八上数学每日一练:关于坐标轴对称的点的坐标特征练习题及答案_2020年解答题版
初二数学轴对称练习题及答案

初二数学轴对称练习题及答案轴对称是初中数学中的一个重要概念,它在几何图形的研究中具有广泛的应用。
本文将为大家提供一些初二数学轴对称的练习题及答案,帮助同学们更好地理解和掌握这个知识点。
1. 练习题一在平面上,画出图形ABC,其中AB=3 cm,BC=4 cm,AC=5 cm。
找出图形的对称中心,并标出。
解答:首先,根据给定条件画出图形ABC。
由题目可知,三角形ABC是一个直角三角形,其中∠ABC=90°。
以边AC为轴,将三角形沿中点F对折,使得点B和B'重合。
连接BB',则BB'即为轴对称线,其交点F即为图形ABC的对称中心。
2. 练习题二如图所示,J、K、L、M是矩形ABCD的四个顶点,N是JL的中点,P是KN的中点,连接BM和CP,交于点O。
证明:BO=OC。
解答:根据题目所给条件,我们可以先证明三角形MBN与三角形PCO全等。
首先,由矩形ABCD的性质可知,AD∥BC,故∠NBC=∠BAN=90°。
其次,由题目可知,N是JL的中点,所以NJ=NL,结合矩形的性质可得∠NJL=∠NLF=90°,因此NFBJ是一个矩形。
同理,NEDK也是一个矩形。
由于FB=EK,NJ=NL,所以根据余角定理可知∠NBF=∠NEK。
再根据SSS全等定理,得到三角形MBN与三角形PCO全等,因此MB=PC。
又因为M和P分别是BC和KN的中点,故MB=BC/2,PC=KN/2。
所以BC/2=KN/2,即BC=KN。
由于BO和OC分别是BM和CP的中线,所以BO=BM/2,OC=CP/2。
综上所述,BO=OC。
3. 练习题三已知矩形EFGH中,AB=8 cm,BC=6 cm。
在边AB和BC上分别取两个等分点D和I,并连接DI。
求证:DI垂直于FG。
解答:根据题目中所给条件,我们可以先证明三角形GBD与三角形ACI全等。
首先,由矩形EFGH的性质可知,EF∥GH,所以∠FGB=∠AGH=90°。
人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。
初中数学八年级上册轴对称练习题含答案

初中数学八年级上册轴对称练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,球沿图中箭头方向击出后碰到桌子的边缘会反弹,其中∠1叫做入射角,∠2叫做反射线,如果每次的入射角总是等于反射角,那么球最后将落入桌子四个顶角处的球袋中的()A.A号袋B.B号袋C.C号袋D.D号袋2. 下面4个图案,其中是轴对称图形的有()A.4个B.3个C.2个D.1个3. 小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是( )A. B. C. D.4. 下列图案不是轴对称图形的是( )A. B.C. D.5. 从镜子中看到钟的时间是8点25分,正确的时间应是()A.3点45分B.3点35分C.3点30分D.3点25分6. 如图,已知∠AOB=30∘,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点P1,P2,连接OP1,OP2,P1P2,设P1P2交OA于点M,交OB于点N,连接PM,PN.若PM=1,PN=2,MN=3,则OP1的长为()A.4B.5C.6D.77. 一辆汽车车牌如图所示,则在正面看它在马路上水中的倒影为()A.B.C.D.8. 到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点9. 如图,在△ABC 中,∠B =70∘,DE 是AC 的垂直平分线,且∠BAD:∠BAC =1:3,则∠C 的度数为( )A.48∘B.3307º C.46∘D.44∘10. 如图,△ABC 与△A′B′C′关于直线L 成轴对称,则下列结论中错误的是( )A.AB =A′B′B.∠B =∠B′C.AB // A′C′D.直线L 垂直平分线段AA′11. 在平面直角坐标系xOy 中,已知点A(0, 8),点B(6, 8),若点P 同时满足下列条件:①点P 到A ,B 两点的距离相等;②点P 到∠xOy 的两边距离相等.则点P 的坐标为________.12. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =3.1cm ,CD=2.3cm.则四边形ABCD的周长为________.13. 证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等..已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平分线上的一点,∴ ________=________(________).同理可得,PB=________.∴ ________=________(等量代换).∴ ________(到一条线段两个端点距离相等的点,在这条线段的________)∴AB、BC、AC的垂直平分线相交于点P,且________.14. 如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为________度.15. 如图,已知CD垂直平分AB.若AC=4, AD=5,则四边形ADBC的周长是________.AB的长为半径作弧,两弧相16. 如图,已知线段AB,分别以点A和点B为圆心,大于12交于C,D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=________.17. 如图,中,AB的垂直平分线交AC于点M,若,,,则的周长为________cm.18. 如图,在△ABC中,AB=AC, DE是AB的垂直平分线,△BCE的周长为24, BC=10则AB的长为________19. 