圆锥曲线的最值问题课件
圆锥曲线中的最值问题

面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。
高三数学圆锥曲线中的最值问题 优质课件

25 9
17
题
则| PBB||5| |PPQF ||的最小值 ____4_____;
4
| PB | | PF |的最小值 __1_0____3_7__ .
y
y
PQ
B
O
F
x
P
B
P2
P1 F1 O
F
x
利用圆锥曲线的定义将折线段和的问题化归为平面上直线段最短来解决.
小结
圆锥曲线中的最值问题(一)
y
16 9
B
题 的 两 个 顶 点 ,C、D是 椭 圆 上 两 点 ,
且 分 别 在AB两 侧 , 则 四 边 形ABCD
O
面 积 的 最 大 值 是_1_2___2___.
D
C x
A
例1.设 实 数x,y满 足 x2 y2 1 16 9
则3x 4 y的 最 大 值 是_1_2__2__,
y2 b2
1(a
0,b
0)的 离
心率,则e1 e2的最小值是___2__2__.
想 1. 已知双曲线 x 2 y2 1,过其右焦点F的直线l交
一
16 9 双曲线于AB,若 | AB | 5,则直线l有 __2__ 个.
想
y
y
P
O
Fx
F1 O
F2
x
2.已
知
椭
圆
x a
2 2
y2 b2
记A(c,0)
则C( c , h) 2
E( x0 , y0 )
设双曲线的方程为 x2 a2
y2 b2
1,则e
c a
由定比分点坐标公式得:x0
第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件

当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4
圆锥曲线中的最值、范围、证明问题 课件(67张)

55 15 .
所以△ABP面积的最大值为251635 5.
[方法技巧] (1)当题目中给出的条件有明显的几何特征,考虑用
图象性质来求解. (2)当题目中给出的条件和结论的几何特征不明显,
则可以建立目标函数,再求这个函数的最值.求函数最 值的常用方法有配方法、判别式法、单调性法、三角换 元法等.
利用基本不等式求最值 [例 3] (2017·太原模拟)已知椭圆 M:xa22+y32=1(a>0)的一个 焦点为 F(-1,0),左、右顶点分别为 A,B.经过点 F 的直线 l 与 椭圆 M 交于 C,D 两点. (1)当直线 l 的倾斜角为 45°时,求线段 CD 的长; (2)记△ABD 与△ABC 的面积分别为 S1 和 S2,求|S1-S2,所以椭圆 M 的方程为x42+y32=1, 易求直线方程为 y=x+1,联立方程,得x42+y32=1,
y=x+1, 消去 y,得 7x2+8x-8=0, 设 C(x1,y1),D(x2,y2),Δ=288,x1+x2=-87,x1x2=-87, 所以|CD|= 2|x1-x2|= 2 x1+x22-4x1x2=274.
[答案] C
[方法技巧] 利用曲线的定义、几何性质以及平面几何中的定
理、性质等进行求解,也叫做几何法.
建立目标函数求最值 [例 2] 已知△ABP 的三个顶点都在抛 物线 C:x2=4y 上,F 为抛物线 C 的焦点,
点 M 为 AB 的中点, PF =3FM . (1)若|PF|=3,求点 M 的坐标; (2)求△ABP 面积的最大值. [解] (1)由题意知焦点 F(0,1),准线方程为 y=-1. 设 P(x0,y0),由抛物线定义知|PF|=y0+1,得 y0=2, 所以 P(2 2,2)或 P(-2 2,2), 由 PF =3FM ,得 M-232,23或 M232,23.
圆锥曲线的有关最值PPT优秀课件

2 2 5 . 已 知 椭 圆 3 x + 1 2 y = 3 6 和 直 线 L : x y + 9 = 0 , 在 L 上 任 取
一 点 M , 经 过 点 M 且 以 椭 圆 的 焦 点 F , F 为 焦 点 作 椭 圆 . 1 2
求 M 在 何 处 时 所 作 的 椭 圆 长 轴 最 短 , 并 求 出 此 椭 圆 的 方 程 .
8 p ( p 2 a )
0 | A B |2 p ,0 8 p ( p 2 ap ) 2 p p 解 得 : a . 2 4
( 2 ) 设的 A B垂 直 平 分 线 交于令 A BQ , 坐 标 为 ( x ,y ) , 则 由 3 3 中 点 坐 标 公 式 , 得 x x y y ( x a ) ( x a ) 1 2 1 2 1 2 x a p ,y p , 3 3 2 2 2
圆锥曲线的有关最值
高三——圆锥曲线轮复习
教学目标: 灵活运用代数、三角、几何方法求解析 几何中的有关最值问题.
