中考数学十大解题思路之初中换元法经典例题讲解及答案解析

合集下载

初中数学竞赛辅导资料(52)换元法

初中数学竞赛辅导资料(52)换元法

初中数学竞赛辅导资料(52)换元法甲内容提要1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法.2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系.例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换.3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验.4. 解二元对称方程组,常用二元基本对称式代换.5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0.两边都除以x 2,得a(x 2+21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0.对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1. 原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0.ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程.形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是:与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数. 两边都除以x 2, 可化为a(x 2+21x)-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x=y 2+2, 原方程可化为 ay 2-by+c+2=0.乙例题例1. 解方程1112---++x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x .原方程化为: y -21y 2=0 . 解得 y=0;或y=2.当y=0时,11-++x x =0 (无解) 当y=2时, 11-++x x =2,解得,x=45. 检验(略).例2. 解方程:x 4+(x -4)4=626.解:(用平均值24-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.原方程化为 (y+2)4+(y -2)4=626.[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).(y 2+33)(y 2-9)=0.当y 2+33=0时, 无实根 ;当y 2-9=0时, y=±3.即x -2=±3,∴x=5;或x=-1.例3. 解方程:2x 4+3x 3-16x 2+3x+2=0 .解:∵这是个倒数方程,且知x ≠0,两边除以x 2,并整理 得2(x 2+21x )+3(x+x 1)-16=0. 设x+x 1=y, 则x 2+21x =y 2-2. 原方程化为 2y 2+3y -20=0.解得 y=-4;或y=25. 由y=-4得 x=-2+3;或x=-2-3.由y=2.5得 x=2;或x=21. 例4 解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x 解:(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.)设x+y=u, xy=v. 原方程组化为:⎪⎩⎪⎨⎧=+++=+++010********v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .丙练习52解下列方程和方程组:(1到15题): 1. =++++)7(27x x x x 35-2x.2. (16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2.3. (2x+7)4+(2x+3)4=32 .4. (2x 2-x -6)4+(2x 2-x -8)4=16.5. (2115-+x )4+(2315-+x )4=16.6. x x x x 112+++=223. 7. 2x 4-3x 3-x 2-3x+2=0. 8. ⎪⎩⎪⎨⎧=++=+++19182222xy y x y x y x 9. ⎪⎩⎪⎨⎧=+=+160311122y x y x . 10. 563964467222+-=+-+--x x x x x x . 11. (6x+7)2(3x+4)(x=1)=6.12. ⎪⎩⎪⎨⎧=+=-++13511y x y x . 13. ⎪⎩⎪⎨⎧=+=+1025y x x y y x . 14. ⎪⎩⎪⎨⎧=+-+=-+++01823312y xy y y x y x . 15x xx x =-+-111. 16. 分解因式: ①(x+y -2xy)(x+y -2)+(1-xy)2; ②a 4+b 4+(a+b)4 .17. 已知:a+2=b -2=c ×2=d ÷2, 且a+b+c+d=1989.则a=___,b= ____,c=_____,d=____ (1989年泉州市初二数学双基赛题)18. [a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2,那么 方程 [3x+1]=2x -21 的所有根的和是_____.(1987年全国初中数学联赛题)参考答案练习52 1. 221229 2. ±43±34 3. -25 4. 2,-23,4651± 5.3231-32211, 6. 1 7.21,2 8.⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==727272722332y x y x y x y x9. ⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==555555555555412124y x y x y x y x 10. 7,-1 11.-32,-35 12.⎩⎨⎧==⎩⎨⎧==10358y x y x 13.⎩⎨⎧==⎩⎨⎧==8228y x y x 14. ⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧-==⎩⎨⎧==1031041031041513y x y x y x y x 15. x=251± 16.①设x+y=a,xy=b ②设a 2+b 2=x,ab=y17.设原式=k, k=442 18. –2可设2x -21=t, x=21t+41代入[3x+1]。

