圆锥曲线的定点、定值和最值问题
高中数学-圆锥曲线中的定点、定值与最值问题

[例 2] 如图,在平面直角
坐标系 xOy 中,椭圆xa22+by22=1(a>b>0)的左、
右焦点分别为 F1(-c,0),F2(c,0).已知点(1,e)
和e,
23都在椭圆上,其中
e
为椭圆的离心率.
(1)求椭圆的方程;
(2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF1 与直
线 BF2 平行,AF2 与 BF1 交于点 P,
法二:同(2)法一假设前内容. 假设平面内存在定点M满足条件,由图形对称性知,点M 必在x轴上. 取k=0,m= 3,此时P(0, 3),Q(4, 3), 以PQ为直径的圆为(x-2)2+(y- 3)2=4, 交x轴于点M1(1,0),M2(3,0); 取k=-12,m=2,此时P1,32,Q(4,0), 以PQ为直径的圆为x-522+y-342=4156, 交x轴于点M3(1,0),M4(4,0).
因为 MP =-4mk-x1,m3 , MQ =(4-x1,4k+m), 由 MP ·MQ =0,得-1m6k+4kmx1-4x1+x12+1m2k+3=0, 整理,得(4x1-4)mk +x12-4x1+3=0.(**) 由于(**)式对满足(*)式的m,k恒成立, 所以4x1x2-1-4x41=+03,=0, 解得x1=1. 故存在定点M(1,0),使得以PQ为直径的圆恒过点M.
圆锥曲线中的最值问题
[例3] 如图,在直角坐标系xOy中,点 P1,12到抛物线C:y2=2px(p>0)的准线的距 离为54.点M(t,1)是C上的定点,A,B是C上的 两动点,且线段AB被直线OM平分.
(1)求p,t的值; (2)求△ABP面积的最大值.
[思路点拨] (1)利用点M(t,1)在曲线上及点P 1,12 到准线的距 离为54求p与t的值;
(完整版)圆锥曲线的最大值、定问题

圆锥曲线最值、定值、范围一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac 的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP→+OQ→与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.。
2014数学高考题型历炼(Word解析版):6-3 圆锥曲线中的定点、定值与最值问题

1.(定义新)我们把离心率为黄金比5-12的椭圆称为“优美椭圆”.设F 1,F 2是“优美椭圆”C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,则椭圆C 上满足∠F 1PF 2=90°的点P 的个数为( )A .0B .1C .2D .32.(背景新) 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在棱AB 上,且AM =13,点P 是平面ABCD 上的动点,且动点P 到直线A 1D 1的距离与P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .圆B .双曲线C .抛物线D .直线3.(交汇新如图,以原点O 为圆心的圆与抛物线y 2=2px(p >0)交于A ,B两点,且弦长AB =23,∠AOB =120°,过抛物线焦点F 作一条直线与抛物线交于M ,N 两点,它们到直线x =-1的距离之和为72,则这样的直线有________条.4.(交汇新已知M(-2,0),N(2,0)两点,动点P 在y 轴上的射影为H ,且使PH →2与PM →·PN →分别是公比为2的等比数列的第三、四项.已知过点N 的直线l 交动点P 的轨迹C 于x 轴下方两个不同的点A ,B ,设R 为AB 的中点,若过点R 与定点Q(0,-2)的直线交x 轴于点D(x 0,0),则x 0的取值范围是________.[历 炼]1.解析:设|PF 1|=m ,|PF 2|=n ,则⎩⎪⎨⎪⎧m +n =2a ,4c 2=m 2+n 2,mn =2a 2-2c 2.而5-12=c a ,所以mn =2a 2-2⎝ ⎛⎭⎪⎫5-12a2=(5-1)a 2,与m +n =2a 联立无实数解.答案:A2.解析:设点P 在AD 上的射影为Q ,则点P 到A 1D 1的距离为1+|PQ|2.以AB 所在的直线为x 轴,AD 所在的直线为y 轴,建立平面直角坐标系,则点M 坐标为⎝ ⎛⎭⎪⎫13,0,设P(x ,y),连接PM ,则|PM|2=⎝ ⎛⎭⎪⎫x -132+y 2,依题意得1+x 2-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -132+y 2=1,化简可知y 2=23x -19.故选C .答案:C3.解析:由题意知,AB 垂直于x 轴且A ,B 两点关于x 轴对称,可设点A 的坐标为(x ,3),且tan 60°=3x =3,得x =1,代入y 2=2px 得2p =3,所以抛物线方程为y 2=3x ,所以抛物线的焦点坐标为⎝ ⎛⎭⎪⎫34,0,准线方程为x =-34,M ,N 两点到直线x =-1的距离之和为72,所以它们到直线x =-34的距离之和为72-12=3,即|MN|=3,而在抛物线中通径的长度为3,所以这样的直线只有1条.答案:14.解析:M(-2,0),N(2,0),设动点P 的坐标为(x ,y), ∴ H(0,y),PH →=(-x,0),PM →=(-2-x ,-y),PN →=(2-x ,-y),PH →2=x 2,PM →·PN →=-(4-x 2)+y 2=x 2-4+y 2,由条件得y 2-x 2=4,又∵公比为2,∴x 2≠0,∴动点P 的轨迹方程为y 2-x 2=4(x ≠0).设直线l 的方程为y =k(x -2),A(x 1,y 1),B(x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x -2),y 2-x 2=4,∴⎝ ⎛⎭⎪⎫1-1k 2y 2-4k y -8=0,∴ ⎩⎪⎨⎪⎧∴y 1+y 2=4kk 2-1<0,∴y 1y 2=-8k 2k 2-1>0,Δ>0,解得22<k <1,又∵R ⎝ ⎛⎭⎪⎫2k 2k 2-1,2k k 2-1,k RQ =k 2+k -1k 2,直线RQ的方程为y +2=k 2+k -1k 2x ,∴x 0=2k 2k 2+k -1=2-⎝ ⎛⎭⎪⎫1k -122+54,∴2<x 0<2+2 2. 答案:(2,2+22)。