一、代数法: 借助代数函数求最值的方法,运用代数法时,先要 建立“目标函数”,然后根据“目标函数”的特点 灵活运用求最值的方法。常用的方法有: 1、配方法:将“目标函数”与二次函数在某一闭区 间上的最值联系起来。 2、基本不等式法:转化为定和或定积问题。
2 2 83 k ( 1 k ) 4 2 1 3 ( 当 k 时 取 等 号 ) 2 2 ( 14 k) 3 3
解 法 2 : 设 椭 圆 上 的 点 ( 2 c o s , s i n ) , 设 弦 长 l 1 64 2 2 21 l 4 c o s ( s i n 1 ) 3 ( s i n ) 3 . 3 33
专题3-3 圆锥曲线最值问题-(人教A版2019选择性必修第一册) (教师版)

圆锥曲线最值问题1 常见的几何模型①圆外点到圆上点的距离圆⊙O外一点A与圆上一点B的距离AB最小值是AB1=AO−r,最大值AB2=AO+r(r是圆的半径).②圆上点到圆外直线的距离圆上一动点P到圆外一定直线l的距离最小值是d−r,最大值d+r(r是圆的半径,d是圆心到直线l的距离);③三点共线模型一动点P到两定点A、B的距离分别为PA、PB,当P、A、B共线,且点P在A、B之间时,PA+PB取到最小值P1A+P1B=AB;当P、A、B共线,且点P在A、B同侧时,|PA−PB|取到最大值|P1A−P1B|=AB;其本质是三角形两边之和大于第三边,两边之差小于第三边;④将军饮马模型点A、B在直线l同侧,点P在直线l上,那(AP+BP)min=AP1+BP1;⑤垂线段最值模型点A是∠MON内外的一点,点P在OM上,PA与点P到射线ON的距离之和为PA+PB.(1) 点A是∠MON外,(PA+PB)min=AB1(2) 点A是∠MON内,(PA+PB)min=A′B1⑥胡不归模型如图,求k∙AC+BC(0<k<1),构造射线AE,使得角度sinα=k,则k∙AC+BC=CD+BC,问题转化为“垂线段模型”,则(k∙AC+BC)min=BF.⑦阿氏圆模型如图,圆O半径是r,点A,B在圆O外,点P是圆O上一动点,已知r=k∙OB,求k∙BP+AP的最小值.在线段OB上截取OC=k∙r,则COOP =OPOB=k⇒∆BPO∽∆PCO,即k∙PB=PC,则k∙BP+AP的最小值转化为PC+PA的最小值,当然是AC,即(k∙BP+AP)min=AC.2最值问题常见处理方法①几何法通过观察掌握几何量的变化规律,利用几何知识点找到几何量取到最值的位置,从而求出最值,这需要熟悉常见的几何模型.②代数法理解几何量之间的变化规律,找到“变化源头”,通过引入恰当的参数(一般与源头有关),把所求几何量表示成参数的式子,再利用求函数最值的方法(基本不等式、换元法、数形结合等)求得几何量的最值.【方法一】几何法【典题1】已知椭圆C:x225+y216=1内有一点M(2 ,3),F1 ,F2为椭圆的左、右焦点,P为椭圆C上的一点,求:(1)|PM|-|PF1|的最大值与最小值;(2)|PM|+|PF1|的最大值与最小值.【解析】(1)由椭圆C:x 225+y216=1可知a=5 ,b=4 ,c=3,则F1(-3 ,0) ,F2(3 ,0),则||PM|-|PF1||≤|MF1|=√34,当且仅当P、M、F1三点共线时成立,所以−√34≤|PM|-|PF1|≤√34,所以|PM|-|PF1|的最大值与最小值分别为√34和−√34;(2)2a=10 ,F2(3 ,0) ,|MF2|=√10,设P是椭圆上任一点,由|PF1|+|PF2|=2a=10 ,|PM|≥|PF2|-|MF2|,∴|PM|+|PF1|≥|PF2|-|MF2|+|PF1|≥2a-|MF2|=10−√10,等号仅当|PM|=|PF2|-|MF2|时成立,此时P、M、F2共线,由|PM|≤|PF2|+|MF2|,∴|PM|+|PF1|≤|PF2|+|MF2|+|PF1|=2a+|MF2|=10+√10,等号仅当|PM|=|PF2|+|MF2|时成立,此时P、M、F2共线,故|PM|+|PF1|的最大值10+√10与最小值为10−√10.【点拨】本题采取几何法,通过三点共线模型与椭圆的定义进行求解.【典题2】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1 ,1)的距离与点P到直线x=-1的距离之和的最小值为M,若B(3 ,2),记|PB|+|PF|的最小值为N,则M+N=.