实验2--进程观察实验

合集下载

操作系统实验二实验报告

操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。

通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。

三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。

2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。

3、为新进程指定可执行文件的路径、命令行参数、进程属性等。

4、编写代码来等待新进程的结束,并获取其退出代码。

(二)进程同步实验1、设计一个生产者消费者问题的模型。

2、使用信号量来实现生产者和消费者进程之间的同步。

3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。

4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。

(三)进程通信实验1、选择使用管道来实现进程之间的通信。

2、创建一个匿名管道,父进程和子进程分别读写管道的两端。

3、父进程向管道写入数据,子进程从管道读取数据并进行处理。

四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。

通过观察进程的创建和执行过程,加深了对进程概念的理解。

(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。

分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。

(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。

数据能够准确地在进程之间传递,验证了管道通信的有效性。

五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。

通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。

(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。

《计算机操作系统》实验指导书

《计算机操作系统》实验指导书

《计算机操作系统》实验指导书(适合于计算机科学与技术专业)湖南工业大学计算机与通信学院二O一四年十月前言计算机操作系统是计算机科学与技术专业的主要专业基础课程,其实践性、应用性很强。

实践教学环节是必不可少的一个重要环节。

计算机操作系统的实验目的是加深对理论教学内容的理解和掌握,使学生较系统地掌握操作系统的基本原理,加深对操作系统基本方法的理解,加深对课堂知识的理解,为学生综合运用所学知识,在Linux环境下调用一些常用的函数编写功能较简单的程序来实现操作系统的基本方法、并在实践应用方面打下一定基础。

要求学生在实验指导教师的帮助下自行完成各个操作环节,并能实现且达到举一反三的目的,完成一个实验解决一类问题。

要求学生能够全面、深入理解和熟练掌握所学内容,并能够用其分析、设计和解答类似问题;对此能够较好地理解和掌握,并且能够进行简单分析和判断;能够熟练使用Linux用户界面;掌握操作系统中进程的概念和控制方法;了解进程的并发,进程之间的通信方式,了解虚拟存储管理的基本思想。

同时培养学生进行分析问题、解决问题的能力;培养学生完成实验分析、实验方法、实验操作与测试、实验过程的观察、理解和归纳能力。

为了收到良好的实验效果,编写了这本实验指导书。

在指导书中,每一个实验均按照该课程实验大纲的要求编写,力求紧扣理论知识点、突出设计方法、明确设计思路,通过多种形式完成实验任务,最终引导学生有目的、有方向地完成实验任务,得出实验结果。

任课教师在实验前对实验任务进行一定的分析和讲解,要求学生按照每一个实验的具体要求提前完成准备工作,如:查找资料、设计程序、完成程序、写出预习报告等,做到有准备地上机。

进行实验时,指导教师应检查学生的预习情况,并对调试过程给予积极指导。

实验完毕后,学生应根据实验数据及结果,完成实验报告,由学习委员统一收齐后交指导教师审阅评定。

实验成绩考核:实验成绩占计算机操作系统课程总评成绩的20%。

指导教师每次实验对学生进行出勤考核,对实验效果作记录,并及时批改实验报告,综合评定每一次的实验成绩,在学期终了以平均成绩作为该生的实验成绩。

实验二--单处理器系统的进程调度

实验二--单处理器系统的进程调度

实验二–单处理器系统的进程调度
简介
在操作系统中,进程调度是非常重要的一项工作。

进程调度负责将CPU分配
给各个进程,使得每个进程都能够有机会占用CPU资源。

在单处理器系统中,CPU只有一个,因此进程调度是非常重要的。

本次实验将会探究单处理器系统的进程调度,了解各种进程调度算法的实现和
比较,利用模拟操作系统的实验平台进行实验。

实验目的
1.了解进程调度的基本概念和实现方法;
2.学习多种进程调度算法,并比较其优缺点;
3.熟悉模拟操作系统的实验环境,学习如何将算法实现到具体的系统中。

实验内容
进程调度的基本概念
进程调度是指将CPU资源分配给各个进程的过程。

在单处理器系统中,当有
多个进程需要使用CPU时,操作系统需要进行进程调度,使得每个进程都能够得
到CPU资源。

在进程调度中,需要考虑各个进程的优先级、进程的状态和进程的等待时间等
因素。

根据不同的调度算法,可以根据这些因素来确定哪个进程应该先占用CPU。

进程调度算法比较
常见的进程调度算法包括:
1.先来先服务算法(FCFS)
2.短作业优先算法(SJF)
3.优先级调度算法
4.时间片轮转算法(RR)
下面将对这些算法进行比较和介绍。