(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-

第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。
圆锥曲线中综合问题(题型归纳)

圆锥曲线中综合问题【考情分析】1.圆锥曲线的综合问题是高考考查的重点内容,常见的热点题型有:范围、最值问题,定点、定值问题,探索型问题等.2.以解答题的压轴题形式出现,难度较大,重在提升逻辑推理、直观想象、数学运算的核心素养.【题型一】圆锥曲线中的最值、范围问题【典例分析】1.(2021·山东滕州一中高三模拟)已知椭圆22:143x y C +=的左顶点为A ,过其右焦点F 作直线交椭圆C 于D ,E (异于左右顶点)两点,直线AD ,AE 与直线:4l x =分别交于M ,N ,线段MN 的中点为H ,连接FH .(1)求证:FH DE ⊥;(2)求DEH △面积的最小值.【解析】(1)由已知得(1,0)F ,设()11,D x y ,()22,E x y ,直线DE 的方程为1x my =+,与椭圆方程联立得()2234690m y my ++-=,122634m y y m +=-+,122934y y m =-+设直线AD 的方程为11(2)2y y x x =++,与直线:4l x =联立得1164,2y M x ⎛⎫⎪+⎝⎭,同理可得2264,2y N x ⎛⎫⎪+⎝⎭,则()()()12121221212123233323339M N H my y y y y y y y y m my my m y y m y y ++⎛⎫+==+==- ⎪+++++⎝⎭,(4,3)H m ∴-,3041FH m k m --==--,当0m =时,显然DE FH ⊥;当0m ≠时,()11DE FH k k m m⨯=⨯-=-时,DE FH ⊥,综上,可得DE FH ⊥.(2)12234y y m -===+()2122121||34m DE y y m +=-=+,H 到直线DE的距离d ==(221811||234DFHm S DE d m +=⨯=+△,设2211t m t =≥⇒=-,()3322()(1)31314t t f t t t t ==≥+-+,()422233'()031t t f t t +=>+()f t ∴在[1,)+∞上单调递增,min 1()(1)4f t f ==,当1t =,即0m =时取得最小值.DEH ∴ 面积的最小值是92.2.(2021·山东省实验中学高三模拟)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 是椭圆C上位于第二象限的任一点,直线l 是12F PF ∠的外角平分线,直线2PF 交椭圆C 于另一点Q ,过左焦点1F 作l 的垂线,垂足为N ,延长1F N 交直线2PF 于点M ,||2ON =(其中O 为坐标原点),椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)求1PF Q 的内切圆半径r 的取值范围.【解析】(1)由题意可得1||||F N NM =,且1||||PF PM =,所以1222||||||||||2PF PF PM PF MF a +=+==,因为O ,N 分别为线段12F F ,1F M 的中点,所以ON 为12MF F △的中位线,所以2//ON MF 且21||||22ON MF a ===,由12c a =,222a b c =+得23b =,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知2(1,0)F ,设直线2PF 的方程为1(0)x my m =+≠,由点P 在第二象限求得33m <.设11(,)P x y ,22(,)Q x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩得22(34)690m y my ++-=,由根与系数的关系得122634m y y m +=-+,122934y y m =-+,所以12212121212211121||||2()42234PF Q m S F F y y y y y y m +=⋅⋅-=⨯+-+△,令2231()3t m t =+>,则221m t =-,所以12212121213(1)4313PF Q t t S t t t t===-+++△,因为13y t t=+在233t >时单调递增,所以15332y t t =+>所以11283153PF Q S t t=∈+△,又11111(||||||)4422PF Q S PF PQ QF r a r r =++⋅=⋅⋅=△,所以83045r <<,即305r <<,所以1PF Q 内切圆半径r 的取值范围是23)5.【提分秘籍】求解圆锥曲线中最值、范围问题的主要方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【变式演练】1.(2021·辽宁本溪高级中学高三模拟)已知点F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,椭圆上任意一点到点F 距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若M 为椭圆C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点(1,0)E -可作圆M 的两条切线,EA EB (,A B 为切点),求四边形EAMB 面积的最大值.【解析】(1)根据题意椭圆上任意一点到点F 距离的最大值为3,最小值为1.