【解析】如图所示,过点P作PG垂直于直线x=-1,垂足为点G,由抛物线的定义可得|PG|=|PF|,所以点P到直线x=-1的距离为|PG|,所以|PA|+|PG|=|PA|+|PF|≥|AF|=√5,(三点共线模型)当且仅当A、P、F三点共线时,|PA|+|PG|取到最小值,即M=√5.如图所示,过点P作直线PH垂直于直线x=-1,垂足为点H,由抛物线的定义可得|PH|=|PF| ,点B到直线x=-1的距离为d=4,所以|PB|+|PF|=|PB|+|PH|≥4,当且仅当B、P、H三点共线时,等号成立,即N=4,(垂线段最值模型)因此M+N=√5+4.【点拨】①本题采取几何法,通过几何模型与抛物线的定义进行求解;②处理抛物线类似的题目,注意点在抛物线之内还是之外,比如本题点A在抛物线外,点B在抛物线内.=1,如图,点A的坐标为(−√5 ,0),B是圆x2+(y−√5)2=1上的点,【典题3】已知双曲线方程为x2−y24点M在双曲线的右支上,求|MA|+|MB|的最小值.【解析】设点D的坐标为(√5,0),则点A ,D是双曲线的焦点,由双曲线的定义,得|MA|-|MD|=2a=2.∴|MA|+|MB|=2+|MB|+|MD|≥2+|BD|,(此时相当于把点B看成“定点”看待,当M,B,D三点共线时|MB|+|MD|取到最小值,这是处理两动点的常规方法)又B 是圆x 2+(y −√5)2=1上的点,圆心为C(0,√5), 半径为1,故|BD|≥|CD|-1=√10−1, 从而|MA|+|MB|≥2+|BD|≥√10+1,当点M ,B 在线段CD 上时取等号,即|MA|+|MB|的最小值为√10+1.【点拨】本题眨眼一看,存在两动点M 、B ,有些头疼.题中通过双曲线的定义把|MA|+|MB|的最小值转化为|BD|最小值问题,这就是圆外一点到圆上最短距离问题,即|BD|≥|CD|-1=√10−1.注意两动点最值问题处理的方式.【典题4】 椭圆x 24+y 23=1上的点到直线l :2x +√3y -9=0的距离的最大值为 .【解析】 设与直线2x +√3y -9=0平行的直线2x +√3y +m =0与椭圆x 24+y 23=1相切,由{2x +√3y +m =0x 24+y 23=1得25x 2+16mx +4m 2−36=0, 由∆=0得m =±5,设直线2x +√3y +m =0与直线2x +√3y -9=0的距离为d , 当m =5时,d =4√77; 当m =−5时,d =2√7.椭圆x 24+y 23=1上的点到直线2x +√3y -9=0的距离的最大值为2√7.【点拨】通过观察,可知与直线l 平行且与椭圆相切的直线与椭圆的切点即是取到最小距离的点,最小距离为两平行线的距离.【方法二】代数法【典题1】 求点A(a ,0)到椭圆x 22+y 2=1上的点之间的最短距离. 【解析】设椭圆x 22+y 2=1上的点P(x ,y),其中−√2≤x ≤√2,则PA 2=(x −a )2+y 2=(x −a)2+1−x 22=x 22−2ax +a 2+1 (曲线消元)设f (x )=x 22−2ax +a 2+1, −√2≤x ≤√2,其对称轴为x =2a ,(构造函数,问题转化为二次函数定区间动轴最值问题) ① 当2a <−√2,即a <−√22时,y =f(x)在[−√2 ,√2]上递增,则f (x )min =f(−√2)=a 2+2√2a +2=(a +√2)2,即PA 的最小值为|a +√2|; ②当−√2≤2a ≤ √2,即−√22≤a ≤√22时,y =f(x)在[−√2 ,√2]上先递减再递增,则f (x )min =f (2a )=2a 2−4a 2+a 2+1=1−a 2,即PA 的最小值为√1−a 2; ③当2a > −√2,即a >−√22时,y =f(x)在[−√2 ,√2]上递减,则f (x )min =f(√2)=a 2−2√2a +2=(a −√2)2,即PA 的最小值为|a −√2|; 综上,当a <−√22时,|PA|最小为|a +√2|;−√22≤a ≤√22时,|PA|最小为√1−a 2;a >−√22时,|PA|最小为|a −√2|.