的关系,难度中等.7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= 36。

三角形易错题(答案版)

三角形易错题(答案版)

一.折叠问题1.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为5.【分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8﹣x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.【解答】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x,在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,故答案为:5.【点评】本题主要考查折叠的性质,利用折叠的性质得到AE=A1E是解题的关键,注意勾股定理的应用.2.如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则=.【分析】根据等边三角形的性质、相似三角形的性质得到∠AED=∠BDF,根据相似三角形的周长比等于相似比计算即可.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=6,由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,∴∠AED=∠BDF,∴△AED∽△BDF,∴===,∴==,故答案为:.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G =2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.【点评】本题考查了翻折变换的性质,解题的关键是根据等边三角形的判定定理判定等边三角形,难度不大.二.用代数式表示1.如图,在Rt△ABC中,=nM为BC上的一点,连接BM.(1)如图1,若n=1,①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan ∠BHQ的值(用含n的式子表示).【分析】(1)①如图1中,作AK⊥CD交CD的延长线于K.利用全等三角形的性质证明AK=CH,再证明CH=KH,推出AK=KH即可解决问题.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.证明△ADH∽△CDA,推出AD=a,设AM=CM=BM=x,在Rt△CMD中,根据CM2=DM2+CD2,构建方程求出x(用a表示),求出BD即可,再证明sin∠ACK=,推出∠ACK=30°即可解决问题.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.想办法求出AJ,HJ(用n,y表示)即可解决问题.【解答】解:(1)①如图1中,作AK⊥CD交CD的延长线于K.∵CD⊥BM,AK⊥CK,∠ACB=90°,∴∠CHB=∠K=90°,∠CBH+∠BCH=90°,∠BCH+∠ACK=90°,∴∠CBH=∠ACK,∵CB=CA,∴△CHB≌△AKC(AAS),∴AK=CH,∵∠CHM=∠K=90°,∴MH∥AK,∵AM=BM,∴CH=KH,∴AK=KH,∵∠K=90°,∴∠AHD=45°.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵∠AHD=45°,∠AHD=∠ACH+∠CAH,∴∠ACH+∠CAH=∠CAH+∠DAH,∴∠DAH=∠ACD,∵∠ADH=∠CAD,∴△ADH∽△CDA,∴=,∴=,∴AD=a,∵CA=CB,∠ACB=90°,CM⊥AB,∴AM=BM,∴CM=AM=BM,设AM=CM=BM=x,在Rt△CMD中,∵CM2=DM2+CD2,∴x2+(x﹣a)2=4a2,解得x=a(负根已经舍弃).∴BD=AB﹣AD=(+)a﹣a=a,∴==.∵△ADH∽△CDA,∴==,设AH=m,则AC=m,AK=KH=m,∴tan∠ACK==,∴∠ACH=30°,∴∠CAH=∠AHD﹣∠ACH=45°﹣30°=15°.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.∵CH⊥BM,BM===•y,∴CH===•y,∴HM==•y,∵AJ⊥BJ,CH⊥BJ,∴∠J=∠CHM=90°,∵∠AMJ=∠CMH,AM=CM,∴△AMJ≌△CMH(AAS),∴AJ=CH=•y,HM=JM=•y,∵∠BHQ=∠AHJ,∴tan∠BHQ=tan∠AHJ===n.【点评】本题属于三角形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.2.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=45度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【解答】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(AF)2+(EF)2=2AE2,∴EH2+CH2=2AE2.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.3.如图,城关镇某村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为m米,那么这两树在坡面上的距离AB为()A.m cosαB.C.m sinαD.【分析】直接利用锐角三角函数关系得出cosα=,进而得出答案.【解答】解:由题意可得:cosα=,则AB=.故选:B.【点评】此题主要考查了解直角三角形的应用,正确记忆锐角三角函数关系是解题关键.4.已知顶角为α(30°<α<90°)的等腰三角形纸片的腰长和底边长分别为a,b,过三角形其中一个顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.a2+ab+b2=0B.a2﹣ab﹣b2=0C.a2﹣ab+b2=0D.a2+ab﹣b2=0【分析】由等腰三角形的性质可得AB=AC=a,BD=BC=b=AD,∠ABD=∠A,∠BDC =∠C,∠C=∠ABC,通过证明,△ABC~△BDC,可得,即可求解.