先来先服务算法(FCFS)
先来先服务算法是最简单的一种进程调度算法。

该算法将按照进程的到达时间
的先后顺序进行调度,先到达的进程先得到CPU资源。

这种算法的优点是实现简单,适用于短作业和计算密集型进程。

缺点是无法充分利用CPU资源,导致长作业需要等待较长时间才能被调度,容易产生。

哈工大威海计算机操作系统原理实验报告2

哈工大威海计算机操作系统原理实验报告2

计算机操作系统原理
实验报告
专业:1104202
学号:110420212
姓名:李敖
哈尔滨工业大学(威海)
实验二进程及其资源管理
一、实验目的
1.理解资源共享与互斥特性以及操作系统管理资源的基本方法。

2.学会使用高级语言进行多线程编程的方法。

3.掌握利用VC++或Java线程库实现一个管理器,用来实现操作系统对进程及其资源的管理功能。

4.通过该实验,学生可在源代码级完成进程及其资源管理方案的分析、功能设计、编程实现,控制进程间的同步、互斥关系。

二、实验要求
1.知识基础:学生应在完成对进程和线程、调度、死锁等章节的学习后进行。

2.开发环境与工具:
硬件平台——个人计算机。

软件平台——Windows操作系统,根据需要,任选安装VC++语言、java 语言或C语言开发环境。

三、实验内容
1.开发一个函数,建立进程控制块和资源控制块结构,并实现相关数据结构的初始化。

2.开发一系列操作,由进程调用这些操作,达到控制进程申请或释放各种资源的目的。

四、程序流程图
1.进程初始化
2.优先级策略调度
五、实验结果
创建进程1
创建进程2
查看正在运行的进程
替换进程
删除进程
进程调度进程1
进程2
进程3
FCFS
HPF
六、结果分析
有上述程序运行结果可知,此次试验已经基本达到了实验要求,能够实现进程的创建、查看、替换、删除操作以及进程的调度。

不过,在进程的创建中,要求每个资源要用到3个资源,对于再多的资源就无法保证了。

实验二时间片轮转RR进程调度算法

实验二时间片轮转RR进程调度算法

实验二时间片轮转RR进程调度算法一: 需求分析(1)程序的设计的任务和目的:设计程序模拟进程的时间片轮转RR调度过程。

假设有n 个进程分别在T1, …,Tn时刻到达系统, 它们需要的服务时间分别为S1, …,Sn。

分别利用不同的时间片大小q, 采用时间片轮转RR进程调度算法进行调度, 计算每个进程的完成时间、周转时间和带权周转时间, 并且统计n个进程的平均周转时间和平均带权周转时间。

(2)通过这次实验, 加深对进程概念的理解, 进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。

(3)输入的形式和输入值的范围为避免测试时频繁输入数据, 将测试数据放在txt文件中采用读文件方法读取数据。

在同目录下的txt文件中输入数据, 第一行为进程到达时间, 中间用空格隔开, 第二行为进程服务时间, 不同进程的服务时间之间用空格隔开。

(2) 输出的形式输出每个时刻的进程运行状态, 并且输出计算出来的每个进程的周转时间、带权周转时间、所有进程的平均周转时间以及带权平均周转时间。

(详见运行截图)(3) 程序所能达到的功能;详见运行结果截图2、概要设计使用链表创建队列, 用链表方法实现时间片轮转调度。

主要有主函数, 时间片轮转调度函数void RR(int*ArrivalTime,int*ServiceTime,int n,int q,LinkQueue &Q)和输出函数voidprint(int n,int array[]), void print(int n,double array[]);三: 详细设计时间片轮转算法流程图:程序主要设计思想:(1)创建进程, 使用链表的方法, 链表中的每个结点相当于一个进程。

(2)读入文件中进程数据(进程的到达时间和服务时间)。

(3)创建一个进程单链表, 作为进程队列。

(4)请用户输入时间片大小。

(5)创建执行队列。

(6)定义时间轴, 初始化时间轴和执行队列。

进程管理实验报告_共10篇 .doc

进程管理实验报告_共10篇 .doc

★进程管理实验报告_共10篇范文一:_进程管理实验报告进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。