【点拨】① 两点A 、B 距离AB 往往用两点距离公式√(x A −x B )2+(y A −y B )2表示;② 本题把求距离最值问题转化为函数的最值问题,函数问题优先讨论定义域x ∈[−√2 ,√2],函数含有参数a ,则按照“二次函数动轴定区间最值问题”的解题套路根据对称轴x =2a 与区间[−√2 ,√2]的相对位置进行分类讨论;③ 本题还是利用椭圆的参数方程{x =acosθy =bsinθ,设椭圆上点P(√2cosθ ,sinθ),从而构造函数|PA|=√cos 2θ−2√2acosθ+a 2+1进行分析,相当引入变量θ表示PA ,而解析中是引入变量x .【典题2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,左顶点为A ,离心率为√22,点B 是椭圆上的动点,△ABF 1的面积的最大值为√2−12. (1)求椭圆C 的方程;(2)设经过点F 1的直线l 与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为l′.若直线l′与直线l 相交于点P ,与直线x =2相交于点Q ,求|PQ||MN|的最小值.【解析】(1)过程略,椭圆C 的方程为x 22+y 2=1. (2)(采取代数法,思路很直接,引入变量表示|PQ||MN|再求其最值,而|PQ |,|MN|是线段,用两点距离公式和弦长公式求出,由于它们是由直线l 引起,故该变量与直线方程有关) 由题意知直线l 的斜率不为0,故设直线l 的方程为x =my -1, 设M(x 1 ,y 1) ,N(x 2 ,y 2) ,P(x P ,y P ) ,Q(2 ,y Q ). 联立{x 2+2y 2=2x =my −1,得(m 2+2)y 2-2my -1=0.此时△=8(m 2+1)>0.∴y 1+y 2=2mm 2+2,y 1y 2=−1m 2+2.由弦长公式,得|MN |=√1+m 2|y 1−y 2|=√1+m 2√4m 2+4m 2+8m 2+2=2√2⋅m 2+1m 2+2,(用m 表示|MN |,弦长公式求得) 又y P =y 1+y 22=m m 2+2,∴x P =my P -1=−2m 2+2.∴P(−2m 2+2,mm 2+2),∵直线l 与直线l′相互垂直,∴k PQ ∙k l =−1 ∴y Q −m m 2+22+2m 2+2⋅1m=−1⇒y Q =−2m −mm 2+2, 即Q(2 ,−2m −mm 2+2),∴|PQ|=√1+m 2⋅2m 2+6m 2+2,∴|PQ||MN|=22√2√m 2+1=√22⋅2√m 2+1=√22(√m 2+1√m 2+1)≥2,当且仅当√m 2+1=√m 2+1m =±1时等号成立.∴当m =±1,即直线l 的斜率为±1时,|PQ||MN|取得最小值2. 【点拨】 ① 本题中求|PQ||MN|的最小值,用代数法,则可把|PQ|、|MN|表示出来,|MN|用到了弦长公式,而|PQ|用两点距离公式,最后|PQ||MN|=√222√m 2+1,则问题就转化为求函数f (m )=√22⋅2√m 2+1的最小值,利用了基本不等式求解;② 求|PQ|时,也可以|PQ |=√1+m 2|x P −2|=√1+m 2⋅2m 2+6m 2+2.【典题3】P是抛物线x2=2y上的动点,过P(x0 ,y0)作圆C:x2+(y-1)2=1的两条切线l1,l2交x轴于A,B 两点,(1)若两条切线l1,l2的斜率乘积为1,求P点的纵坐标;(2)求当4<y0<8时,△PAB面积的取值范围.【解析】(1)设点直线PA ,PB的斜率分别为k1 ,k2,记P(x0 ,y0)∴PA的方程:y-y0=k1(x-x0),则由直线l1与圆相切得:010√1+k1=1⇒(x02−1)k12+2x0(1−y0)k1+y02−2y0=0同理直线l2与圆相切可得(x02−1)k22+2x0(1−y0)k2+y02−2y0=0所以k1 ,k2是(x02−1)k2+2x0(1−y0)k+y02−2y0=0的两根,∴k1k2=y02−2y0 x02−1又∵k1k2=1.∴y02−2y0=x02−1,又x02=2y0,∴y02−4y0+1=0,∴y0=2±√3.