【解答】解:如图,等腰△ABC,等腰△BDA和等腰△BDC,∴AB=AC=a,BD=BC=b=AD,∠ABD=∠A,∠BDC=∠C,∠C=∠ABC,∴CD=a﹣b,△ABC~△BDC,∴,∴b2=a(a﹣b),∴a2﹣ab﹣b2=0,故选:B.【点评】本题考查了等腰三角形的性质,相似三角形的判定和性质,关键是灵活运用相似三角形的性质.5.已知直角三角形纸片的两条直角边长分别为m和3(m<3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+6m+9=0B.m2﹣6m+9=0C.m2+6m﹣9=0D.m2﹣6m﹣9=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(3﹣m)2,整理即可解答.【解答】解:如图,m2+m2=(3﹣m)2,2m2=32﹣6m+m2,m2+6m﹣9=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.6.如图,在△ABC中,AB=AC,BC=4,E为AC边的中点,线段BE的垂直平分线交边BC于点D,EH垂直BC于点H.设BD=x,EH=y,则()A.2x﹣y2=3B.4x﹣y2=6C.6x﹣y2=9D.8x﹣y2=12【分析】如图,作AM⊥BC于M,连接DE.在Rt△DEH中,利用勾股定理即可解决问题;【解答】解:如图,作AM⊥BC于M,连接DE.∵AB=AC,AM⊥BC,∴BM=CM=2,∵EH⊥BC,∴EH∥AM,∵AE=EC,∴CH=MH=1,∵BD=x,∴DH=4﹣x﹣1=3﹣x,∵线段BE的垂直平分线交边BC于点D,∴DE=BD=x,在Rt△DEH中,DE2=EH2+DH2,∴x2=y2+(3﹣x)2,∴y2=6x﹣9,∴6x﹣y2=9,故选:C.【点评】本题考查等腰三角形的性质、线段的垂直平分线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用勾股定理解决问题,属于中考常考题型.7.如图,在△ABC中,点D在边AB上,且,过点D作DE∥BC交AC于点E,连接BE.若△ADE和△BCE的面积分别为S1和S2,则的值为()A.B.C.D.【分析】由DE∥BC证明△ADE∽ABC,得,,因平行线间的距离相等,即△BDE和△BCE底边DE和BC上的高相等,面积比等于底边比求出,即的值为.【解答】解:设S△ABC的面积为S,如图所示:∵DE∥BC,∴△ADE∽ABC,∴,又∵,AB=AD+BD,∴,又∵S△ADE=S1,∴=,∴,∵.S△BCE=S2,∴,又∵S四边形BCED=S△BDE+S△BCE=,∴,解得:,∴,故选:C.【点评】本题综合考查相似三角形的判定与性质,面积的和差,在等高的两个三角形中,面积比等于底边比等相关知识,本题难度中等,属于中档题.8.如图,在△ABC中,AB=AC,点D在边AB上,DE∥BC,与边AC交于点E,将△ADE 沿着DE所在的直线对折,得到△FDE,连结BF.记△ADE,△BDF的面积分别为S1,S2,若BD>2AD,则下列说法正确的是()A.2S2>3S1B.2S2>5S1C.3S2>7S1D.3S2>8S1【分析】首先证明四边形ADFE是菱形,推出EF∥AB,可得=,由BD>2AD,推出S2>2S1,由此即可判断.【解答】解:∵AB=AC,∴∠ABC=∠C,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∵△DEF是由△ADE翻折得到,∴AD=DF=EF=AE,∴四边形ADFE是菱形,∴EF∥AB,∴=,∵BD>2AD,∴S2>2S1,∴选项A正确故选:A.【点评】本题考查翻折变换,平行线的性质,三角形的面积,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=,求证:AE=DF;(2)如图2,若m=,求的值.【分析】(1)①先判断出△BHE∽△BAC,进而判断出HE=DC,即可得出结论;②先判断出AC=AB,BH=HE,再判断出∠HEA=∠AFD,即可得出结论;(2)先判断出△EGB∽△CAB,进而求出CD:BE=3:5,再判断出∠AFM=∠AEG进而判断出△F AD∽△EGA,即可得出结论.【解答】解:(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH∥CA,∴△BHE∽△BAC,∴,∵,∴,∴,∴HE=DC,∵EH∥DC,∴四边形DHEC是平行四边形;②∵,∠BAC=90°,∴AC=AB,∵,HE=DC,∴HE=DC,∴,∵∠BHE=90°,∴sin B==,∴∠B=45°,∴∠BEH=∠B=45°∴BH=HE,∵HE=DC,∴BH=CD,∴AH=AD,∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°,∴∠HEA=∠AFD,∵∠EHA=∠F AD=90°,∴△HEA≌△AFD,∴AE=DF;(2)如图2,过点E作EG⊥AB于G,∵CA⊥AB,∴EG∥CA,∴△EGB∽△CAB,∴,∴,∵,∴EG=CD,设EG=CD=3x,AC=3y,∴BE=5x,BC=5y,∴BG=4x,AB=4y,∵∠EGA=∠AMF=90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG,∵∠F AD=∠EGA=90°,∴△F AD∽△EGA,∴=【点评】此题是相似形综合题,主要考查了平行四边形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出∠HEA=∠AFD是解本题的关键.10.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.【点评】本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.11.如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S△DAF=y,求y关于x的函数关系式(不需要写函数的定义域);(3)如果AG=8,求DE的长.【分析】(1)求出AC=3,可得∠DAC=∠FBC,则tan∠FBC=tan∠DAC==;(2)由条件可得∠AGF=∠CBF,可得,可用x表示CF和AF的长,求出CD,则S△DAF=,可用x表示结果;(3)分两种情况,①当点D在BC的延长线上时,②当点D在BC的边上时,可求出AE长AD的长,则DE=AD﹣AE可求出.