2.学习系统调用fork的使用方法。

3.学习系统调用exec族调用的使用方法。

2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。

#includepid_tfork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork调用返回值。

当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。

对于父进程fork返回子进程ID,而对于fork 子进程返回0,我们就是根据这个返回值来区分父子进程的。

2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。

将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。

而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。

3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。

为了调用系统程序,我们可以使用系统调用exec族调用。

Exec族调用有以下五个函数:intexecl(constchar*path,constchar*arg,?);intexeclp(constchar*file,constchar*arg,?);intexecle(constchar*path,constchar*arg,?);intexecv(constchar*path,constchar*argv[]);intexecvp(constchar*file,constchar*argv[]);exec族调用可以执行给定程序。

操作系统实验二(进程管理)

操作系统实验二(进程管理)

操作系统进程管理实验实验题目:(1)进程的创建编写一段程序,使用系统调用fork( )创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。

试观察记录屏幕上的显示结果,并分析原因。

(2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。

(3)编制一段程序,使其实现进程的软中断通信。

要求:使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按Del键);当捕捉到中断信号后,父进程调用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 在上面的程序中增加语句signal(SIGINT, SIG_IGN)和signal(SIGQUIT, SIG_IGN),观察执行结果,并分析原因。

(4)进程的管道通信编制一段程序,实现进程的管道通信。

使用系统调用pipe( )建立一条管道线;两个进程P1和P2分别向管道各写一句话: Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。

要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。

实验源程序及报告:(1)、进程的创建#include <stdio.h>int main(int argc, char *argv[]){int pid1,pid2; /*fork first child process*/if ( ( pid1=fork() ) < 0 ){printf( "ProcessCreate Failed!");exit(-1);}if ( ( pid1=fork() ) == 0 ){printf( "b\n" );}/*fork second child process*/if ( ( pid2=fork() ) < 0 ){printf( "ProcessCreate Failed!"); exit(-1);}if ( ( pid2=fork() ) == 0 ){printf( "c\n" );}/*parent process*/else{wait(NULL);printf( "a\n" );exit(0);}return 0;}(2)、进程的控制#include <stdio.h>int main(int argc, char *argv[]){ int pid1,pid2;/*fork first child process*/if ( ( pid1=fork() ) < 0 ){printf( "ProcessCreate Failed!");exit(-1);}if ( ( pid1=fork() ) == 0 ){printf( "This is my Unix OS program!\n" ); }/*fork second child process*/if ( ( pid2=fork() ) < 0 ){printf( "ProcessCreate Failed!");exit(-1);}if ( ( pid2=fork() ) == 0 ){printf( "This is the second Child process!\n" ); }/*parent process*/else{wait(NULL);printf( "This is the Parent process\n" );exit(0);}return 0;}(3)编制一段程序,使其实现进程的软中断通信。

《操作系统》课程实验内容和实验要求

《操作系统》课程实验内容和实验要求

实验内容和实验要求实验1:安装Linux系统(4学时)目的:1.学会在操作系统安装之前,根据硬件配置情况,制订安装计划。

2.学会在安装多操作系统前,利用硬盘分区工具(如PQMagic)为Linux准备分区。

3.学会Linux操作系统的安装步骤和简单配置方法。

4.学会Linux系统的启动、关闭步骤,初步熟悉Linux系统的用户界面。

内容:1.安装并使用硬盘分区工具(如PQMagic),为Linux准备好分区。

2.安装Linux系统(如红旗Linux桌面版)。

3.配置Linux系统运行环境。

4.正确地启动、关闭系统。

5.对图形界面进行一般操作。

要求:1.制订安装计划。

2.如果在机器上已安装了Windows系统,而且没有给Linux预备硬盘分区,则安装硬盘分区工具(如PQMagic),运行它,为Linux划分出一块“未分配”分区。

3.在光驱中放入Linux系统安装盘,启动系统。

按照屏幕提示,选择/输入相关参数,启动安装过程。

4.安装成功后,退出系统,取出安装盘。

重新开机,登录Linux系统。

5.对Linux系统进行配置,如显示设备、打印机等。

6.利用鼠标对图形界面进行操作。

说明:1.本实验应在教师的授权和指导下进行,不可擅自操作,否则可能造成原有系统被破坏。

2.如条件不允许每个学生亲自安装,可采用分组进行安装或课堂演示安装的方式。

实验2:Linux 应用及shell编程(4学时)目的:1.掌握Linux一般命令格式和常用命令。

2.学会使用vi编辑器建立、编辑文本文件。

3.了解shell的作用和主要分类。

4.学会bash脚本的建立和执行方式。

5.理解bash的基本语法。

6.学会编写简单的shell脚本。

内容:1.正确地登录和退出系统。

2.熟悉使用date,cal等常用命令。

3.进入和退出vi。

利用文本插入方式建立一个文件。

4.学会用gcc编译器编译C程序。

5.建立shell脚本并执行它。

6.学会使用shell变量和位置参数、环境变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2--进程观察实验实验二进程观察实验(二):进程的控制实验目的1、了解进程创建后对进程控制的系统调用,可实现对进程的有效控制2、掌握进程的睡眠、同步、撤消等进程控制方法实验内容1、通过相关命令,对进程的状态进行控制。