(2)由(1)得x A=x0−y0k1,x B=x0−y0k2,∴S△PAB=12|AB||y P|=12y02|1k1−1k2|=12y02|k2−k1k1k2|由(1)知:|k1k2|=|y02−2y0x02−1| ,|k1−k2|=|2√y02−2y0+x02x02−1|=|2√y02x02−1|=|2y0x02−1|;∴S△PAB=12y02|k2−k1k1k2|=12y02|2y0y02−2y0|=y02|y0−2|=y02y0−2,故令t=y0-2∈(2 ,6),∴S△PAB=y02y0−2=(t+2)2t=t+4t+4∵f(t)=t+4t+4在(2 ,6)上递增,故函数值域为(8 ,323),即△PAB 面积的取值范围为(8 ,323).【点拨】① 若x 1、x 2满足ax 12+bx 2+c =0 ,ax 22+bx 2+c =0(a ≠0),则x 1、x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根;② 本题求△PAB 面积的取值范围,则先求出S △PAB =y 02y 0−2(本题给出了y 0的范围,用y 0作为变量表示面积很自然),则问题就变成求函数f (y 0)=y 02y 0−2, y 0∈(4 ,8)的值域问题,用到了换元法与对勾函数f (t )=t +4t的性质.【典题4】 如图,已知抛物线C :y 2=2px(p >0),G 为圆H :(x +2)2+y 2=1上一动点,由G 向C 引切线,切点分别为E ,F ,当G 点坐标为(-1 ,0)时,△GEF 的面积为4. (1)求C 的方程;(2)当点G 在圆H :(x +2)2+y 2=1上运动时,记k 1,k 2,分别为切线GE ,GF 的斜率,求|1k 1−1k 2|的取值范围.【解析】(1)设切线方程为:y =k(x +1),不妨设k >0. 联立{y =k(x +1)y 2=2px ,化为k 2x 2+(2k 2-2p)x +k 2=0,则△=(2k 2-2p)2-4k 4=0,化为p =2k 2.方程k 2x 2+(2k 2-2p)x +k 2=0化为(x -1)2=0,解得x =1. ∴E(1 ,2k),由对称性可知F(1,−2k),∵△GEF 的面积为4,∴12×2×4k =4,解得k =1. ∴p =2.∴C 的方程为:y 2=4x .(2)设G(x 0 ,y 0) ,(-3≤x 0≤-1),则y 02=1−(x 0+2)2.设切线方程为:y -y 0=k(x -x 0),联立{y −y 0=k(x −x 0)y 2=4x ,化为ky 2-4y +4(y 0-kx 0)=0,△1=16-16k(y 0-kx 0)=0.∴x 0k 2-ky 0+1=0,∴k 1+k 2=y 0x 0,k 1k 2=1x 0,∴|k 1-k 2|=√(k 1+k 2)2−4k 1k 2=√y 02x 02−4x 0=√y 02−4x 0|x 0|.∴|1k 1−1k 2|=|k 1−k 2||k 1k 2|=√y 02−4x 0=√1−(x 0+2)2−4x 0=√−(x 0+4)2+13∈[2 ,2√3].∴|1k 1−1k 2|的取值范围是[2 ,2√3].【点拨】理解到本题的变化源头在点G(x 0 ,y 0),利用直线与抛物线相切把|1k 1−1k 2|用x 0 ,y 0表示,由于y 02+(x 0+2)2=1,想到消元y 0,得到|1k 1−1k 2|=√−(x 0+4)2+13,把问题转化为求函数f (x 0)=√−(x 0+4)2+13的值域,注意到x 0的取值范围. 巩固练习1(★★) 已知抛物线y 2=4x 的焦点为F ,定点A(2 ,2),在此抛物线上求一点P ,使|PA|+|PF|最小,则P 点坐标为( ) A .(-2,2) B .(1,√2)C .(1,2)D .(1,-2)【答案】 C【解析】根据抛物线的定义,点P 到焦点F 的距离等于它到准线l 的距离, 设点P 到准线l :x =-1的距离为PQ,则所求的|PA|+|PF|最小值,即|PA|+|PQ|的最小值;根据平面几何知识,可得当P 、A 、Q 三点共线时|PA|+|PQ|最小, ∴|PA|+|PQ|的最小值为A 到准线l 的距离;此时P 的纵坐标为2,代入抛物线方程得P 的横坐标为1,得P(1,2) 故选:C .2(★★) F 是椭圆x 29+y 25=1的左焦点,P 是椭圆上的动点,A(1 ,1)为定点,则|PA|+|PF|的最小值是( ) A .9−√2B .3+√2C .6−√2D .6+√2 【答案】 C【解析】椭圆x 29+y 25=1的a =3,b =√5,c =2,如图,设椭圆的右焦点为F′(2,0),则|PF|+|PF′|=2a =6;∴|PA|+|PF|=|PA|+6-|PF′| =6+|PA|-|PF′|;由图形知,当P 在直线AF′上时,||PA |-|PF ′||=|AF ′|=√2,当P 不在直线AF′上时,根据三角形的两边之差小于第三边有,||PA|-|PF′||<|AF′|=√2;∴当P 在F′A 的延长线上时,|PA|-|PF′|取得最小值−√2,∴|PA|+|PF|的最小值为6−√2.