【解答】解:(1)∵∠ACB=90°,BC=4,sin∠ABC=,∴设AC=3x,AB=5x,∴(3x)2+16=(5x)2,∴x=1,即AC=3,∵BE⊥AD,∴∠AEF=90°,∵∠AFE=∠CFB,∴∠DAC=∠FBC,∴tan∠FBC=tan∠DAC==;(2)∵AG∥BD,∴∠AGF=∠CBF,∴tan∠AGF=tan∠CBF,∴,,∴,∴.∴=.∵∠EAF=∠CBF,∴,∴,∴S△DAF==;(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG∥BD,∴,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴,∴,设AE=x,GE=4x,∴x2+16x2=82,解得x=,即AE=.同理tan∠DAC=tan∠CBF,∴,∴DC=,∴AD===.∴=.②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴,∴,同理,∴,∴.∴DE=AE﹣AD=.综合以上可得DE的长为或.【点评】本题是三角形综合题,考查了勾股定理,平行线的性质,三角形的面积,锐角三角函数等知识,熟练掌握锐角三角函数的定义是解题的关键.12.在等边△ABC中,AB=8,点D在边BC上,△ADE为等边三角形,且点E与点D在直线AC的两侧,过点E作EF∥BC,EF与AB、AC分别相交于点F、G.(1)如图,求证:四边形BCEF是平行四边形;(2)设BD=x,FG=y,求y关于x的函数解析式,并写出定义域;(3)如果AD的长为7时,求线段FG的长.【分析】(1)由三角形ABC与三角形ADE都为等边三角形,得到∠BAC=∠DAE=60°,利用等式的性质得到∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS得到三角形ABD 与三角形ACE全等,利用全等三角形的对应角相等得到∠ACE=∠ABC=60°,进而确定出同旁内角互补,得到CE与FB平行,再由EF与BC平行,即可得到四边形BCEF 为平行四边形;(2)由三角形ABD与三角形ACE全等,得到BD=CE,再由四边形BCEF为平行四边形得到BF=CE,等量代换得到BF=BD=x,由FG与BC平行,由平行得比例,即可列出y关于x的函数解析式,求出x的范围得到定义域;(3)过A作AM⊥BC交BC于M,可得M为BC的中点,即BM=CM=4,在直角三角形ABM中,利用勾股定理求出AM的长,而MD=4﹣x,在直角三角形ADM中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,代入(2)的解析式中求出y的值,即为FG的长.【解答】(1)证明:∵△ABC和△ADE是等边三角形,∴∠BAD+∠DAC=∠DAC+∠CAE=60°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=60°,又∵∠ACB=60°,∴∠ABC+∠ACB+∠ACE=180°,即∠ABC+∠BCE=180°,∴AB∥CE,又∵EF∥BC,∴四边形BCEF是平行四边形;(2)解:∵△BAD≌△CAE,∴EC=BD,∵四边形BCEF是平行四边形,∴BF=EC,∴BF=BD=x,又∵AB=8,∴AF=8﹣x,∵FG∥BC,∴∠AFG=∠ABC,∠AGF=∠ACB,∴△AFG∽△ABC,∴=,即=,∴y=8﹣x(0<x<8);(3)解:过A作AM⊥BC交BC于M,可得M为BC的中点,即BM=CM=4,在Rt△ABM中,根据勾股定理得:AM==4,MD=4﹣x,由题意得AD2=AM2+MD2,即48+(4﹣x)2=49,解得:x1=3,x2=5,当x=3时,y=8﹣3=5;当x=5时,y=8﹣5=3,则FG=3或5.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质,等边三角形的性质,平行四边形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.13.△ABC是边长为4的等边三角形,在射线AB和BC上分别有动点P、Q,且AP=CQ,连接PQ交直线AC于点D,作PE⊥AC,垂足为E.(1)如图,当点P在边AB(与点A、B不重合)上,问:①线段PD与线段DQ之间有怎样的大小关系?试证明你的结论.②随着点P、Q的移动,线段DE的长能否确定?若能,求出DE的长;若不能,简要说明理由;(2)当点P在射线AB上,若设AP=x,CD=y,求:①y与x之间的函数关系式,并写出x的取值范围;②当x为何值时,△PCQ的面积与△ABC的面积相等.【分析】(1)①作PG∥BC交AC于G,DH∥AB交BQ于H,推出△DHC,△APG为等边三角形根据三角形全等,求出DP=DQ;②根据AE=EG,GD=DC,即可算出DE =AC;(2)分为两种情况来考虑,当P点在线段AB上或在射线AB上,根据等边三角形的性质和全等三角形的性质找到相等关系,经过等量转换即可求出答案;(3)分两种情况进行分析,当0<x≤4时,无解;当x>4时,结合图形找相等面积的三角形,求出PE的长度,用含x的代数式表示出△PCQ的面积,即可根据题意得出关于x的一元二次方程,解方程,得x的值.【解答】解:(1)证明:①作PG∥BC交AC于G,DH∥AB交BQ于H,∵△ABC是边长为4的等边三角形,∴△DHC,△APG为等边三角形,∵AP=CQ,∴PG=CQ,∠PGC=∠DCQ=120°,∵∠GPD=∠Q,∵△PDG≌△QDC,∴DP=DQ,②能确定,∵PE⊥AC,∴AE=EG,∵GD=DC,AB=BC=AC=4,∴GD+EG+AE+DC=4,∵2(GD+EG)=4,即DE=2;(2)①∵PD=DQ,DH∥AB,AP=x,CD=y,∴DH=BP,∵AB=4,∴BP=4﹣x或BP=x﹣4,∴y=(4﹣x)=2﹣x(0<x≤4)或y=x﹣2(x>4),②当0<x≤4时,无解,当x>4时,∵PE⊥AC,∠A=60°AP=x,∴PE=sin60°×x=x,∵AB=BC=AC=4,∴S△ABC=4,∵PD=DQ,∴结合图形可知S△PCQ=2S△PDC=2×,∴2×=4,∴(x﹣2)×x=4,化简得:x2﹣4x﹣16=0,解得:x1=2﹣2(不符合题意,舍去)x2=2+2,∴x=2+2,∴当x=2+2时,△PCQ的面积与△ABC的面积相等.【点评】本题主要考查等边三角形的性质、全等三角形的判定及性质、根据实际问题列一次函数关系式等,本题关键在于作出辅助线,找出等量关系。