初三换元法例题

初三换元法例题

初三换元法例题一、题目:计算下列等式的值1. 17a + 8b - 3c,其中a = 2,b = 5,c = 3。

2. 4x + 2y - 5z,其中x = 3,y = 7,z = 2。

1. 代入a = 2,b = 5,c = 3,得:17(2) + 8(5) - 3(3)= 34 + 40 - 9所以,17a + 8b - 3c 的值为74。

2. 代入x = 3,y = 7,z = 2,得:4(3) + 2(7) - 5(2)= 12 + 14 - 10所以,4x + 2y - 5z 的值为16。

二、题目:写出下列等式的换元表达式。

1. 5a + 3b - 2c,a = x + 1,b = 2y,c = z - 3。

2. 2x + 4y - 3z,x = a - 1,y = b + 2,z = c + 3。

1. 代入a = x + 1,b = 2y,c = z - 3,得:5(x + 1) + 3(2y) - 2(z - 3)= 5x + 5 + 6y - 2z + 6= 5x + 6y - 2z + 11所以,换元后的表达式为 5x + 6y - 2z + 11。

2. 代入x = a - 1,y = b + 2,z = c + 3,得:2(a - 1) + 4(b + 2) - 3(c + 3)= 2a - 2 + 4b + 8 - 3c - 9= 2a + 4b - 3c - 3所以,换元后的表达式为 2a + 4b - 3c - 3。

三、题目:用换元法解下列问题。

1. 有一个长方形,长是x + 3,宽是x - 2,求其周长和面积。

2. 小明的体重是a - 10kg,小明增加了b kg,现在的体重是多少?1. 周长 = 2(长 + 宽) = 2(x + 3 + x - 2) = 4x + 2面积 = 长× 宽 = (x + 3)(x - 2) = x^2 + x - 6所以,长方形的周长为4x + 2,面积为x^2 + x - 6。

专题04 换元法专题研究(解析版)

专题04 换元法专题研究(解析版)

备战2020中考数学解题方法专题研究专题4 换元法专题【方法简介】解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用。

换元法又称变量替换法, 是我们解题常用的方法之一。

利用换元法, 可以化繁为简, 化难为易, 从而找到解题的捷径。

【真题演练】1. 若(x2+y2﹣2)2=9,则x2+y2的值为()A.1 B.﹣1 C.5 D.5或﹣1【解析】:设t=x2+y2(t≥0),由原方程得:(t﹣2)2=9,解得t﹣2=±3,解得t=5或t=﹣1(舍去).故选:C.2. 用“整体法”求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣2,x2=﹣1【解析】:(2x+5)2﹣4(2x+5)+3=0,设2x+5=y,则原方程变形为y2﹣4y+3=0,解得:y1=1,y2=3,当y=1时,2x+5=1,解得:x=﹣2,当y=3时,2x+5=3,解得:x=﹣1,即原方程的解为x1=﹣2,x2=﹣1,故选:D.3. 若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b=.【解析】设a+b=x,则由原方程,得2x(2x﹣2)﹣8=0,整理,得4x2﹣4x﹣8=0,即x2﹣x﹣2=0,分解得:(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2.则a+b的值是﹣1或2.故答案是:﹣1或2.4. 阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.【解析】:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.【名词释义】概念:换元法是数学中一个非常重要而且应用十分广泛的解题方法。

中考数学复习:专题9-1 例说换元法在初中数学中的应用

中考数学复习:专题9-1 例说换元法在初中数学中的应用

例说换元法在初中数学中的应用【专题综述】 利用换元法解题,具有极大的灵活性。

关键在于根据问题的结构特征,恰当地引入辅助未知数,达到以简驭繁,化难为易的目的。

在具体应用时,换元的具体形式也是多种多样的。

要在解题的实践中,不断摸索规律,积累经验,掌握有关的变换技巧,提高运用换元法解题的能力。

【方法解读】下面举例说明换元法在初中数学中应用。

一、用换元法分解因式例1 把(4)(2)(1)(1)72x x x x ---+-分解因式。

本题如果把括号、合并同类项以后,会得到关于x 的四次式,分解起来比较困难。

认真观察题目的结构,可以发2(4)(1)34,x x x x -+=--2(2)(1)32x x x x --=-+,它们的二次项、一次项完全相同,这就具备了换元的条件,选用换元法进行降次处理,就使得分解变得简单易行。