故选:C .3(★★) 点P 是双曲线x 24−y 2=1的右支上一点,M 、N 分别是(x +√5)2+y 2=1和(x −√5)2+y 2=1上的点,则|PM|-|PN|的最大值是( )A .2B .4C .6D .8 【答案】C【解析】双曲线x 24−y 2=1中,如图:∵a =2,b =1,c =√5,∴F 1(−√5,0),F 2(√5,0),∴|MP|≤|PF 1|+|MF 1|,…①∵|PN|≥|PF 2|-|NF 2|,可得-|PN|≤-|PF 2|+|NF 2|,…②∴①②相加,得|PM|-|PN|≤|PF 1|+|MF 1|-|PF 2|+|NF 2|=(|PF 1|-|PF 2|)+|MF 1|+|NF 2|∵|PF 1|-|PF 2|=2a =2×2=4,|MF 1|=|NF 2|=1∴|PM|-|PN|≤4+1+1=6故选:C .4(★★★) 【多选题】已知抛物线x 2=2py(p >0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q .若抛物线C 上存在一点E(t ,2)到焦点F 的距离等于3.则下列说法正确的是( )A .抛物线的方程是x 2=2yB .抛物线的准线是y =-1C .sin∠QMN 的最小值是12D .线段AB 的最小值是6【答案】BC【解析】(1)抛物线C :x 2=2py(p >0)的焦点为F (0,p 2),得抛物线的准线方程为y =−p 2, 点点E(t,2)到焦点F 的距离等于3,可得2+p 2=3,解得p =2, 则抛物线C 的方程为x 2=4y ;所以A 不正确;抛物线的准线方程:y =-1,所以B 正确;(2)由题知直线l 的斜率存在,F(0,1),设A(x 1,y 1),B(x 2,y 2),直线l 的方程为y =kx +1,由{y =kx +1x 2=4y,消去y 得x 2-4kx -4=0,所以x 1+x 2=4k,x 1x 2=-4,所以y 1+y 2=k(x 1+x 2)+2=4k 2+2,所以AB 的中点Q 的坐标为(2k,2k 2+1),|AB|=y 1+y 2+p =4k 2+2+2=4k 2+4,所以圆Q 的半径为r =2k 2+2,在等腰△QMN 中,sin∠QMN =|y Q |r =2k 2+12k 2+2=1−12k 2+2≥1−12=12, 当且仅当k =0时取等号.所以sin∠QMN 的最小值为12.所以C 正确; 线段AB 的最小值是:y 1+y 2+2=4k 2+4≥4.所以D 不正确;故选:BC .5(★★) 设P ,Q 分别为圆x 2+(y −6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是 .【答案】 6√2【解析】设椭圆上的点为(x,y),则∵圆x 2+(y -6)2=2的圆心为(0,6),半径为√2, ∴椭圆上的点(x,y)到圆心(0,6)的距离为√x 2+(y −6)2=√10(1−y)2+(y −6)2=√−9(y +23)2+50≤5√2∴P,Q 两点间的最大距离是5√2+√2=6√2.6(★★★) E 、F 是椭圆x 24+y 22=1的左、右焦点,点P 在直线x =2√2上,则∠EPF 的最大值是 .【答案】π6 【解析】设P(2√2,t)(t >0),则tan∠EPF =tan(∠EPM -∠FPM)=3√2t −√2t 1+3√2×√2t 2=2√2t+6t ≤√33(当且仅当t =√6时取等号) 此时tan∠EPF =√33,∠EPF =π6. 7(★★★) 已知过抛物线C :y 2=4x 焦点的直线交抛物线C 于P,Q 两点,交圆x 2+y 2-2x =0于M ,N 两点,其中P ,M 位于第一象限,则1|PM|+4|QN|的最小值为 .