2、编写程序,使用fork( )创建一个子进程。

使用相关的系统调用控制进程的状态。

观察并分析多进程的执行次序及状态转换。

实验基础一、进程的控制进程因创建而存在,因执行完成或异常原因而终止.在进程的生命周期中,进程在内存中有三种基本状态:就绪,执行,阻塞.进程状态的转换是通过进程控制原语来实现的。

Linux操作系统提供了相应功能的系统调用及命令,来实现用户层的进程控制。

二、相关的命令(1)睡眠指定时间执行格式:# sleep xx为指定睡眠的秒数。

(2)结束或终止进程kill执行格式:# kill [-9] PID (PID为利用ps命令所查出的process ID)例:kill -9 456 终止process ID 为456的process(3)后台(background)执行process command 的命令执行格式:# command & (在命令后加上&)例:gcc file1 & 在后台编译file1.c注意:按下^Z,暂停正在执行的process。

键入”bg”,将所暂停的process置入background中继续执行。

例:# gcc file1 &^Zstopped# bg(4)查看正在background中执行的process执行格式:# jobs(5)结束或终止在background中的进程kill执行格式:# kill %n例:kill %1 终止在background中的第一个jobkill %2 终止在background中的第二个job三、相关的系统调用在LINUX中fork( )是一个非常有用的系统调用,但在LINUX中建立进程除了fork( )之外,也可用与fork( ) 配合使用的exec( )。

1、exec( )系列系统调用exec( )系列,也可用于新程序的运行。

fork( )只是将父进程的用户级上下文拷贝到新进程中,而exec( )系列可以将一个可执行的二进制文件覆盖在新进程的用户级上下文的存储空间上,以更改新进程的用户级上下文。

exec( )系列中的系统调用都完成相同的功能,它们把一个新程序装入内存,来改变调用进程的执行代码,从而形成新进程。

如果exec( )调用成功,调用进程将被覆盖,然后从新程序的入口开始执行,这样就产生了一个新进程,新进程的进程标识符id 与调用进程相同。

exec( )没有建立一个与调用进程并发的子进程,而是用新进程取代了原来进程。

所以exec( )调用成功后,没有任何数据返回,这与fork( )不同。

exec( )系列系统调用在LINUX系统库unistd.h中,共有execl、execlp、execle、execv、execvp五个,其基本功能相同,只是以不同的方式来给出参数。

一种是直接给出参数的指针,如:int execl(path,arg0[,arg1,...argn],0);char *path,*arg0,*arg1,...,*argn;另一种是给出指向参数表的指针,如:int execv(path,argv);char *path,*argv[ ];另外,在linux中,出于安全的考虑,限制了exec()可以执行的新程序的位置为系统指定的搜索路径。

例如:execl(“/bin/ls”,”ls”,NULL);execl(“/usr/bin/gcc”,”-v”,NULL);execl(“./test”,NULL);//当前目录下的可执行程序2、exec( )和fork( )联合使用系统调用exec和fork( )联合使用能为程序开发提供有力支持。

用fork( )建立子进程,然后在子进程中使用exec( ),这样就实现了父进程与一个与它完全不同子进程的并发执行。

一般,wait、exec联合使用的模型为:int status;............if (fork( )= =0){...........;execl(...);...........;}wait(&status);3、wait()等待子进程运行结束。

如果子进程没有完成,父进程一直等待。

wait( )将调用进程挂起,直至其子进程因暂停或终止而发来软中断信号为止。

如果在wait( )前已有子进程暂停或终止,则调用进程做适当处理后便返回。

wait( )给我们提供了一种实现进程同步的简单方法。

系统调用格式:int wait(status)int *status;其中,status是用户空间的地址。

它的低8位反应子进程状态,为0表示子进程正常结束,非0则表示出现了各种各样的问题;高8位则带回了exit( )的返回值。

exit( )返回值由系统给出。

核心对wait( )作以下处理:(1)首先查找调用进程是否有子进程,若无,则返回出错码;(2)若找到一处于“僵死状态”的子进程,则将子进程的执行时间加到父进程的执行时间上,并释放子进程的进程表项;(3)若未找到处于“僵死状态”的子进程,则调用进程便在可被中断的优先级上睡眠,等待其子进程发来软中断信号时被唤醒。