2022年最新人教版小学数学四年级下册三角形易错习题总结(带答案)

2022年最新人教版小学数学四年级下册三角形易错习题总结(带答案)

四年级下册三角形易错题一、填空题1. 一个三角形一个内角的度数是100°, 这个三角形是三角形, 一个等腰三角形的底角是65°, 顶角是, 等边三角形的每个内角都是。

2. 等腰三角形的两条边分别是3cm和7cm, 那么第三条边是cm。

3.在一个三角形中, ∠1=72°, ∠2=48°, ∠3=;在一个等腰三角形中, 一个底角是36°, 顶角是。

4. 一个直角三角形, 其中一个锐角是45°, 它又是三角形。

5.如图, ∠1= °.6. 一根绳子正好围成一个长23米、宽22米的长方形, 如果改围成一个等边三角形, 那么这个等边三角形的边长是米。

7. 板凳腿之间加一根斜木条固定是利用了三角形的特性, 伸缩门是利用了平行四边形的特性。

8. 两点之间的所有连线中, 最短。

9.一个等腰三角形的一个底角是45度, 它的顶角是度, 这个三角形按角分是三角形。

10. 如果三角形的两边分别是4cm和5cm, 那么第三条边可能是cm。

11. 在等腰三角形中, 其中一个角是100°, 则另外两个角分别是°和°, 这是一个三角形。

(填“锐角”“钝角”或“直角”)12. 三角形有条高, 平行四边形有条高, 梯形有条高。

13. 三角形最多有个锐角, 最多有个直角, 最多有个钝角。

14.如果一个三角形的三条边都是整厘米数, 其中两条边分别是10cm和4cm, 另外一条边最小是cm。

15. 一个等腰三角形的两条边分别是9厘米和4厘米, 另一条边是厘米。

16.用3厘米, 8厘米和第三根小棒首尾相连组成三角形, 这第三根小棒最小是厘米, 最大是厘米.(都是整厘米长)17. 三角形按角分类分为三角形、三角形和三角形.18. 一个三角形的三个内角分别是∠A, ∠B, ∠C。

∠A的度数是∠B的2倍, ∠C的度数是∠B的3倍, 这是一个三角形。

(完整word版)三角形易错题(经典自己整理)

(完整word版)三角形易错题(经典自己整理)