【答案】4【解析】设P(x 1,y 1),Q(x 2,y 2),再设PQ 的方程为x =my +1,联立{x =my +1y 2=4x,得y 2-4my -4=0. ∴y 1+y 2=4m ,y 1y 2=-4,则x 1x 2=(y 1y 2)216=1.|PM|∙|QN|=(|PF|-1)(|QF|-1)=(x 1+1-1)(x 2+1-1)=x 1x 2=1,则1|PM|+4|QN|≥2√1|PM|⋅4|QN|=4. ∴1|PM|+4|QN|的最小值为4.8(★★★) 如图,抛物线C :x 2=2py(p >0)的焦点为F ,以A(x 1 ,y 1)(x 1≥0)为直角顶点的等腰直角△ABC 的三个顶点A ,B ,C 均在抛物线C 上.(1)过Q(0 ,-3)作抛物线C 的切线l ,切点为R ,点F 到切线l 的距离为2,求抛物线C 的方程;(2)求△ABC 面积的最小值.【答案】 (1) x 2=4y (2) 4p 2【解析】(1)设过点Q(0,-3)的抛物线C 的切线l :y =kx -3,联立抛物线C :x 2=2py(p >0),得x 2-2pkx +6p =0,则△=4p 2k 2-4×6p =0,得pk 2=6,∵F(0,p 2),F 到切线l 的距离为d =|p 2+3|√k 2+1=2, 化简得(p +6)2=16(k 2+1),∴(p +6)2=16(6p +1)=16(p+6)p∵p >0,∴p +6>0,得p 2+6p -16=(p +8)(p -2)=0,∴p=2.∴抛物线方程为x2=4y.(2)已知直线AB不会与坐标轴平行,设直线AB:y-y1=t(x-x1)(t>0),联立抛物线方程,得x2-2ptx+2p(tx1-y1)=0,则x1+x B=2pt,则x B=2pt-x1,同理可得x C=−2pt−x1.∵|AB|=|AC|,即√1+t2|x B-x1|=√1+1t2|x C-x1|,∴t(x B-x1)=x1-x C,即x1=p(t 2−1t)t+1.∴|AB|=√1+t2|x B-x1|=√1+t2(2pt-2x1)=2p√1+t2(t2+1)t(t+1).∵t2+1t≥2(当且仅当t=1时,等号成立),√t2+1 t+1=√t2+1t2+2t+1≥√t2+1t2+1+(t2+1)=√22(当且仅当t=1时等号成立),所以|AB|≥2√2p,△ABC面积的最小值为4p2.9(★★★★) 已知抛物线C:y2=2px(p>0),焦点为F,直线l交抛物线C于A(x1 ,y1),B(x2 ,y2)两点,D(x0 ,y0)为AB的中点,且|AF|+|BF|=1+2x0.(1)求抛物线C的方程;(2)若x1x2+y1y2=-1,求x0|AB|的最小值.【答案】(1) y2=2x(2) √24【解析】(1)根据抛物线的定义知|AF|+|BF|=x1+x2+p,x1+x3=2x D,∵|AF|+|BF|=1+2x D,∴p=1,∴y2=2x.(2)设直线l的方程为x=my+b,代入抛物线方程,得y2-2my-2b=0,∵x1x2+y1y2=-1,即y12y124+y1y2=−1,∴y1y2=-2,即y1y2=-2b=-2,∴b=1,∴y1+y2=2m,y1y2=-2,|AB|=√1+m2|y1−y2|=√1+m2⋅√(y1+y2)2−4y1y2=2√1+m2⋅√m2+2x D=x1+x22=y12+y124=14[(y1+y2)2−2y1y2]=m2+1,∴x0|AB|=22√m2+1⋅√m2+2令t=m2+1,t∈[1,+∞),则x0|AB|=2√t⋅√t+1=2√1+1t≥√24;即x0|AB|的最小值为√24.。
圆锥曲线中的定点 定值 最值 范围问题 公开课一等奖课件

(2)双曲线中的最值 x2 y2 F1,F2 分别为双曲线a2-b2=1(a>0,b>0)的左、右焦点,P 为 双曲线上的任一点,O 为坐标原点,则有 ①|OP|≥a; ②|PF1|≥c-a. (3)抛物线中的最值 点 P 为抛物线 y2=2px(p>0)上的任一点,F 为焦点,则有 p ①|PF|≥2; ②A(m,n)为一定点,则|PA|+|PF|有最小值.Βιβλιοθήκη (1)求C1,C2的方程;
(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点.当直线OM 与C2交于P,Q两点时,求四边形APBQ面积的最小值.