4、sleep()睡眠指定时间。

系统调用格式:void sleep(int second)其中,second为指定睡眠的秒数。

该函数使得当前进程自我阻塞second秒,由执行态转换成阻塞态,直到系统唤醒。

5、exit()终止进程的执行。

系统调用格式:void exit(status)int status;其中,status是返回给父进程的一个整数,以备查考。

为了及时回收进程所占用的资源并减少父进程的干预,LINUX/LINUX利用exit( )来实现进程的自我终止,通常父进程在创建子进程时,应在进程的末尾安排一条exit( ),使子进程自我终止。

exit(0)表示进程正常终止,exit(1)表示进程运行有错,异常终止。

如果调用进程在执行exit( )时,其父进程正在等待它的终止,则父进程可立即得到其返回的整数。

核心须为exit( )完成以下操作:(1)关闭软中断(2)回收资源(3)写记帐信息(4)置进程为“僵死状态”实验指导1、参照参考程序编写程序,其中父进程无限循环。

在后台执行该程序。

[root@localhost lab2]# vi fork_1.c[root@localhost lab2]# gcc fork_1.c -o def [root@localhost lab2]# ./def &[1] 3620def fork_1.c子进程用exec( )装入命令ls ,exec( )后,子进程的代码被ls的代码取代,这时子进程的PC指向ls的第1条语句,开始执行ls的命令代码。

如果是下面这种:[root@localhost lab2]# ./def则只有用^c强行终止父进程,则在第2步结果就不同了,父子进程都成为僵死进程。

2、显示当前终端上启动的所有进程。

[root@localhost lab2]# ps -afUID PID PPID C STIME TTY TIME CMDroot 3620 3126 0 20:11 pts/100:00:00 ./defroot 3621 3620 0 20:11 pts/100:00:00 [ls <defunct>]root 3623 3126 0 20:12 pts/1 00:00:00 ps -af其中,”<defunct>”说明进程”ls”是一个僵死进程。

父进程创建一个子进程后,可以用wait()等待回收其子进程的资源,也可以正常终止后由系统回收其子进程的资源。

”./def ”就是”ls”的父进程。

”./def ”进程中,既没有等待回收其子进程的资源,也没有正常终止,因此造成”ls”成为一个僵死进程。

3、用kill命令直接杀死该子进程,看看是否能够成功?[root@localhost lab2]# kill -9 3621[root@localhost lab2]# ps -af为什么不能杀死?因为父进程还没结束。

4、用kill命令杀死父进程之后呢?解释原因。

[root@localhost lab2]# kill -9 3620[root@localhost lab2]# ps -af但是如果父子进程都异常终止,则shell进程将回收其资源。

Init进程回收所有僵死进程资源?5、修改程序fork_1.c,在父进程执行”while(1)”之前,添加代码”wait(0);”。

在后台执行该程序。

显示当前终端上启动的所有进程。

解释原因。

6、修改以上程序,在子进程执行”printf(“Is son:\n”);”之前添加代码“sleep(1);”。

观察多进程的执行序列,解释原因。

7、选作:修改“多进程环境实验”中的参考程序,在“子进程1段”前添加代码“sleep(2);”,在“父进程段b”前添加代码“wait(0); wait(0);”。

观察多进程的执行序列,解释原因。

试一下作其它修改后的效果?参考程序#include<stdio.h>#include<unistd.h>main( ){int pid;pid=fork( ); /*创建子进程*/switch(pid){case -1: /*创建失败*/printf("forkfail!\n");exit(1);case 0: /*子进程*/printf(“Isson:\n”);execl("/bin/ls","ls","-1",NULL);printf("execfail!\n");exit(1);default: /*父进程*/printf("lsparent:\n");while(1)sleep(1);exit(0);}}思考题(1)可执行文件加载时进行了哪些处理?参考程序中,什么时候执行语句”printf("exec fail!\n");”?(2)实验指导中的第5步,wait( )是如何实现进程同步的?(3)实验指导中的第6步,sleep(1)为什么能导致进程切换?创建进程:#include <unistd.h>#include <stdio.h>#include <stdlib.h>#include <math.h>#include <errno.h>#include <sys/types.h>#include <sys/wait.h>int main(){pid_t pid;if(-1 == (pid = fork())){printf("Error happened in fork function!\n");return 0;}if(0 == pid){printf("This is child process: %d\n", getpid());}else{printf("This is parent process: %d\n", getpid());}return 0;}使用wait函数让父进程等待子进程运行结束后才开始运行。

相关文档
最新文档