1、如图12,在Rt ABC ∆中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的点A 处,折痕为CD ,则∠A DB 的度数为( )A40° B30°C20° D10°2、如图,D 是线段AB 、BC 垂直平分线的交点,若∠ABC =150°,则∠ADC 的大小是( )A 60° B70° C75° D80°3、如图,已知ABC ∆中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 于点E 、F ,给出下列四个结论:1、AE =CF ;2、∆EPF 是等腰直角三角形;3、EF =AP; 4 、 S 四边形AEPF =21abc s ∆当∠EPF 在ABC ∆内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中正确的有( ) A 1 2 3 4 B 1 2 3 C 1 2 4 D2 3 44、已知A (m-1,3)与点B (2,n+1)关于X 的对称轴,则点P (m,n )的坐标为( ) 在ABC ∆中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50度,则∠B等于( )5、如图,在ABC ∆中,ADBC ⊥于D。

请你再添一个条件,就可以确定ABC ∆是等腰三角形。

你添加的条件是( )在线段,直线,射线,角,三角形,不一定是轴对称图形是( )6、如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a b相交点A(3,4),连接OA,若在直线a上存点P,使ABC ∆是等腰三角形。

那么所满足的条件的点P的坐标是( )7、如图是一块三角形的蛋糕,请将这块蛋糕平均分成两块以便分给小丽和小娜享用,并说明理由。

8、如图,AD是∆ABC的一条角平分线,∠B=2∠C。

试判断线段AB、AC、BD 之间的数量关系,并说明理由。

初中数学三角形易错题汇编含答案

初中数学三角形易错题汇编含答案
C.不能判定△ABC≌△AED,故C符合题意.
D.∵AB=AE,∠BAC=∠EAD,AC=AD,∴△ABC≌△AED(SAS),故D不符合题意.
故选C.
12.如图,在菱形 中,点 在 轴上,点 的坐标轴为 ,点 的坐标为 ,则菱形 的周长等于()
A. B. C. D.
【答案】C
【解析】
【分析】
如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD的周长.
3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是( )
A.4B.3C.6D.2
【答案】B
【解析】
【分析】
首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.
【详解】
解:AD是△ABC中∠BAC的平分线,
【详解】
在Rt△ABC中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
D、72+202≠252,242+152≠252,故D不正确,
故选C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.

(易错题)小学数学四年级下册第五单元三角形检测(答案解析)

(易错题)小学数学四年级下册第五单元三角形检测(答案解析)

(易错题)小学数学四年级下册第五单元三角形检测(答案解析)一、选择题1.等边三角形不可能是()三角形。

A. 锐角B. 等腰C. 钝角2.已知三角形的两条边长分别为1.6厘米和1.2厘米,第三条边可能长()。

A. 0.4厘米B. 2.8厘米C. 2厘米3.用3个小三角形拼成一个大三角形,这个大三角形的内角和是()度。

A. 540B. 180C. 3604.王强用一根6cm长的小棒和2根2cm长的小棒围三角形,结果发现()。

A. 围成一个等边三角形B. 围成一个等腰三角形C. 围不成三角形5.下图中,线段BC=6厘米,那么线段BA的长度()A. 大于6厘米B. 等于6厘米C. 小于6厘米D. 无法确定6.下面()是三角尺中的度数。

A. 35°,65°B. 70°,20°C. 30°,60°D. 90°,110°7.根据下列描述,一定是锐角三角形的是()。

A. 有一个内角是85°的三角形B. 有两个内角都是锐角的三角形C. 其中最大的内角小于90°D. 等腰三角形8.能组成三角形的一组线段是()。

A. 6cm,5cm,11cmB. 3cm,4cm,6cmC. 4cm,2cm,1cm9.三角板上最大的角是()。

A. 锐角B. 直角C. 钝角D. 平角10.下列各线段,不能围成三角形的是()A. 6cm 6cm 6cmB. 7cm 4cm 4cmC. 2cm 4cm 6cm11.一个三角形的三个内角分别是∠1、∠2和∠3,已知∠2的度数是∠1的2倍,∠3的度数是∠1的3倍,这是一个()三角形。

A. 直角B. 钝角C. 锐角12.下面小棒不能围成三角形的是()A. 4cm、5cm、8cmB. 3cm、3cm、6cmC. 6cm、9cm、12cm二、填空题13.________三角形的两个锐角的和一定小于90°。

解直角三角形易错题型(带答案)

解直角三角形易错题型(带答案)