如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点________.(P1至P4点)20. 如图,在▱ABCD中,按如下顺序作图:①以点A为圆心,AD长为半径画弧,交AB于点F;DF长为半径画弧,两弧交于点G;②分别以点D,点F为圆心,大于12③连接DF,作射线AG,交DC于点E.则四边形ADEF是________形;若AD=5,DF=6,则AE=________.21. 如图,已知:△ABC中,试说明:(1)用尺规作图作出边AB、BC的垂直平分线并相交于点P(要求:不写作法,保留作图痕迹)(2)求证:P在AC的垂直平分线上.22. 如图,在△ABC中,AB>AC.(1)用尺规作图法在AB上找一点P,使得PB=PC.(保留作图痕迹,不用写作法);(2)在(1)的条件下,连结PC,若AB=6,AC=4,求△APC的周长.23. 如图是由三个相同的小正方形组成的图形,请你用三种方法在图中补画一个相同的小正方形,使补画后的四个小正方形所组成图形为轴对称图形.24. 如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入哪一个球袋?说明理由.25. 如图,△ABC中,∠BAC=110∘,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.26. 如图,P为∠AOB内的一点,分别作出点P关于OA、OB的对称点P1、P2,连结P1、P2,交OA于M,交OB于N,若P1P2=13cm,求△MNP的周长?27. 如图,已知△ABC≅△DEF,且A,B,D,E四点在同一直线上,(1)如图1,请你用无刻度的直尺作出线段BE的垂直平分线;(2)如图2,请你用无刻度的直尺作出线段AD的垂直平分线.28. 如图,下面是一些交通标志,你能从中获得哪些信息?29. 已知:直线a1,a2垂直相交于O,于两直线外一点P,求作点P关于直线a1的对称点P′,点P关于直线a2的对称点P″,试证明:OP′=OP″.30. 两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.31. 已知:如图,在Rt△ABC中,∠C=90∘,∠B=30∘,AD平分∠BAC交BC于点D.(1)求证:点D在AB的垂直平分线上;(2)若CD=2,求BC的长.32. 如图,在△ABC中,DE是BC的垂直平分线,垂足为点E,交AB于点D,若CE=5,△ABC的周长为25,求△ADC的周长.33. 如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30∘,求∠MAN的度数;(3)若∠MON=45∘,BM=3,BC=12,求MN的长度.34. 如图,△ABC的周长为20cm,AC的垂直平分线DE交BC于D,E为垂足,若AE= 4cm,△ABD的周长为________cm.35. 指出下列图形中的轴对称图形,并找出它们的对称轴.36. 如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.37. 如图,已知:在△ABC中,AB,BC边上的垂直平分线相交于点P,求证:点P在AC的垂直平分线上.38. 如图所示,已知AB=AC,DB=DC,E是AD延长线上的一点,问:BE与CE相等吗?请说明理由.39. 搜集各国的国旗标志,举出5个以上具有轴对称图形的标志,并画出它们所有的对称轴.40. 指出下列图形中的轴对称图形,是轴对称图形的指出对称轴.参考答案与试题解析初中数学八年级上册轴对称练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】生活中的轴对称现象【解析】根据图形画出图示可直接得到答案.【解答】解:如图所示:球最后将落入桌子四个顶角处的球袋中的C号袋中,故选:C.2.【答案】B【考点】轴对称图形【解析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,观察可知前三个是轴对称图形,第四个不是轴对称图形.故选B.3.【答案】D【考点】镜面对称【解析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左右翻折,即可得到原图象,实际时间为8点的时针关于过12时,6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,而D更接近8点.【答案】A【考点】轴对称图形【解析】此题暂无解析【解答】解:由题A是中心对称图形不是轴对称图形,BCD是轴对称图形.故选A.5.【答案】B【考点】镜面对称【解析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻8点25分与3点35分成轴对称,所以此时实际时刻为3点35分.故选B.6.【答案】【考点】轴对称的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】镜面对称【解析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的图片与A显示的图片成轴对称,所以在正面看它在马路上水中的倒影为A显示的图片.故选A.8.【答案】D【考点】根据:垂直平分线上任意一点,到线段两端点的距离相等.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【解答】到线段两个端点距离相等的点在该线段的垂直平分线上,由此可得出要到三角形三个顶点的距离相等的交点是三条边的垂直平分线的交点.故选:D9.【答案】D【考点】线段垂直平分线的性质【解析】由DE垂直平分AC可得∠DAC=∠DCA;∠ADB是△ACD的外角,故∠DAC+∠DCA=∠ADB又因为∠B=70∘⇒∠BAD=180∘−∠B−∠BAD,由此可求得角度数.【解答】解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x−x=2x,根据题意得:180∘−(x+70∘)=2x+2x,解得x=22∘,∴∠C=∠DAC=22∘×2=44∘.