所以31a c a c +=⎧⎨-=⎩,解得2,1a c ==,所以b =因此椭圆C 的标准方程为22143x y +=(2)由(1)知,()1,0E-为椭圆的左焦点,根据椭圆定义知,||||4ME MF +=,设|r MF MB ==|,∵点E 在圆M 外,∴||4ME r r =->,∴12r ≤<所以在直角三角形MEB 中,||EB ==1||||2MEB S EB MB =⋅= ,由圆的性质知,四边形EAMB面积22MEB S S == ,其中12r ≤<.即)12S r =≤<.令()322412y r r r =-+≤<,则2682(34)y r r r r '=-+=--当413r <<时,0y '>,3224y r r =-+单调递增;当423r <<时,0y '<,3224y r r =-+单调递减.所以,在43r =时,y 取极大值,也是最大值此时maxS ==2.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的两焦点与短轴的一个端点的连线构成等边三角形,直线10x y ++-=与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)BMN △是椭圆C 的内接三角形,若坐标原点O 为BMN △的重心,求点B 到直线MN 距离的取值范围.【解析】(1)设椭圆2222:1x y C a b+=的右焦点()2,0F c ,则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:()222x c y a -+=,所以圆心到直线10x y ++=的距离d a ==,又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以2,a c b ==,解得:2,1a b c ===,所以椭圆的标准方程为22143x y +=;(2)设(),B m n ,设,M N 的中点为D ,直线OD 与椭圆交于A,B 两点,因为O 为BMN △的重心,则2BO OD OA ==,所以,22m n D ⎛⎫-- ⎪⎝⎭即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处.由2OB =得:1OD =,则O 到直线MN 距离为1,B 到直线MN 距离为3;当MN 的斜率存在时,设()()1122,,,M x y N x y ,则有:22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212043x x x x y y y y +-+-+=,因为D 为,M N 的中点,所以1212,x x m y y n +=-+=-,所以121234y y mk x x n-==--,所以直线MN 的方程为3242n m m y x n ⎛⎫+=-+ ⎪⎝⎭,即2268430mx ny n m +++=,所以原点O 到直线MN距离22d =.因为22143m n +=,所以223124m n =-,所以22d ===因为203n <≤,所以3<≤13≤<,所以332d ≤<综上所述,33332d ≤≤.即点B 到直线MN 距离的取值范围33,32⎡⎤⎢⎥⎣⎦.【题型二】圆锥曲线中的定点、定值问题【典例分析】1.(2021浙江镇海中学高三模拟)已知()0,1F 且满足1PF x =+的动点(),P x y 的轨迹为C.(1)求曲线C 的轨迹方程;(2)如图,过点()1,0-T 的斜率大于零的直线与曲线C 交于D ,M 两点,()1,1Q -,直线DQ 交曲线C 于另外一点N ,证明直线MN 过定点.【解析】(1)∵1PF x =+,1x ≥-1x =+,等式两边平方整理得24y x =.(2)证明:设()11,M x y ,()22,N x y ,()33,D x y .由21123344y x y x ⎧=⎨=⎩两式相减得1313134DM y y k x x y y -==-+.所以直线DM 的方程为()11134y y x x y y -=-+,整理得()13134y y y x y y +=+(*).因为点T 在直线上,所以134y y =①,同理直线DN 的方程为()23234y y y x y y +=+,因为点Q 在直线上,所以()23234y y y y -+=+②.由①②两式得2211444y y y y ⎛⎫-+=+⋅ ⎪⎝⎭,整理得()121244y y y y =-+-.由(*)式同理知直线MN 的方程为()12124y y y x y y +=+,所以()()1212124444y y y x y y x y y +=+=-+-,整理得直线MN 的方程为()()()12441y y y x ++=-,所以直线MN 过定点()1,4-.2.(2021·天津八中高三模拟)已知椭圆C :2221(0)6x y b b+=>的左、右焦点分别为()1,0F c -和()2,0F c ,P 为椭圆C 上任意一点,三角形12PF F 面积的最大值是3.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点()2,0的直线l 交椭圆C 于A ,B 两点,且9,04Q ⎛⎫⎪⎝⎭,证明:QA QB ⋅ 为定值.【解析】(Ⅰ)由题意知226c b =-,当P 点位于椭圆C 短轴端点时,三角形12PF F 的面积S 取最大值,此时max 1232S c b bc =⨯⨯==.所以229b c =,即()2269bb -=,解得23b=.故椭圆C 的方程为22163x y +=.(Ⅱ)(方法1)当直线l 的斜率不为0时,设直线l :2x my =+交椭圆于()()1122,,,A x y B x y .由22226x my x y =+⎧⎨+=⎩消去x 得,()222420m y my ++-=.则12122242, 22m y y y y m m +=-=-++.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以()()2121212129911144416QA QB x x y y m y y m y y ⎛⎫⎛⎫⋅=--+=+-++ ⎪⎪⎝⎭⎝⎭()222222141211512421621616m m m m m m m --⎛⎫⎛⎫=+---+=+=- ⎪ ⎪+++⎝⎭⎝⎭.