解直角三角形易错题【基础题型】一、选择题1. 在△ABC 中,∠C=90°,下列等式不正确的是( )A. sin 2A+cos 2=1B. sin 2(90°- A )+ cos 2(90°- A )=1C. C.sin (60°- A )=cos (30°+ A )D. tanA · cotA=12. 已知α为锐角,且cos (α-10°)=23,则α等于( ) A.20° B.40° C.60° D.80°3. 如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AC=3,AB=5,则tan ∠BCD 等于( )A. 43B.34C.53D.544. 在△ABC 中,∠C=90°,斜边AB=m ,∠B=40°,则直角边BC 的长是( )A. msin40°B.msin50°C.mtan40°D.tan40m5. Rt △ABC 中,∠C=90°,两直角边长分别为6,8,现将△ABC 按如图所示方式折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A. 724B.37C.247D.316. 如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的的仰角为60°,则物体AB 的高度为( )A.103米B.10米C.20米D.203米7. 如图,已知楼房AB 高为50米,铁塔塔基距楼房的水平距离BD 为100米,塔高CD 为31503100 m ,则下面结论正确的是( )A. 由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°B. 由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30°8. 以下对坡度的描述正确的是( )A. 坡度是指斜坡与水平线夹角的度数B. 坡度是指斜坡的铅直高度与水平宽度的比C. 坡度是指斜坡的水平宽度与铅直高度的比D. 坡度是指倾斜的角度二、填空题1. 在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,如果CD=4,BD=3,则∠A 的正弦值是 .2. 如图,在Rt △ABC 中,∠CAB=90°,AD 是∠CAB 的平分线,tanB=21,则CD:DB= .3. 在坡度为1:1.5的山坡上植树,要求相邻两树之间的水平距离为6m ,则斜坡上相邻两树的坡面距离为 .4. 如图,在高2m ,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要 m.三、解答题1.甲,乙两名同学在计算锐角A 的正弦值时,甲的答案为sinA=107,乙的答案为sinA=1013.请你不看解答过程,迅速判断哪名同学的答案一定是错误的,并说明理由。

(易错题精选)初中数学三角形真题汇编附答案

(易错题精选)初中数学三角形真题汇编附答案

(易错题精选)初中数学三角形真题汇编附答案一、选择题1.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22'+=22BC BD+=5.故选B.342.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65°B.95°C.45°D.85°【答案】B【解析】【分析】根据OA=OB,OC=OD证明△ODB≌△OCA,得到∠OAC=∠OBD,再根据∠O=50°,∠D=35°即可得答案.【详解】解:OA =OB ,OC =OD ,在△ODB 和△OCA 中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩∴△ODB ≌△OCA (SAS ),∠OAC=∠OBD=180°-50°-35°=95°,故B 为答案.【点睛】本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.3.如图,在△ABC 中,AC =BC ,D 、E 分别是AB 、AC 上一点,且AD =AE ,连接DE 并延长交BC 的延长线于点F ,若DF =BD ,则∠A 的度数为( )A .30B .36C .45D .72【答案】B【解析】【分析】 由CA=CB ,可以设∠A=∠B=x .想办法构建方程即可解决问题;【详解】解:∵CA=CB ,∴∠A=∠B ,设∠A=∠B=x .∵DF=DB ,∴∠B=∠F=x ,∵AD=AE ,∴∠ADE=∠AED=∠B+∠F=2x ,∴x+2x+2x=180°,∴x=36°,故选B .【点睛】本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =3OD = ∴2221OA AD OD += ∴21OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.5.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm【答案】D【解析】【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确.故选D .6.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.7.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C .2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,2OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.8.图中的三角形被木板遮住了一部分,这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能【答案】D【解析】 从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D .9.如图,已知△ABC 是等腰直角三角形,∠A =90°,BD 是∠ABC 的平分线,DE ⊥BC 于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【答案】B【解析】【分析】根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.4,1, 点D的坐标为10.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()()0,1,则菱形ABCD的周长等于()A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.11.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【答案】D【解析】 解:∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC =EF ,利用SAS 可得△ABC ≌△DEF ;∴添加∠ACB =∠F ,利用AAS 可得△ABC ≌△DEF ;故选D .点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.12.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .14.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠= 【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠AB 2,故△ABC 不是直角三角形; B.若13BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;故答案为:C .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.15.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 利用垂直的定义得到90DAB EAC ∠=∠=︒,则ADC BAE ∠=∠,于是可对①进行判断;利用“SAS ”可证明DAC BAE ∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE ∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB ∠=∠=︒,于是可对③进行判断.【详解】解:AD AB ⊥Q ,AE AC ⊥,90DAB ∴∠=︒,90EAC ∠=︒,DAB BAC EAC BAC ∴∠+=∠+∠,即ADC BAE ∠=∠,所以①正确;在DAC ∆和BAE ∆中,DA AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,所以②正确;ADC ABE ∴∠=∠,∵∠AFD=∠MFB ,90DMB DAB ∴∠=∠=︒,DC BE ∴⊥,所以③正确.故选:D .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.16.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于12DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定...是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF【答案】A【解析】【分析】根据作图过程和等腰三角形的定义进行分析即可.【详解】由作图过程可得:CD=CD,DF=EF,CD=CK所以,是等腰三角形的有△CDK,△CDE,△DEF;△CDF不一定是等腰三角形.故选:A【点睛】考核知识点:等腰三角形.理解等腰三角形的定义是关键.17.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.18.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.19.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为( )A.30°B.45°C.36°D.72°【答案】A【解析】∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD,又∵∠BDC=∠A+∠ABD,∴∠BDC=∠C=∠ABC=2∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,即5∠A=180°,∴∠A=36°.故选A.20.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【答案】B【解析】【分析】 根据正方形的性质得到∠DAC =∠ACD =45°,由四边形EFGH 是正方形,推出△AEF 与△DFH 是等腰直角三角形,于是得到DE =22EH =22EF ,EF =22AE ,即可得到结论. 【详解】解:∵在正方形ABCD 中,∠D =90°,AD =CD =AB ,∴∠DAC =∠DCA =45°,∵四边形EFGH 为正方形,∴EH =EF ,∠AFE =∠FEH =90°,∴∠AEF =∠DEH =45°,∴AF =EF ,DE =DH ,∵在Rt △AEF 中,AF 2+EF 2=AE 2,∴AF =EF =22AE , 同理可得:DH =DE =22EH 又∵EH =EF ,∴DE =2EF =2×2AE =12AE , ∵AD =AB =6,∴DE =2,AE =4,∴EH DE =,∴EFGH 的面积为EH 2=()2=8,故选:B .【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形易错题
一、填空题(共10小题)(除非特别说明,请填准确值)
1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为
_________.
2.等腰三角形ABC的周长是8cm,AB=3cm,则BC=_________cm.
3.等腰三角形的周长为20cm,若腰不大于底边,则腰长x的取值范围是_________.
4.如图:a∥b,BC=4,若三角形ABC的面积为6,则a与b的距离是_________.