在设辅助未知数时,方法比较灵活,如可设23y x x =-,或设234y x x =--等,一般地,设y 等于234x x --和232x x -+的算术平均式比较简捷。

解 :22(4)(2)(1)(1)72(34)(32)72x x x x x x x x ---+-=---+-设231y x x =--,则22343,323x x y x x y --=--+=+原式=2(3)(3)72972(9)(9)y y y y y -+-=--=+-=22(38)(310)x x x x -+--=2(38)(5)(2)x x x x -+-+总结提示 当在一个多项式中出现相同的部分时,一般可采用换元法来解决问题。

二、换元法在解方程中作用 掌握运用换元法解方程和方程组是初中数学的一个重点要求而在解高次方程、分式方程、无理方程时,要注意方程的特点创造运用换元法的条件往往会简化求解过程。

例2 解下列方程:①222(23)64x x -+=解 原方程变形为222(23)2(23)0x x ---=。

《解一元二次方程—换元法》典型例题解析与同步训练(后附答案)

《解一元二次方程—换元法》典型例题解析与同步训练(后附答案)
解:(1)换元,降次
(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,
解得x=3或x=6;
(4)化简得:(x﹣1﹣2)(x﹣1﹣3)=0
即(x﹣3)(x﹣4)=0
解得x=3或x=4.
例4.阅读下面材料:解答问题
为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=± ;当y=4时,x2﹣1=4,∴x2=5,∴x=± ,故原方程的解为x1= ,x2=﹣ ,x3= ,x4=﹣ .
2.2.5《解一元二次方程—换元法》典型例题解析与同步训练
【知识要点】
1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
解得y1=6,y2=﹣2(4分)
当y=6时,x2﹣x=6即x2﹣x﹣6=0
∴x1=3,x2=﹣2(6分)
当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0
∵△=(﹣1)2﹣4×1×2<0
∴方程无实数解(8分)
∴原方程的解为:x1=3,x2=﹣2.(9分)
例5.阅读下面的材料,回答问题:
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.
(3)先移项,然后用提取公因式法对左边进行因式分解即可.