当直线l 的斜率为0时,(A B ,则998115,0,06441616QA QB ⎫⎛⎫⋅=⋅=-+=-⎪ ⎪⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.(方法2)当直线l 的斜率存在时,设直线l :()2y k x =-交椭圆于()()1122,,,A x y B x y .由22(2)26y k x x y =-⎧⎨+=⎩消去y 得,()2222218860k x k x k +-+-=.则2122821k x x k +=+,21228621k x x k -=+.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.所以()()222121212129998112444416QA QB x x y y k x x k x x k ⎛⎫⎛⎫⎛⎫⋅=--+=+-++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ()22222228698811242142116k k k k k k k -⎛⎫=+⋅-+⋅++⎪++⎝⎭22126818115621161616k k --=+=-+=-+.当直线l 的斜率不存在时,可求得()()2,1,2,1A B -,则991152,12,11441616QA QB ⎛⎫⎛⎫⋅=-⋅--=-=- ⎪ ⎪⎝⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.【提分秘籍】1.求定值问题的思路方法(1)思路:求解定值问题的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.(2)方法:从特殊入手,求出定值,再证明这个值与变量无关;直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.求定点问题的解题方法(1)动直线l 过定点问题:设动直线方程(斜率存在)为y=kx+t,由题设条件将t 用k 表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C 过定点问题:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【变式演练】1.(2021·广东华南师范大学附属中学高三模拟)设A ,B 为双曲线2222:1x y C a b-=(0,0)a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于,P Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由l x ⊥轴时,AMN 为等腰直角三角形,可得||||||AF NF MF ==,所以2ba c a+=,即2220c ac a --=,故220e e --=,结合1e >,解得2e =.故双曲线C 的离心率为2.(2)因为2c e a ==,所以双曲线:C 222213x y a a-=,显然直线l 的斜率不为0,设直线:2l x my a =+,11(,)M x y ,22(,)N x y ,联立直线l 与双曲线C 的方程得2222213x my a x y a a=+⎧⎪⎨-=⎪⎩,化简得222(31)1290m y amy a -++=,根据根与系数的关系,得2121222129,3131am a y y y y m m +=-⋅=--,①所以121224()431ax x m y y a m -+=++=-,②222221212122342()431a m a x x m y y am y y a m --⋅=⋅+++=-,③设直线:AM 11()y y x a x a =++,直线:AN 22()y y x a x a=++,令2ax =,可得121233(,),(,)22()22()ay ay a a P Q x a x a ++,设()G x y ,是以PQ 为直径的圆上的任意一点,则0PG QG ⋅=,则以PQ 为直径的圆的方程为2121233()[][]022()2()ay ay a x y y x a x a -+--=++,由对称性可得,若存在定点,则一定在x 轴上,令0y =,可得2121233()022()2()ay ay a x x a x a -+⋅=++,即2212212129()024[()]a y y a x x x a x x a -+=+++,将①②③代入,可得22222222229931()034424()3131a a a m x a m a a a a m m ⋅--+=---+⋅+--,即229(24a x a -=,解得x a =-或2x a =,所以以PQ 为直径的圆过定点(,0)a -,(2,0)a .2.(2021·山师大附中高三模拟)已知圆(22:12C x y +=,动圆M过点)D且与圆C 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)假设直线l 与轨迹E 相交于A ,B 两点,且在轨迹E 上存在一点P ,使四边形OAPB 为平行四边形,试问平行四边形OAPB 的面积是否为定值?若是,求出此定值;若不是,请说明理由.【解析】(1)因为CD =<,所以点D 在圆内.又因为圆M 过点D 且与圆C相切,所以MC MD =,所以MC MD CD +=>.即点M 的轨迹是以C ,D 为焦点的椭圆.则2a =,即a =又因为222a b -=,所以21b =.故动圆圆心M 的轨迹E 的方程为:2213x y +=.(2)当直线AB 的斜率不存在时,可得直线AB 的方程为32x =±,此时32A y =,所以四边形OAPB 的面积32S =.当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,由22,13y kx m x y =+⎧⎪⎨+=⎪⎩整理得,()()222316310k x kmx m +++-=.因为直线l 与轨迹E 相交于A ,B 两点,所以()()()222222361231112310k m k m k m =-+-=-+>△.