故选:D.10.【答案】C【考点】线段的垂直平分线的性质定理的逆定理轴对称的性质线段垂直平分线的性质【解析】利用轴对称的性质对各选项进行判断.【解答】解:∵△ABC与△A′B′C′关于直线L成轴对称,∴AB=A′B′,∠B=∠B′,直线l垂直平分AA′.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】(3,3)【考点】线段垂直平分线的定义角平分线的定义【解析】性质解答即可.【解答】解:∵点A(0, 8),点B(6, 8),点P到A,B两点的距离相等,∴点P在线段AB的垂直平分线x=3上.∵点P到∠xOy的两边距离相等,∴点P在∠xOy的平分线上,∴点P的坐标为(3, 3).故答案为:(3,3).12.【答案】10.8cm【考点】轴对称的性质【解析】根据轴对称图形的性质得出AB=BC=3.1cm,CD=AD=2.3cm,进而求出即可.【解答】解:∵四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=3.1cm,CD=2.3cm,∴AB=BC=3.1cm,CD=AD=2.3cm,则四边形ABCD的周长为:3.1+3.1+2.3+2.3=10.8(cm).故答案为:10.8cm.13.【答案】解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据线段垂直平分线的性质定理和逆定理即可解答本题.解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.14.【答案】100【考点】轴对称的性质【解析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=30∘,∴∠B=180∘−∠A−∠C=180∘−50∘−30∘=100∘.故答案为:100.15.【答案】18【考点】线段垂直平分线的性质【解析】此题主要考查线段的垂直平分线的性质.【解答】解:∵CD垂直平分AB,若AC=4,AD=5,∴AC=BC=4,AD=BD=5,∴四边形ADBC的周长为AD+AC+BD+BC=18.故答案为:18.16.【答案】5线段垂直平分线的性质作线段的垂直平分线【解析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.【解答】解:由题意得,直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为:5.17.【答案】12【考点】线段垂直平分线的性质【解析】根据线段垂直平分线的性质可得BM=AM=4cm,然后可得△MBC的周长.【解答】:AB的垂直平分线交AC于点M,BM=AM=4cmCM=3cm,BC=5cm∴△MBC的周长为:4+3+5=12(cm)故答案为:12.18.【答案】14【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据“线段垂直平分线的性质定理”即可得到AE=EE,由于△BCE的周长为24,利用线段的等量代换即可得到|AC+BC的值;已知BC的长度,即可得到AC的长度,由于AB=AC,则问题得解.【解答】∼DE是AB的垂直平分线,AE=EE.△BCE的周长为24,BC+BE+CE=BC+AE+CE=BC+AC=24BC=10AC=14.AB=ACAB=1A【答案】P2【考点】生活中的轴对称现象【解析】认真读题,作出点A关于P1P2所在直线的对称点A′,连接A′B与P1P2的交点即为应瞄准的点.【解答】如图,应瞄准球台边上的点P2.20.【答案】菱,8【考点】作线段的垂直平分线菱形的判定与性质【解析】此题暂无解析【解答】解:由①可知,AD=AF,由②可知,GD=GF,所以AE为线段DF的垂直平分线,则DE=EF,设AE与DF交于点O,∵ DE//AF,∴ ∠DEA=∠FAE.在△DOE和△FOA中,{∠DEA=∠FAE,DO=OF,∠DOE=∠FOA,∴ △DOE≅△FOA,∴ DE=AF,∴ 四边形ADEF是菱形;∵ AD=5,DF=6,∴ DO=3,∴ AO=√AD2−DO2=4,∴ AE=8.故答案为:菱;8.三、解答题(本题共计 20 小题,每题 10 分,共计200分)(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.【考点】线段的垂直平分线的性质定理的逆定理作线段的垂直平分线线段垂直平分线的性质【解析】(1)根据垂直平分线的作法得出即可;(2)可用作圆的方法作出线段AB、BC的垂直平分线;因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA=PB=PC 即可.【解答】(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.22.【答案】(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.【考点】作线段的垂直平分线线段垂直平分线的性质【解析】【解答】解:(1)答案如图所示.(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.23.【答案】解:如图所示.【考点】轴对称图形【解析】根据轴对称图形的概念,先确定出不同情况的对称轴,然后补全小正方形即可.【解答】解:如图所示.24.【答案】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.【考点】生活中的轴对称现象【解析】由已知条件,按照反射的原理画图即可得出结论.【解答】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.25.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).