初中数学—换元法

初中数学—换元法

知识点拨【知识提要】1. 方程中变量的换元;2. 三角换元;3. 特殊换元。

【基本题型】1. 解超过二次的方程,或解某些特殊的根式方程;2. 证明某些不等式,或者某些量的取值范围;3. 求某些难以直接求出来表达式的值。

【解题技巧】1. 遇到可以整体代入的时候,可以考虑换元;2. 解特殊的高次方程的时候,可以考虑换元;3. 有时候甚至可以联想三角函数。

快乐热身【热身】已知若有23y x =+成立,则有恒等式2223x x ay by c ++=++成立。

求abc 的值。

【解析】分析 直接用待定系数法会很繁琐。

有没有简单一些的方法呢?解 因为23y x =+,所以32y x -=。

所以,22239232424y y y x x y -⎛⎫++=+=-+ ⎪⎝⎭。

因此,119942432abc ⎛⎫=⨯-⨯=- ⎪⎝⎭。

第五讲 换元法热身完了,我们开始今天的课程吧!例题精讲【例 1】 求1111111...++++(无穷多个)的值。

【解析】 分析 连分数化简为分数从最底下开始,但是这个是无限的,应该怎么办呢?解 设原式x =,则11x x=+,也就是说210x x --=。

解得12x +=(负根舍去)。

说明 无限连分数和无限小数一样,都是极限。

关于极限的概念,以后会学到。

【例 2】 解关于x 的一元四次方程:43210x ax bx ax ++-+=。

【解析】 分析 因为方程次数高,所以应当设法降次。

解 观察方程的系数,具有对称的特点,所以应当使用换元法。

显然0x =不是原方程的解,所以除以2x 后得到:2210a x ax b x x ++-+=。

设1y x x=-,则有220y ay b +++=。

248a b ∆=--。

⑴若0∆>,则方程的解为1y =2y =。

代回1y x x =-得到1,2x =,3,4x =。

⑵若0∆=,则方程的解为1,22a y =-,于是有1,34a x -+=,2,44a x -=。

初中数学竞赛专题选讲换元法(含答案)

初中数学竞赛专题选讲换元法(含答案)

初中数学竞赛专题选讲(初三.8)换元法一、内容提要1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法.2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系.例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换.3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验.4. 解二元对称方程组,常用二元基本对称式代换.5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等.例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0.两边都除以x 2,得a(x 2+21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0.对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1.原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0.ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程.形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是:与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数.两边都除以x 2, 可化为a(x 2+21x)-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x=y 2+2, 原方程可化为 ay 2-by+c+2=0.二、例题例1. 解方程1112---++x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x .原方程化为: y -21y 2=0 . 解得 y=0;或y=2.当y=0时,11-++x x =0 (无解) 当y=2时, 11-++x x =2,解得,x=45. 检验(略). 例2. 解方程:x 4+(x -4)4=626.解:(用平均值24-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.原方程化为 (y+2)4+(y -2)4=626.[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).(y 2+33)(y 2-9)=0.当y 2+33=0时, 无实根 ;当y 2-9=0时, y=±3.即x -2=±3,∴x=5;或x=-1.例3. 解方程:2x 4+3x 3-16x 2+3x+2=0 .解:∵这是个倒数方程,且知x ≠0,两边除以x 2,并整理 得2(x 2+21x )+3(x+x 1)-16=0. 设x+x 1=y, 则x 2+21x =y 2-2. 原方程化为 2y 2+3y -20=0.解得 y=-4;或y=25. 由y=-4得 x=-2+3;或x=-2-3.由y=2.5得 x=2;或x=21. 例4 解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x解:(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.) 设x+y=u, xy=v. 原方程组化为:⎪⎩⎪⎨⎧=+++=+++010********v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .三、练习解下列方程和方程组:(1到15题): 1. =++++)7(27x x x x 35-2x.2. (16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2.3. (2x+7)4+(2x+3)4=32 .4. (2x 2-x -6)4+(2x 2-x -8)4=16.5. (2115-+x )4+(2315-+x )4=16.6. x x x x 112+++=223. 7. 2x 4-3x 3-x 2-3x+2=0. 8. ⎪⎩⎪⎨⎧=++=+++19182222xy y x y x y x 9. ⎪⎩⎪⎨⎧=+=+160311122y x y x . 10. 563964467222+-=+-+--x x x x x x . 11. (6x+7)2(3x+4)(x=1)=6.12. ⎪⎩⎪⎨⎧=+=-++13511y x y x . 13. ⎪⎩⎪⎨⎧=+=+1025y x x y y x .14. ⎪⎩⎪⎨⎧=+-+=-+++01823312y xy y y x y x . 15x xx x =-+-111. 16. 分解因式: ①(x+y -2xy)(x+y -2)+(1-xy)2; ②a 4+b 4+(a+b)4 .17. 已知:a+2=b -2=c ×2=d ÷2, 且a+b+c+d=1989.则a=___,b= ____,c=_____,d=____18. [a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2,那么 方程 [3x+1]=2x -21 的所有根的和是_____.参考答案 1. 221229 2. ±43±34 3. -25 4. 2,-23,4651± 5.3231-32211, 6. 1 7.21,2 8.⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==727272722332y x y x y x y x 9. ⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==555555555555412124y x y x y x y x 10. 7,-111.-32,-3512.⎩⎨⎧==⎩⎨⎧==10358y x y x 13.⎩⎨⎧==⎩⎨⎧==8228y x y x 14. ⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧-==⎩⎨⎧==1031041031041513y x y x y x y x 15. x=251± 16.①设x+y=a,xy=b ②设a 2+b 2=x,ab=y17.设原式=k, k=44218. –2可设2x -21=t, x=21t+41代入[3x+1]。