5.小亮家离学校1千米,小明家离学校3千米,如果小亮家与小明家相距x千米,那么x的取值范围是_________.
6.已知△ABC两边长a,b满足,则△ABC周长l的取值范围是_________.7.若等腰△ABC(AB=AC),能用一刀剪成两个等腰三角形,则∠A=_________.
8.图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)

(1)图2有_________个三角形;图3中有_________个三角形
(2)按上面方法继续下去,第20个图有_________个三角形;第n个图中有_________个三角形.(用n的代数式表示结论)
9.一个三角形两边长为5和7,且有两边长相等,这个三角形的周长是_________.
10.两边分别长4cm和10cm的等腰三角形的周长是_________cm.
参考答案与试题解析

一、填空题(共10小题)(除非特别说明,请填准确值)
1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为8.
考点:多边形内角与外角.
专题:计算题.
分析:根据内角和公式,设该多边形为n边形,内角和公式为180°•(n﹣2),因为最小角为100°,又依次增加的度数为10°,则它的最大内角为(10n+90)°,根据等差数列和的公式列出方程,求解即可.
解答:…
解:设该多边形的边数为n.
则为=180•(n﹣2),
解得n1=8,n2=9,
n=8时,10n+90=10×80+90=170,
n=9时,10n+90=9×10+90=180,(不符合题意)
故这个多边形为八边形.
故答案为:8.
点评:本题结合等差数列考查了凸n边形内角和公式.方程思想是解此类多边形有关问题常要用到的思想方法,注意凸n边形的内角的范围为大于0°小于180°.
%
2.等腰三角形ABC的周长是8cm,AB=3cm,则BC=2或3或cm.
考点:等腰三角形的性质;三角形三边关系.
专题:计算题.
分析:按照AB为底边和腰,分类求解.当AB为底边时,BC为腰;当AB腰时,BC为腰或底边.
解答:解:(1)当AB=3cm为底边时,BC为腰,

由等腰三角形的性质,得BC=(8﹣AB)=;
(2)当AB=3cm为腰时,
①若BC为腰,则BC=AB=3cm,
②若BC为底,则BC=8﹣2AB=2cm.
故本题答案为:2或3或.
点评:本题考查了等腰三角形的性质,分类讨论思想.关键是明确等腰三角形的三边关系.
3.等腰三角形的周长为20cm,若腰不大于底边,则腰长x的取值范围是5<x≤.
等腰三角形的性质;三角形三边关系.

考点:
分析:根据题意以及三角形任意两边之和大于第三边列出不等式组求解即可.
解答:解:等腰三角形的底边为20﹣2x,
根据题意得,,
由①得,x≤,
由②得,x>5,
所以,腰长x的取值范围是5<x≤.