【考点】线段垂直平分线的性质【解析】(1)根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,DA=BD,FA= FC,则∠EAD=∠B,∠FAC=∠C,得出∠DAF=∠BAC−∠EAD−∠FAC=110∘−(∠B+∠C)求出即可.(2)由(1)中得出,AD=BD,AF=FC,即可得出△DAF的周长为BD+FC+ DF=BC,即可得出答案.【解答】解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).26.【答案】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.【考点】轴对称的性质【解析】根据轴对称的性质可得PM=P1M,PN=P2N,从而求出△MNP的周长等于P1P2,从而得解.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.27.【答案】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.【考点】作线段的垂直平分线【解析】此题暂无解析【解答】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.28.【答案】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.【考点】生活中的轴对称现象【解析】根据图形中的几个交通标志的轴对称性可以作出判断,答案不唯一.【解答】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.29.【答案】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.【考点】轴对称的性质【解析】作出图形,连接PP′、PP″、OP,根据轴对称的性质可得OP′=OP,OP″=OP,然后证明即可.【解答】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.30.【答案】解:它们的对称轴均为经过两圆圆心的一条直线.【考点】轴对称图形【解析】根据每个圆都是轴对称图形,且对称轴是经过圆心的直线,则两个不是同心圆的圆组成的图形的对称轴是经过两个圆的圆心的直线.【解答】解:它们的对称轴均为经过两圆圆心的一条直线.31.【答案】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.【考点】线段的垂直平分线的性质定理的逆定理含30度角的直角三角形线段垂直平分线的性质【解析】无无【解答】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.32.【答案】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.【考点】线段垂直平分线的性质【解析】由DE是BC的垂直平分线,即可求得BD=CD与BC的值,又由△ABC的周长为25,即可求得AB+AC的值,继而求得△ADC的周长.【解答】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.33.【答案】∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.【考点】线段垂直平分线的性质【解析】(1)根据线段的垂直平分线的性质得到MA=MB,NA=NC,根据三角形的周长公式计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算;(3)根据(2)的解法得到∠MAN=90∘,根据勾股定理列式计算即可.∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.34.【答案】12【考点】线段垂直平分线的性质【解析】此题主要考查了线段的垂直平分线定理,三角形的周长公式,整体代入,解本题的关键是求出AB+BC的值.【解答】解:∵ DE是AC的垂直平分线,∴ AD=CD,AC=2AE,∵ AE=4cm,∴ AC=8cm,∴ △ABC的周长为20cm,∴ AB+BC+AC=20,∴ AB+BC=20−AC=12cm,∴ △ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=12cm,故答案为:12.35.解:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:36.【答案】解:.(答案不唯一).【考点】轴对称图形【解析】结合轴对称图形的概念进行解答即可.【解答】解:.(答案不唯一).37.【答案】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.【考点】线段垂直平分线的性质【解析】因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA是否等于PC即可.【解答】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.38.【答案】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.【考点】轴对称的性质【解析】根据垂直平分线的定义可分别判定:点A在线段BC的垂直平分线上,D点也在线段BC 的垂直平分线上,所以可推出AD是线段BC的垂直平分线.从而求得BE=EC.【解答】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.39.【答案】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.40.【答案】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,即可作出判断.【解答】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:。