设()11,A x y ,()22,B x y ,则122631kmx x k +=-+,()21223131m x x k -=+.所以()121222231my y k x x m k +=++=+.设AB 的中点为Q ,则Q 的坐标为223,3311km m k k ++⎛⎫-⎪⎝⎭.因为四边形OAPB 为平行四边形,所以22622,3131km m OP OQ k k ⎛⎫==- ⎪++⎝⎭,所以点P 的坐标为2262,3131km m k k ⎛⎫-⎪++⎝⎭.又因为点Р在椭圆上,所以222262311331km m k k ⎛⎫- ⎪+⎛⎫⎝⎭+= ⎪+⎝⎭.整理得,22431m k =+.又因为12223131AB x k k =-==++,原点О到直线AB的距离为d =所以平行四边形OAPB的面积322AOBS S AB d ==⋅== .综上可知,平行四边形OAPB 的面积为定值32.1.(2021·江苏南京师范大学附属中学高三模拟)已知抛物线2:2(0)C y px p =>,满足下列三个条件中的一个:①抛物线C 上一动点Q 到焦点F 的距离比到直线:1m x =-的距离大1;②点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7;③该抛物线C 被直线:20n x y --=所截得弦长为16.请选择其中一个条件解答下列问题.(1)求抛物线C 的标准方程;(2)O 为坐标原点,直线l 与抛物线C 交于M ,N 两点,直线OM 的斜率为1k ,直线ON 的斜率为2k ,当124k k ⋅=-时,求OMN 的面积的最小值.【解析】(1)若选择①,则抛物线C 上一动点Q 到焦点F 的距与到直线:2m x =-的距离相等,故22p=,故4p =,所以抛物线的方程为28y x =.2=72p +,解得4p =,故抛物线的方程为28y x =.若选择③,则由222y x y px=-⎧⎨=⎩可得2240y py p --=,16=,解得4p =,故抛物线的方程为28y x =.(2)设:MN x my n =+,()11,M x y 、()22,N x y ,因为MN 与抛物线C 相交于M 、N ,所以将:MN x my n =+代28y x =消去x 得:2880y my n --=,则264640m n ∆=+>且128y y m +=,128y y n ⋅=-,由题意可知111y k x =,222y k x =,所以1212122212121264644888y y y y k k y y x x y y n ⋅⋅=⋅====-⋅-⋅,所以2n =,所以OMN的面积1212122S y y y y =⨯⨯-=-=≥,当且仅当0m =时等号成立,所以OMN的面积的最小值为2.(2021·重庆第一中学高三模拟)已知A ,B 分别为椭圆()2222:10x y C a b a b+=>>的左、右顶点,F 为右焦点,点P 为C 上的一点,PF 恰好垂直平分线段OB (O 为坐标原点),32PF =.(1)求椭圆C 的方程;(2)过F 的直线l 交C 于M ,N 两点,若点Q 满足OQ OM ON =+(Q ,M ,N 三点不共线),求四边形OMQN面积的取值范围.【解析】(1)由题意可知(),0F c ,(),0B a ,∵PF 恰好垂直平分线段OB ,∴2a c =,令x c =,代入22221x y a b +=得:2b y a =±,∴232b a =,∴2222232a cba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩,∴椭圆C 的方程为:22143x y +=.(2)由题意可知直线l 的斜率不为0,设直线l 的方程为:1x my =+,设()11,M x y ,()22,N x y ,联立方程221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x 得:()2234690m y my ++-=,∴()223636340m m ∆=++>,∴122634m y y m -+=+,122934y y m -=+,设MN 的中点为E ,则2OQ OM ON OE =+=,∴MN 与OQ 互相平分,四边形OMQN 为平行四边形,∴OMQN S 平行四边形2OMN S =△12122OF y y =⨯⨯⨯-12y y =-==212134m=+,令1t =≥,则()2121211313OMQN t S t t t t==≥++平行四边形,∵11333y t t t t ⎛⎫ ⎪=+=+ ⎪ ⎪ ⎪⎝⎭在[1,)+∞上单调递增,∴134t t+≥,∴(]120,313t t∈+,∴03OMQN S <≤平行四边形.综上所述,四边形OMQN 面积的取值范围为(0,3].3.(2021·浙江杭州高级中学高三模拟)已知抛物线2:2(0)C x py p =>的焦点为F ,点P 为抛物线C 上一点,点P 到F 的距离比点P 到x 轴的距离大1.过点P 作抛物线C 的切线,设其斜率为0k .(1)求抛物线C 的方程;(2)直线:l y kx b =+与抛物线C 相交于不同的两点A ,B (异于点P ),若直线AP 与直线BP 的斜率互为相反数,证明:00k k +=.【解析】(1)解:设点()00,P x y ,由点P 到F 的距离比点P 到x 轴的距离大1,可得01PF y =+,即0012py y +=+,所以2p =,即抛物线C 的方程为24x y =.(2)证明:设()11,A x y ,()22,B x y ,直线AP 的斜率为AP k ,直线BP 的斜率为BP k ,则()101010AP y y k x x x x -=≠-,()202020BP y yk x x x x -=≠-.因为直线AP 与直线BP 的斜率互为相反数,所以AP BP k k =-,即10201020y y y y x x x x --=---,又点()11,A x y ,()22,B x y 均在抛物线上,可得222200211020444x x x x x x x x --=---,化简可得1202x x x +=-,因为2114x y =,2224x y =,所以()2212124x x y y -=-,即1212124y y x x x x -+=-,故012122x y y k x x -==--,因为24x y =,所以214y x =,所以1 2y x '=,则0012k x =,故00k k +=.4.