解 a2-b2 a2+b2 3 3 3 4 4 (1)因为 e1e2= 2 ,所以 a · a = 2 ,即 a -b =4
a4,因此 a2=2b2,从而 F2(b,0),F4( 3b,0).于是 3b-b=|F2F4|
2 2 2· 1 + m 又 因 为 |y1 - y2| = y1+y22-4y1y2 = , 所 以 2d = 2 m +2
2 2· 1+m2 . 2 m +4
故四边形 APBQ 的面积 2 2· 1+m2 1 S=2|PQ|· 2d= 2-m2 3 =2 2· -1+ . 2-m2 而 0<2-m2≤2,故当 m=0 时,S 取得最小值 2. 综上所述,四边形 APBQ 面积的最小值 2.
第2讲 圆锥曲线中的定点、定值、最值、范围问题
高考定位 圆锥曲线的综合问题包括:探索性问题、定点与定 值问题、范围与最值问题等,一般试题难度较大.这类问题以 直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要
综合运用函数与方程、不等式、平面向量等诸多知识以及数形
结合、分类讨论等多种数学思想方法进行求解,对考生的代数 恒等变形能力、计算能力等有较高的要求.
数学:《圆锥曲线中的最值问题》课件

D.2 2
2a 2 2
2
练习:
2
y
P x y 1.椭圆 2 2 1(a b 0)上的点到焦点F (c,0)的最 a b | PF | e D.b-c B A(3,1) 大距离为___ A.a-c B.a+c C.b+cPQ | 2 |
2
Q
数形结合法
x O F 2.以椭圆短轴的一端点和椭圆的两焦点为顶点 1 | PF || PQ D 的三角形的面积为1,则椭圆长轴的最小值为___|
课后练习:
1.已知点F1 (3,0)、F2 (3,0),求与直线x y 9 0有公共点 的椭圆中长轴最短的椭圆方程.
2. P为抛物线x 2 4 y上的一动点,定点A(8,7),则P到x轴 与到A点的距离之和的最小值为 ___.
3.长度为3的线段AB的两个端点在抛物线y 2 x上移动, 线段AB的中点为M,求点M到y轴距离的最小值d .
因为x只有一解, 16 4(8 r 2 ) 0 r 2 故所求最短距离为
2
O x
r 2 2 2
解法三:目标函数法
m2 解:设抛物线上的点为M( 2, m ),圆上任意点为B( 2cos , 4 2 m 2 sin ), 则 | MB |2 [( 2) 2cos ]2 (m 2 sin )2 4 y m4 m2 6 2 2[( 2)cos m sin ] 16 4 y2 4( x 2) m4 m2 62 2 ( 2)2 m 2 sin( ) 16 4 B M m4 m2 2 62 2 ( 2)2 m 2 16 4 O x m4 ( 4 2 )2 (2 2 )2 16 其中,当且仅当抛物线和圆上的两点分别为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/5/24
1
圆锥曲线中的最值问题
2019/5/24
2
复习目标:
1.能根据变化中的几何量的关系,建立 目标函数,然后利用求函数最值的方法 (如利用一次或二次函数的单调性,三角 函数的值域,基本不等式,判别式等)求 出最值.
2.能够比较熟练地运用数形结合的 方法,结合曲线的定义和几何性质,用几何 法求出某些最值.述内容要点
2019SUCCESS
POWERPOINT
2019/5/24
2019SUCCESS
THANK YOU
2019/5/24
例1.(1)抛物线 y2 x 上的点到直线x-2y+4=0 距离的最小值是------------.
(2)已知点 A(2, 3),F是椭圆 X 2 Y 2 1的左焦点,一
16 12
动点M在椭圆上移动,则|AM|+2|MF|的最小值_______.
y
例 m 5) ,过其左焦点且斜率为1
的直线与椭圆及其准线的交点从左到右顺序为A,B,C,D.记
f(m)=||AB|-|CD||
(1)求f(m)的解析式.
(2)求f(m)的最大值和最小值.
y x2
x2 y2 1 a2 b2
y2 2x
总结
是求最值的两种方法: 1.建立目标函数求最值. 2.数形结合求最值.