八上数学每日一练:点的坐标与象限的关系练习题及答案_2020年单选题版

八上数学每日一练:点的坐标与象限的关系练习题及答案_2020年单选题版答案答案答案答案答案答案答案答案答案2020年八上数学:函数_平面直角坐标系_点的坐标与象限的关系练习题~~第1题~~(2020苍南.八上期末) 在直角坐标系中,点(-1,2)位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点: 点的坐标与象限的关系;~~第2题~~(2020杭州.八上期末) 若点A(-2,4)所在的象限是( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点: 点的坐标与象限的关系;~~第3题~~(2020盐城.八上期末) 下列各点中在第四象限的是( ) A . B . C . D .考点: 点的坐标与象限的关系;~~第4题~~(2020牡丹.八上期末) 已知点M 到x 轴的距离为3,到y 轴距离为2,且在第二象限内,则点M 的坐标为( )A . (-2,3)B . (2,3)C . (-3,2)D . 不能确定考点: 点的坐标与象限的关系;~~第5题~~(2020天桥.八上期末) 在平面直角坐标系中,点(-1,3)在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点: 点的坐标与象限的关系;~~第6题~~(2020历下.八上期末) 点 ( , )在第二象限,则 的值可能为( )A . 2B . 1C . 0D .考点: 点的坐标与象限的关系;~~第7题~~(2020驿城.八上期中) 在平面直角坐标系中,点(3,-4)所在的象限是( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点: 点的坐标与象限的关系;~~第8题~~(2020辽阳.八上期中)已知 在第二象限,则 在第几象限 A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点: 点的坐标与象限的关系;~~第9题~~(2020大东.八上期末) 下列各点中,在第三象限的点是( ) A . B . C . D .考点: 点的坐标与象限的关系;~~第10题~~(2020新乡.八上期末) 若点和点 关于轴对称,则点 在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限考点:点的坐标与象限的关系;关于坐标轴对称的点的坐标特征;答案2020年八上数学:函数_平面直角坐标系_点的坐标与象限的关系练习题答案1.答案:B2.答案:B3.答案:C4.答案:A5.答案:B6.答案:A7.答案:D8.答案:D9.答案:A10.答案:D。
专题133关于坐标轴对称的点的坐标特征-2021-2022学年八年级数学上(解析版)【人教版】

2021-2022学年八年级数学上册尖子生同步培优题典【人教版】专题13.3关于坐标轴对称的点的坐标特征姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共9小题,每小题3分,共27分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•拱墅区期末)若点A的坐标为(﹣3,4),则点A关于y轴的对称点的坐标为()A.(3,4)B.(3,﹣4)C.(﹣3,﹣4)D.(4,3)【分析】直接利用关于y轴对称点的性质得出答案.【解析】∵点A的坐标为(﹣3,4),∴点A关于y轴的对称点的坐标为(3,4).故选:A.2.(2020秋•芝罘区期末)已知点A(m,2)与点B(4,n)关于x轴对称,则m,n的值分别是()A.4,﹣2B.0,4C.4,2D.4,0【分析】直接利用关于x轴对称点的性质得出m,n的值.【解析】∵点A(m,2)与点B(4,n)关于x轴对称,∴m=4,n=﹣2,∴m,n的值分别是:4,﹣2.故选:A.3.(2021•萧山区二模)在平面直角坐标系中,点A(m,2)与点B(3,n)关于x轴对称,则()A.m=3,n=﹣2B.m=﹣3,n=2C.m=3,n=2D.m=﹣2,n=3【分析】直接利用关于x轴对称点的性质得出答案.【解析】∵点A(m,2)与点B(3,n)关于x轴对称,∴m=3,n=﹣2,故选:A.4.(2021•下城区模拟)在平面直角坐标系中,点A(m﹣1,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣2,n=3C.m=2,n=3D.m=﹣2,n=2【分析】直接利用关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得出答案.【解析】∵点A(m﹣1,2)与点B(3,n)关于y轴对称,∴m﹣1=﹣3,n=2,解得:m=﹣2,故选:D.5.(2021春•东湖区期中)在平面直角坐标系中,将点A(﹣2,﹣3)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标为()A.(0,﹣3)B.(2,﹣3)C.(4,﹣3)D.(0,3)【分析】直接利用平移的性质得出B点坐标,再利用关于x轴对称点的性质得出对应点坐标.【解析】∵将点A(﹣2,﹣3)向右平移2个单位长度得到点B,∴B(0,﹣3)则点B关于x轴的对称点C的坐标为(0,3).故选:D.6.(2020秋•太原期末)已知点P(2,﹣4)与点Q(6,﹣4)关于某条直线对称,则这条直线是()A.x轴B.y轴C.过点(4,0)且垂直于x轴的直线D.过点(0,﹣4)且平行于x轴的直线【分析】根据轴对称的性质解决问题即可.【解析】点P(2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=4对称,故选:C.7.