(2021·湖南长沙长郡中学高三模拟)已知椭圆E :()222210x y a b a b+=>>上有一点A ,点A 在x 轴上方,1F ,2F分别为E 的左,右焦点,当△12AF F 121sin 2AF F ∠=.(Ⅰ)求E 的标准方程;(Ⅱ)若直线l 交E 于P ,Q 两点,设PQ 中点为M ,O 为坐标原点,2PQ OM =uu u r uuu r,作ON PQ ⊥,求证:ON为定值.【解析】(Ⅰ)由椭圆的性质知,△12AF F 的面积取最大时,A 为椭圆的上顶点,即(0,)A b ,而12||2F F c =,∴12121||||2AF F S F F OA bc =⋅== 121sin 2b AF F a ∠==,又222a bc =+,∴24a =,21b =,可得E 的标准方程2214x y +=.(Ⅱ)由题意,2PQ OM =uu u r uuu r且PQ 中点为M ,易得90POQ ∠=︒,即OP OQ ⊥,若直线l 斜率不存在时,P ,Q 关于x 轴对称,2PQ OM =uu u r uuu r知:横纵坐标的绝对值相等,不妨假设P 在第一象限,则(,)P m m ,(,)Q m m -在椭圆上,∴255m =,此时,M N 两点重合,即255ON =;若直线l 斜率为0时,同理可得255ON =,若直线l 斜率存在且不为0时,设直线l 为(0)y kx b b =+≠,11(,)P x y ,22(,)Q x y ,则11(,)OP x y = ,22(,)OQ x y =,且12120x x y y +=,联立椭圆与直线得:222(41)84(1)0k x kbx b +++-=且2216(41)0k b ∆=-+>,∴122841kb x x k +=-+,21224(1)41b x x k -=+,即2222222221212122224(1)84()414141k b k b b k y y k x x kb x x b b k k k --=+++=-+=+++,∴222222224(1)45440414141b b k b k k k k ----+==+++,即||b =.∴||5ON==,为定值.5.(2021·天津南开中学高三模拟)已知点A,B分别为椭圆2222:1(0)x yE a ba b+=>>的左顶点和上顶点,且坐标原点O到直线AB 的距离为61313,椭圆E的离心率是方程2650x-+=的一个根.(1)求椭圆E的标准方程;(2)若(3,0)P,过P作斜率存在的两条射线PM,PN,交椭圆E于M,N两点,且PM PN⊥,问:直线MN经过定点吗?若经过,求出这个定点坐标;若不经过,说明理由.【解析】(1)因为椭圆E的离心率是方程2650x-+=的一个根,所以2e=或3e=.因为椭圆E的离心率(0,1)e∈,所以53e=.因为3ca=,所以2295a c=,所以222245b ac c=-=,因为点A,B分别为椭圆E的左顶点和上顶点,所以||AB===.因为坐标原点O到直线AB 的距离为61313,所以11||22ab AB=,=⨯,所以c=,所以29a=,24b=,所以椭圆E的标准方程为22194x y+=.(2)当直线MN的斜率存在时,设MN:y=kx+m,由22194y kx mx y=+⎧⎪⎨+=⎪⎩,消元并化简得222(49)189360k x kmx m+++-=,设1122(,),(,)M x y N x y ,则1221849km x x k +=-+,212293649m x x k-=+,又(3,0)P ,PM PN ⊥,所以1212133y yx x ⋅=---,所以1212123()9()()0x x x x kx m kx m -+++++=,即221212(1)(3)()(9)0k x x km x x m ++-+++=,所以2222293618(1)(3)(9)04949m kmk km m k k--++-++=++,所以2222(1)(936)(3)(18)(9)(49)0k m km km m k +-+--+++=,即224554130k km m ++=,所以30k m +=或15130k m +=,当30k m +=时,(3)y k x =-,此时M ,N ,P 重合,舍去.当15130k m +=时,15(13y k x =-,恒过点15(,0)13.当直线MN 的斜率不存在时,MN ⊥x 轴,设(),3M t t -,则()223194t t -+=,解得1513t =,所以此时直线MN 也过点15(,0)13.所以直线MN 恒过定点15(,0)13.6.(2021·湖南长郡中学高三模拟)已知抛物线2:4C x y =的焦点为F ,准线为l .设过点F 且不与x 轴平行的直线m 与抛物线C 交于A ,B 两点,线段AB 的中点为M ,过M 作直线垂直于l ,垂足为N ,直线MN 与抛物线C 交于点P .(1)求证:点P 是线段MN 的中点.(2)若抛物线C 在点P 处的切线与y 轴交于点Q ,问是否存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形?若存在,请求出直线m 的方程;若不存在,请说明理由.【解析】(1)证明:由题意知直线m 的斜率存在且不为0,故设直线m 的方程为1(0)y kx k =+≠,代入24x y =,并整理得2440x kx --=.所以216160k ∆=+>,设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.设()00,M x y ,则12022x x x k +==,200121y kx k =+=+,即()22,21M k k +.由MN l ⊥,得(2,1)N k -,所以MN 中点的坐标为()22,k k.将2x k =代入24x y =,解得2y k =,则()22,P k k ,所以点P 是MN 的中点.(2)由24x y =,得24x y =,则'2x y =,所以抛物线C 在点()22,P k k的切线PQ 的斜率为k ,又由直线m 的斜率为k ,可得m PQ ∥;又M N y ∥轴,所以四边形MPQF 为平行四边形.而||MF ==()222||211MP k k k =+-=+,由||||MF MP =,得21k =+,解得3k =±,即当3k =±时,四边形MPQF 为菱形,且此时2||1||||PF k MP MF ==+==,所以60PMF ∠=︒,直线m 的方程为13y x =±+,2即0x +=或0x +=,所以存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形.。