故答案为:5<x≤.
点评:本题考查了等腰三角形两腰相等的性质,三角形的三边关系,列出不等式组是解题的关键.
的距离是3.
4.如图:a∥b,BC=4,若三角形ABC的面积为6,则a与b
考点:平行线之间的距离;三角形的面积.
分析:)
过A作AD⊥BC于D,则AD的长就是a b之间的距离,根据三角形的面积公式求出AD即可.解答:
解:
过A作AD⊥BC于D,
∵三角形ABC的面积为6,BC=4,
∴×BC×AD=6,
×4×AD=6,
AD=3,
∵a∥b,
∴a与b的距离是3,
[
故答案为:3.
点评:本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出AD的长.
5.小亮家离学校1千米,小明家离学校3千米,如果小亮家与小明家相距x千米,那么x的取值范围是2≤x≤4.
考点:三角形三边关系.
分析:小明、小亮家的地理位置有两种情况:
-
(1)小明、小亮家都在学校同侧;
(2)小明、小亮家在学校两侧.
联立上述两种情况进行求解.
解答:解:(1)小明、小亮家都在学校同侧时,x≥2;
(2)小明、小亮家在学校两侧时,x≤4.
因此x的取值为2≤x≤4.
点评:本题注意考虑两种不同的情况,能够分析出每一种情况的范围,再进一步综合两种情况的结论.?
6.已知△ABC两边长a,b满足,则△ABC周长l的取值范围是6<l<10.
考点:非负数的性质:算术平方根;非负数的性质:偶次方;三角形三边关系.
分析:
由,可得+(b﹣3)2=0,则a=2,b=3,可得第三边c的取值范围是1<c<5,从而求得周长l的取值范围.
解答:
解:∵,
∴+(b﹣3)2=0,
∴a=2,b=3,
·
∴第三边c的取值范围是1<c<5,
∴△ABC周长l的取值范围是6<l<10.
故答案为:6<l<10.
点评:此题主要考查了非负数的性质,其中首先灵活应用了非负数的性质,然后利用三角形三边之间的关系,难度中等.
7.若等腰△ABC(AB=AC),能用一刀剪成两个等腰三角形,则∠A=36°或90°或108°.
考点:等腰三角形的性质;三角形内角和定理.
题中只说是等腰三角形,没有指明该等腰三角形的形状,故应该分三种情况进行分析.
>
分析:
解答:解:(1)当顶角为锐角时,
①∵剪后AB=AC,AD=BD=BC,∠C=∠ABC=∠BDC=2∠A.
∴∠A+∠C+∠ABC=5∠A=180°
∴∠A=36°
②当AB=AC,AD=BD,BC=CD时
可求出∠A=;
(
(2)当顶角为钝角时,
∵剪后AB=AC,AC=CD,BD=AD,∠C=∠B=∠BAD=∠ADC=∠DAC
∴∠B+∠C+∠BAD+∠DAC=5∠C=180°
∴∠C=36°
∴∠BAC=108°
(3)当顶角为直角时,
∵剪后AB=AC,CD=AD=BD,∠B=∠C=∠CAD=∠BAD=45°
∴∠CAB=90°
所以填∠A为36°、或90°或108°.

点评:本题考查了等腰三角形的性质及三角形内角和定理;分情况讨论的正确应用时解答本题的关键.
8.图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)
(1)图2有5个三角形;图3中有9个三角形
(2)按上面方法继续下去,第20个图有77个三角形;第n个图中有(4n﹣3)个三角形.(用n的代数式表示结论)
考点:/
三角形.
专题:规律型.
分析:正确数一下(2)(3)中,三角形的个数,可以得到(3)比(2)增加了4个三角形,同理(4)
比(3)增加了4个三角形,依此类推即可求解.
解答:解:(1)图2有5个三角形;图3中有9个三角形;
(2)按上面方法继续下去,可以得到(4)比(3)增加了4个三角形,
依此类推,第20个图有1+(20﹣1)×4=77个三角形;第n个图中有4(n﹣1)+1=4n﹣3个三角形.
点评:…
正确观察图形得到规律是解决本题的关键,解决这类题的方法是根据题目的叙述,求出几个图形中三角形的个数,从而求出规律.
9.一个三角形两边长为5和7,且有两边长相等,这个三角形的周长是17或19.
考点:三角形三边关系.
分析:腰长为5时,得到三条线段;腰长为7时,得到三条线段.若较短的两边条线段之和大于最长的一条线段,那么能组成三角形,让三边相加即可.
解答:解:当腰长为5时,三角形的三边分别为5,5,7,5+5=10>7,能组成三角形,此三角形的周长为5+5+7=17;。

当腰长为7时,三角形的三边分别为7,7,5,5+7>7,能组成三角形,∴此三角形的周长为7+7+5=19.
∴这个三角形的周长是17或19.
点评:用到的知识点为:等腰三角形的周长由2腰和一底边长构成,两腰相等;3条线段组成三角形的条件为:较短的两条边线段之和大于最长的一条线段.
10.两边分别长4cm和10cm的等腰三角形的周长是24cm.
考点:等腰三角形的性质;三角形三边关系.
专题:分类讨论.
分析:题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.
解答:解:当4cm是腰时,4+4<10cm,不符合三角形三边关系,故舍去;
当10cm是腰时,周长=10+10+4=24cm
故该三角形的周长为24cm
故填24.
点评:此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.。

相关文档
最新文档