(2020•巨野县模拟)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【分析】首先根据题意建立坐标系,然后再确定根据轴对称图形的定义确定位置.【解析】如图:小莹放的位置所表示的点的坐标是(﹣1,1).故选:B.8.(2020秋•郑州期末)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【分析】观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.【解析】点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.9.(2019秋•赣县区期末)在平面直角坐标系中,若点E关于M的对称点为F,则点M是线段EF的中点.如图,已知A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点为P2,P2关于C的对称点为P3,P3关于A的对称点为P4,…,则点P2019的坐标是()A.(4,0)B.(﹣2,2)C.(2,﹣4)D.(﹣4,2)【分析】根据题意可得前6个点的坐标,即可发现规律每6个点一组为一个循环,根据2019÷6=336…3,进而可得点P2019的坐标.【解析】∵A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于点A的对称点P1,∴1=0+x2,﹣1=2+y2,解得x=2,y=﹣4,所以点P1(2,﹣4);同理:P1关于点B的对称点P2,所以P2(﹣4,2)P2关于点C的对称点P3,所以P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),…,发现规律:每6个点一组为一个循环,∴2019÷6=336…3,所以P2019与P3重合,所以点P2019的坐标是(4,0).故选:A.二、填空题(本大题共9小题,每小题3分,共27分)请把答案直接填写在横线上10.(2021春•沙坪坝区校级月考)已知点M (a ,﹣4)与点N (6,b )关于x 轴对称,那么a ﹣b 等于 2 .【分析】关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.据此可得a ,b 的值,进而得出a ﹣b 的值.【解析】∵点M (a ,﹣4)与点N (6,b )关于x 轴对称,∴a =6,b =4,∴a ﹣b =6﹣4=2,故答案为:2.11.(2020秋•沂南县期末)点P (﹣1,2021)关于y 轴对称的点的坐标为 (1,2021) .【分析】直接利用关于y 轴对称点的性质得出答案.【解析】点P (﹣1,2021)关于y 轴对称的点的坐标为(1,2021).故答案为:(1,2021).12.(2021•东莞市二模)已知点P (3,1)关于y 轴的对称点Q 的坐标是(a ,﹣1﹣b ),则ab 的值为 6 .【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【解析】∵点P (3,1)关于y 轴的对称点Q 的坐标是(a ,﹣1﹣b ),∴a =﹣3,﹣1﹣b =1,解得:b =﹣2,则ab 的值为:﹣3×(﹣2)=6.故答案为:6.13.(2021春•南岗区校级月考)已知点A (3x ﹣6,4y +15),点B (5y ,x )关于x 轴对称,则xy 的值是 9 .【分析】直接利用关于x 轴对称点的性质得出关于x ,y 的方程组,进而得出答案.【解析】∵点A (3x ﹣6,4y +15),点B (5y ,x )关于x 轴对称,∴{3x −6=5y 4y +15+x =0, 解得:{x =−3y =−3, 故xy =9.故答案为:9.14.(2020秋•平舆县期中)在平面直角坐标系中,点P (4,2)关于直线y =﹣1的对称点的坐标是 (4,﹣4) .【分析】利用图象法求解即可.【解析】如图,观察图象可知,点P关于直线y=﹣1的对称点Q的坐标为(4,﹣4),故答案为(4,﹣4).15.(2020秋•未央区期中)在平面直角坐标系中,点A(1,﹣1)和B(1,1)关于x轴对称.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【解析】点A(1,﹣1)和B(1,1)关于x轴对称,故答案为x.16.(2020秋•即墨区期末)如图,在直角坐标系中,长方形OABC的长为2,宽为1,将长方形OABC沿x 轴翻转1次,点A落在A1处,翻转2次,点A落在A2处,翻转3次,点A落在A3处(点A3与点A2重合),翻转4次,点A落在A4处,以此类推…,若翻转2021次,点A落在A2021处,则A2021的坐标为(3034,2).【分析】探究规律,利用规律解决问题即可.【解析】由题意A1(3,2),A2(A3)(5,0),A4(6,1),•,发现4次一个循环,∵2021÷4=505.....1,∴A2021的纵坐标与A1相同,横坐标=505×6+4=3034,∴A2021(3034,2),故答案为:(3034,2).17.(2020秋•双流区校级期中)嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用(﹣1,1)表示,右下角的圆形棋子用(0,0)表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置是(﹣1,2).【分析】首先确定平面直角坐标系,再根据轴对称图形的定义画出淇淇放的方形棋子的位置,即可解决问题.【解析】平面直角坐标系如图所示,淇淇放的方形棋子的位置如图,坐标为(﹣1,2),故答案为(﹣1,2).18.(2020•黄冈模拟)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是.A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解析】棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故答案为:B.