17 与圆锥曲线有关的定点、定值、最值、范围问题

1.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( ).A .(2,0)B .(1,0)C .(0,1)D .(0,-1) 2.设AB 是过椭圆x 2a 2+y 2b 2=1(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为( ).A .bcB .abC .acD .b 23.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ).A .(1,2)B .(-1,2)C .(2,+∞)D .[2,+∞)4.若AB 是过椭圆x 2a 2+y 2b 2=1(a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =( ).A .-c 2a 2B .-b 2a 2C .-c 2b 2D .-a 2b 2 5.已知过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则|AF ||BF |的值为( ). A .5 B .4 C .3 D .26.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________. 7.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率是2,则b 2+13a的最小值为________. 8.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =33,以原点为圆心,椭圆短半轴长为半径的圆与直线x -y +2=0相切,A ,B 分别是椭圆的左右两个顶点,P 为椭圆C 上的动点.(1)求椭圆的标准方程;(2)若P 与A ,B 均不重合,设直线PA 与PB 的斜率分别为k 1,k 2,证明:k 1·k 2为定值.10.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个顶点与抛物线:x 2=4 2y 的焦点重合,F 1、F 2分别是椭圆的左、右焦点,离心率e =33,过椭圆右焦点F 2的直线l 与椭圆C 交于M 、N 两点.(1)求椭圆C 的方程;(2)是否存在直线l ,使得OM →·ON →=-1,若存在,求出直线l 的方程;若不存在,说明理由.。
届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析

第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。
(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。
【智博教育原创专题】圆锥曲线的定值、最值与定点问题解题策略

探讨圆锥曲线的定值、最值与定点问题圆锥曲线中的最值与定值问题,是解析几何中的综合问题,是一种典型题型,将函数与解析融为一体,要求有较强的综合能力,例析如下: 【题型1】定值问题解决定值问题的方法:将问题涉及的几何式转化为代数式或三角式,证明该式的值与参数无关. 【例1】,A B 是抛物线22(0)y px p =>上的两点,且OA OB ⊥,求证:⑴,A B 两点的横坐标之积,纵坐标之积分别都是定值;⑵直线AB 经过一个定点。
【证明】⑴设1122(,),(,)A x y B x y ,则2222221122121212122,2,2244y px y px y y px px p x x p y y ==⋅=⋅==- 2124y y p =-为定值,212124x x y y p =-=也为定值;⑵222121************2()()2(),,,y y py y y y y y p x x x x x x y y --=+-=-≠∴=∴-+ 直线AB 的方程为:221112121212122242(2),y p p p py x y x x p y y y y y y y y y y =-+=-=-∴+++++直线AB 过定点(2,0)p 。
【例2】已知抛物线方程为212y x h =-+,点,A B 及点(2,4)P 都在抛物线上,直线PA 与PB 的倾斜角互补。
⑴试证明直线AB 的斜率为定值;⑵当直线AB 的纵截距为(0)m m >时,求PAB ∆的面积的最大值。
【分析】这类问题一般运算量大,要注意函数与方程、数形结合、分类讨论等思想方法的灵活运用。
【解析】⑴证明:把(2,4)P 代入212y x h =-+,得6h =,所以抛物线方程为:4(2)y k x -=-,由24(2)162y k x y x -=-⎧⎪⎨=-+⎪⎩,消去y ,得22440x k x k +--=,所以244222244A A k x k y k k --⎧==--⎪⎨⎪=-++⎩,因为PA 与PB 的倾角互补,所以PB PA k k k =-=-,用k -代k ,得222244B Bx k y k k =-⎧⎪⎨=-++⎪⎩,所以22448222(22)4B A AB A B y y k k k k x x k k k---+====-----。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的定点、定值、范围和最值问题
会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建
.