最全最新初中数学竞赛专题讲解换元法

最全最新初中数学竞赛专题讲解换元法

初中数学竞赛专题讲解换元法1.换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法.2.换元的目的是化繁为简,化难为易,沟通已知和未知的联系.例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换. 3.换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验. 4.解二元对称方程组,常用二元基本对称式代换.5.倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等.例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0.两边都除以x 2,得a(x 2+21x)+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x=y 2-2,原方程可化为ay 2+by+c -2=0.对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1.原方程可化为(x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0.ax 4+b 1x 3+c 1x 2+b 1x+a=0,这是四次倒数方程. 形如ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是:与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数.一、基础过关1.计算:111111111111111123423452345234⎛⎫⎛⎫⎛⎫⎛⎫++++++-++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2.计算:245111222⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.36363638⨯4.计算:44+⎢⎥⎢⎥⎣⎦⎣⎦5.6.7.计算:2222004200312004200220042004++ 8.计算:)60596058602601(54535251434241323121+++++++++++++++ )()()(二、例题讲解题型一 用换元法化简或求值 例1.L练习1:计算()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++练习2:已知,a b 是整数,方程02=++b ax x 有一个实数根为347-,则a b +=( )A 、3-B 、 3C 、 5D 、5-练习3:已知,,a b c 为实数,且51,41,31=+=+=+a c ca c b bc b a ab ,那么cabc ab abc++的值() A 、31- B 、 3 C 、 61- D 、61练习4:aa a aa a aa a aa a++++++++98989393929299的值是 ( )A 、1B 、2C 、3D 、4 练习5:计算:()()()()()()320152014201520121052013201420152014201420152013201420132013--+--+--题型二 用换元法分解因式例2:分解因式:()()()()21236x x x x x +++++练习1:分解因式:()()10342424+++-+x x x x练习2:()()()xy y x y x xy 2212-+-++-练习3:()()228781515a a aa +++++练习4:已知实数,a b 满足3331a b ab ++=,求a b +的值题型三 用换元法解方程例3x =例4: 解方程:()444626x x +-=例5:解方程:4322316320x x x x +-++=例6:解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x练习1:方程组⎪⎩⎪⎨⎧=+-=+-040422x y y y x x 在实数范围内( )A 、有1组解B 、有2组解C 、有4组解D 、有多于4组的解练习2:求方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++511141113111y x z x z y z y x 的解练习3:解方程021331812164132222=-++-+--+++x x x x x x x x练习4:如果0abc ≠,且a b b c a cc a b +++==,求()()()a b b c a c abc+++的值练习5:解方程组843356180x y zx y z ==⎧⎨+-+=⎩练习61=练习7:设nn b a b a b a b a ==== 332211(所有字母均为正数).求证:n n b a b a b a +++ 2211))((2121n n b b b a a a ++++++=题型四 用换元法解综合问题例7:若[x]表示不大于x 的最大整数,例如[3.7]=3,[3]=3,则()⎥⎦⎤⎢⎣⎡+656=( ) A 、10580 B 、10581 C 、10582 D 、10583例8:已知关于x 的方程()()011721122=+-+-⎪⎭⎫⎝⎛--x x a x x a 有实数根 ⑴求a 的取值范围;⑵若原方程的两个实数根为21,x x ,且113112211=-+-x x x x ,求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档