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•昌图县期末)已知点A(a﹣5,1﹣2a),解答下列问题:(1)若点A到x轴和y轴的距离相等,求点A的坐标;(2)若点A向右平移若干个单位后,与点B(﹣2,﹣3)关于x轴对称,求点A的坐标.【分析】(1)直接利用点A在第一象限或第三象限或点A在第二象限或第四象限,分别得出答案;(2)直接利用平移的性质结合关于x轴对称点的性质得出答案.【解析】(1)若点A在第一象限或第三象限,则a﹣5=1﹣2a,解得:a=2,则a﹣5=1﹣2a=﹣3,∴点A的坐标为(﹣3,﹣3),若点A在第二象限或第四象限,则a﹣5+1﹣2a=0,解得a=﹣4,则a﹣5=﹣9,1﹣2a=9,∴点A的坐标为(﹣9,9),综上所述,点A的坐标为(﹣3,﹣3)或(﹣9,9);(2)∵若点A向右平移若干个单位,其纵坐标不变为(1﹣2a),又∵点A向右平移若干个单位后与点B(﹣2,﹣3)关于x轴对称,∴1﹣2a+(﹣3)=0,a=﹣1,a﹣5=﹣1﹣5=﹣6,1﹣2a=1﹣2×(﹣1)=3,即点A的坐标为(﹣6,3).20.(2020秋•兰州期中)已知点A (a ﹣1,5)和B (2,b ﹣1),试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ∥x 轴.【分析】(1)关于y 轴对称,纵坐标不变,横坐标变为相反数,据此可得a ,b 的值.(2)关于x 轴对称,横坐标不变,纵坐标变为相反数,据此可得a ,b 的值.(3)AB ∥x 轴,即两点的纵坐标相同,横坐标不相同,据此可得a ,b 的值.【解析】(1)A 、B 两点关于y 轴对称,则a ﹣1=﹣2,b ﹣1=5,∴a =﹣1,b =6;(2)A 、B 两点关于x 轴对称,则a ﹣1=2,b ﹣1=﹣5,∴a =3,b =﹣4;(3)AB ∥x 轴,则b ﹣1=5,a ﹣1≠2,∴b =6,a ≠3.21.(2020秋•麻城市期中)已知点A (2a ﹣b ,5+a ),B (2b ﹣1,﹣a +b ).(1)若点A ,B 关于x 轴对称,求a ,b 的值;(2)若点A ,B 关于y 轴对称,求(4a +b )2019的值.【分析】(1)根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数;”列方程组求出a 、b 的值,然后代入代数式进行计算即可得解.【解析】(1)∵点A ,B 关于x 轴对称,∴{2a −b =2b −15+a =−(−a +b), 解得{a =−8b =−5. (2)∵点A ,B 关于y 轴对称,∴{2a −b =−(2b −1)5+a =−a +b, 解得{a =−1b =3,∴(4a+b)2019=[4×(﹣1)+3]2019=﹣1.22.(2019秋•苍南县期末)在4×4的正方形网格中建立如图1、2所示的直角坐标系,其中格点A,B的坐标分别是(0,1),(﹣1,﹣1).(1)请图1中添加一个格点C,使得△ABC是轴对称图形,且对称轴经过点(0,﹣1).(2)请图2中添加一个格点D,使得△ABD也是轴对称图形,且对称轴经过点(1,1).【分析】(1)根据题意画出满足条件的点C即可.(2)根据题意画出满足条件的点C即可.【解析】(1)如图,点C即为所求.(2)如图,点D即为所求.23.(2019秋•咸丰县期末)如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(﹣a,0),其中0<a<3,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.【分析】(1)根据关于y 轴对称点的坐标特点是横坐标互为相反数,纵坐标相同可以得到△A 1B 1C 1各点坐标,又关于直线l 的对称图形点的坐标特点是纵坐标相同,横坐标之和等于3的二倍,由此求出△A 2B 2C 1的三个顶点的坐标;(2)P 与P 1关于y 轴对称,利用关于y 轴对称点的特点:纵坐标不变,横坐标变为相反数,求出P 1的坐标,再由直线l 的方程为直线x =3,利用对称的性质求出P 2的坐标,即可得出PP 2的长.【解析】(1)△A 2B 2C 2的三个顶点的坐标分别是A 2(4,0),B 2(5,0),C 2(5,2);(2)如图1,当0<a <3时,∵P 与P 1关于y 轴对称,P (﹣a ,0),∴P 1(a ,0),又∵P 1与P 2关于l :直线x =3对称,设P 2(x ,0),可得:x+a 2=3,即x =6﹣a ,∴P 2(6﹣a ,0),则PP 2=6﹣a ﹣(﹣a )=6﹣a +a =6.24.(2020秋•武汉期中)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC向右平移五个单位,再向下平移四个单位,则平移后点A的对应点的坐标是(3,﹣1).(2)将△ABC沿x轴翻折,则翻折后点A的对应点的坐标是(﹣2,﹣3).(3)求点A关于直线y=x(即第一、第三象限的角平分线)的对称点D的坐标;请画图并说明理由.【分析】(1)让横坐标加5,纵坐标减4即可得到所求点的坐标;(2)让横坐标不变,纵坐标互为相反数可得所求点的坐标;(3)画出相关图形,可得点D的坐标.【解析】(1)平移后点A的对应点的横坐标为﹣2+5=3,纵坐标为3﹣4=﹣1,故答案为(3,﹣1);(2)翻折后点A的对应点的横坐标为﹣2,纵坐标为﹣3,故答案为(﹣2,﹣3);(3)由图中可以看出点D的坐标为(3,﹣2).。
初中数学八年级《坐标》练习题1(含答案)

初中数学八年级《坐标》练习题1(含答案)一、填空题1、已知点A的坐标是(4,-5),则A点到y轴的距离是。
2、点M点的坐标是(a,1),若M点沿着x轴的正方向移动1个单位,再沿着y轴的反方向移动2个单位,这时M点的坐标是(3,-1),则a的值是。