一、主要知识及主要方法:
1.
形式出现,特殊方法往往比较奏效。
2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。
3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.
二、精选例题分析
【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同
动点A 、B 满足AO BO ⊥.
(Ⅰ)求AOB △得重心G 的轨迹方程;
(Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值;
若不存在,请说明理由.
【举例2】已知椭圆2
2142x y +=上的两个动点,P Q 及定点1,2M ⎛ ⎝⎭
,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;
()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.
【举例3】(06全国Ⅱ改编)已知抛物线2
4x y =的焦点为F ,A 、B 是抛物线上的两动点,且
AF FB λ=u u u r u u u r
(0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为
M 。
(Ⅰ)证明FM AB ⋅u u u u r u u u r
为定值;
(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.
问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线
段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.
(四)课后作业:
1.已知椭圆22
221x y a b
+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有
2BF AF =,求椭圆离心率的取值范围.
2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB
求证:AB 交抛物线的对称轴上一定点.
3.如图,在双曲线22
11213
y x -
=的上支上有三点()11,A x y
()2,6B x ,()33,C x y ,它们与点()0,5F ()1求13y y +的值;()2证明:线段AC 某一定点,并求此点坐标.
(六)走向高考:
1.(05重庆)已知椭圆1C 的方程为14
22
=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的方程;
(Ⅱ)若直线l :y kx =+1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B
满足6<⋅OB OA (其中O 为原点),求k 的取值范围.
2.(06江西)P 是双曲线221916
x y -
=的右支上一点,,M N 分别是圆()2
254x y ++= 和()2
251x y -+=上的点,则PM PN -的最大值为 .A 6 .B 7 .C 8 .D 9
3.(07重庆)如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的方程为:12x =.
()1求椭圆的方程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠
证明:1
23111FP FP FP ++为定值,并求此定值.
4.(05全国Ⅰ)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆
于A 、B 两点,OA OB +u u u r u u u r 与(3,1)a =-r
共线。
(Ⅰ)求椭圆的离心率; (Ⅱ)设M 为椭圆上任意一点,且OM OA OB λμ=+u u u u r u u u r u u u r (,)R λμ∈,证明2
2μλ+为定值.
5.(05全国Ⅱ)P 、Q 、M 、N 四点都在椭圆2
2
12
y x +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF u u u r 与
FQ u u u r 共线,MF u u u u r 与FN u u u r 共线,且0PF MF ⋅=u u u r u u u u r
.求四边形PMQN 的面积的最小值和最大值.
6.(04浙江)已知双曲线的中心在原点,右顶点为()1,0A ,点P 、Q 在双曲线的右支上,点(),0M m 到直
线AP 的距离为1,
()
1若直线AP 的斜率为k ,且k ∈⎣, 求实数m 的取值范围;
()
2当1m =
时,APQ △的内心恰好是点M ,求此双曲线的方程.
7.
(07重庆文)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.
()1求抛物线的焦点F 的坐标及准线l 的方程; ()2若α
为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证
明
:cos2FP FP α-为定值,并求此定值.
8.(07山东)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.
9.(08上海)已知双曲线2
2: 14
x C y -=,P 为C 上的任意点。
(1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为(3,0),求||PA 的最小值;
10.(08安徽文)设椭圆
22
22
:1(0)
x y
C a b
a b
+=>>其相应于焦点(2,0)
F的准线方程为4
x=.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知过点
1(2,0)
F-倾斜角为θ的直线交椭圆C于,A B两点,求证:
AB=
(Ⅲ)过点
1(2,0)
F-作两条互相垂直的直线分别交椭圆C于,A B和,D E,求AB DE
+
的最小值。