3、点A与点B关于x轴对称,已知A的坐标是(3,-2),则B点的坐标是()。
4、点A的坐标是(2a,3+a),若A的横坐标数值大于它的纵坐标数值,则A点在第()象限。
5、已知线段MN平行于y轴,点M的坐标是(-1,3),若MN=4,则点N的坐标是.6、若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.7、在平面直角坐标系中,点O是坐标原点,已知点A的坐标是(2,2),请你在坐标轴上找出点B,使△AOB是等腰三角形,则符合条件的点B共有个.8、如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为.9、若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为.10、如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有个,写出其中一个点C的坐标为.二、选择题1、点P(-1,-2)到x轴的距离是( )A.1B.2C.-1D.-22、如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为( )A.(2,1)B.(-2,-1)C.(0,1)D.(-2,1)第2题3、如图,将长为3 cm的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为( )A.(5,3)B.(4,3)C.(4,2)D.(3,3)4、如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)5、设三角形三个顶点的坐标分别为A(0,0),B(3,0),C(3,-3),则这个三角形是( )A.等边三角形B.任意三角形C.等腰直角三角形D.钝角三角形6、已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )A.a<-1B.-1<a<32 C.-32<a<1 D.a>327、点P的坐标为(2-a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)8、若点A(-2,n)在x轴上,则点B(n-1,n+1)在( )A.第四象限B.第三象限C.第二象限D.第一象限9、在坐标平面上两点A(-a+2,-b+1),B(3a,b),若点A向右移动2个单位长度后,再向下移动3个单位长度后与点B重合,则点B所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限10、如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)三、解答题1、已知点A(a,3),B(-4,b),试根据下列条件求出a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于x轴对称;(3)AB∥x轴;(4)A,B两点在第二、四象限两坐标轴夹角的平分线上.2、在图中,确定点A,B,C,D,E,F,G的坐标.并说明点B和点F有什么关系?3、在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直于点C,求垂足点C的坐标.4、等腰直角三角形ABC的直角顶点C在x轴上,斜边AB在y轴上,点A 在点B上方,直角边AC=2,试写出顶点A,B,C的坐标.5、将下图中的△ABC做下列变换,分别指出变换后的图形的三个顶点的坐标.(1)关于y轴对称;(2)沿x轴正方向平移5个单位;(3)沿y轴负方向平移,使BC落在x轴上.6、如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.7、如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)求这个四边形的面积?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?8、已知,△ABC满足BC=AB,∠ABC=90°,A点在x轴的负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(-3,0),点B与原点重合,则点C的坐标是;(2)如图2,过点C作CD⊥y轴于点D,请判断线段OA,OD,CD之间的数量关系并说明理由;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x 轴于点F,问CF与AE有怎样的数量关系?并说明理由.参考答案一、填空题1、42、23、(3,2)4、第一象限解:A的横坐标数值大于它的纵坐标数值即2a>3+aa>3-------①式两边同时乘以2,得2a>6 这说明横坐标2a>6 故横坐标即为正①式两边同时加上3得3+a>6 这说明纵坐标3+a >6 故纵坐标即为正既然横坐标、纵坐标都为正,所以A在第一象限。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2018香洲.八上期中) 如图,在平面直角坐标系
(1)画出△ABC关于y轴的对称图形是△
(2019定西.八上期末) 如图,图中的小方格都是边长为①直接写出△ABC的各顶点坐标:
答案解析
答案解析(1) 画出△ABC 关于y 轴的对称图形△A B C (不写画法);
点A 关于x 轴对称的点坐标为
点B 关于y 轴对称的点坐标为
点C 关于原点对称的点坐标为
(2) 若网格上的每个小正方形的边长为1,则△ABC 的面积是.
考点: 关于坐标轴对称的点的坐标特征;作图﹣轴对称;5.
(2017徐闻.八上期中) 若点M (1,a )与点N (b ﹣5,2)关于x 轴对称,求a+b 的值.
考点: 关于坐标轴对称的点的坐标特征;2020年八上数学:图形的变换_轴对称变换_关于坐标轴对称的点的坐标特征练习题答案1.
答案:
2.答案:111
3.答案:
4.答案:
5.答案:。