圆锥曲线中的定值定点问题教学提纲
高中数学干货_圆锥曲线的定点定值问题

b(b 2 a2
a2 b2
)
);
②双曲线中的顶点直角三角形的斜边所在直线过定点,焦点在 x 轴的双曲线的右顶点直角三角形斜边
所在直线过定点(
a(a2 a2
b - b2
2
)
,0),左顶点直角三角形斜边所在直线过定点(
a(a a2
2
-
b b2
2
)
,0);
③抛物线中的任意点直角三角形的斜边所在直线过定点,右焦点的抛物线的任意点直角三角形斜边所
将(*)代入,得 t=-1,∴直线 l 过定点(0,-1).
2
2
题型二 切点弦恒过定点问题
★★★★★★ 综合
YES N0
▲三大圆锥曲线(椭圆、双曲线、抛物线)中,当定点 P(x0 , y0)都在曲线上时,相应
的定直线
x0 x a2
y0 y b2
1、
x0 x a2
-
y0 y b2
1、 y0 y
p( x0
7
7
7
综上可知,直线 l 过定点,定点坐标为 ( 2 , 0). 7
例 2 (2013 年高考陕西卷(理))已知动圆过定点 A(4,0), 且在 y 轴上截得的弦 MN 的
长为 8.
(Ⅰ)求动圆圆心的轨迹 C 的方程; (Ⅱ)已知点 B(-1,0), 设不垂直于 x 轴的直线 l 与轨迹 C 交于不同的两点 P、Q, 若 x 轴 是 PBQ 的角平分线, 证明直线 l 过定点.
4 (2)将 y kx b ,代入曲线 C 的方程,整理得 (1 4k 2 )x 2 8 2kx 4 0 因为直线 l 与曲线 C 交于不同的两点 P 和 Q, 所以 64k 2b2 4(1 4k 2 )(4b2 4) 16(4k 2 b2 1) 0. ①
圆锥曲线中的定点问题及解决方法

圆锥曲线中的定点问题及解决方法1. 引言1.1 背景介绍圆锥曲线是几何学中一个重要的概念,指的是由一个平面与一个圆锥体相交而得到的曲线。
在数学中,圆锥曲线包括圆、椭圆、双曲线和抛物线四种类型。
这些曲线在几何学和代数学中有着广泛的应用,涉及到许多重要的定理和性质。
圆锥曲线中的定点问题是指关于曲线上或曲线与其他几何图形的交点位置和性质的问题。
这些问题在实际应用中具有重要意义,例如在天文学中描述行星轨道的形状,或在工程学中设计湖面上的浮标位置等。
研究圆锥曲线中的定点问题不仅可以加深对这些曲线的理解,更可以拓展数学知识的应用范围。
通过研究不同的解决方法,可以进一步提高解决问题的能力和技巧,为数学领域的发展贡献力量。
深入探讨圆锥曲线中的定点问题具有重要的研究意义和价值。
1.2 问题提出圆锥曲线中的定点问题是一个重要而复杂的数学问题,其研究有着深远的理论和应用意义。
在圆锥曲线中,定点问题是指在已知曲线的情况下,找到曲线上满足一定条件的点的位置。
这种问题涉及到几何、代数和分析等多个数学领域,需要综合运用不同的数学方法来求解。
定点问题在圆锥曲线中具有广泛的实际应用。
比如在工程领域中,定点问题可以帮助我们确定某个位置的几何特性,从而设计出更加精确的结构。
在物理学中,定点问题可以帮助我们分析物体的运动轨迹和速度方向。
在计算机图形学和机器人领域中,定点问题也有着重要的应用价值。
研究圆锥曲线中的定点问题不仅有助于深化数学理论,还能推动相关领域的发展和创新。
在本文中,我们将介绍不同的解决方法来解决圆锥曲线中的定点问题,探讨其适用场景和未来研究方向,以期为相关领域的研究工作提供一定的参考和启发。
1.3 研究意义在圆锥曲线中,定点问题具有重要的研究意义。
通过对定点问题的研究,我们可以深入理解圆锥曲线的性质和特点,进一步探索其数学规律和几何意义。
定点是曲线上的固定点,对于圆锥曲线而言,定点的位置和性质对曲线的形状和特征具有决定性影响。
圆锥曲线中的定点、定值问题(教师)

圆锥曲线中的定点、定值问题【方法归纳】定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.如:定点问题①探索直线过定点时,可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.②根据条件化为恒等式,求出定点.【典例分析】【定点问题】【例1】(2012.福建卷)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.【解析】(Ⅰ)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.∴4a=8,∴a=2 ∵e=,∴c=1 ∴b2=a2-c2=3 ∴椭圆E的方程为.法一:法二:取k=0,m=,此时P(0,),Q(4,),y kx m=+,k m22221(b0)x yaa b+=>>12以PQ为直径的圆为(x-2)2+(y-)2=4,交x轴于点M1(1,0)或M2(3,0)取k=,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x-)2+(y-)2=,交x轴于点M3(1,0)或M4(4,0)故若满足条件的点M存在,只能是M(1,0),证明如下∵∴故以PQ为直径的圆恒过x轴上的定点M(1,0)解法3:(导数求切线斜率)【定直线问题】【例2】(2013.安徽卷)设椭圆的焦点在轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.解: (Ⅰ).(Ⅱ) .由.12-32523445162222:11x yEa a+=-xE E12,F F P E2F P y Q11F P F Q⊥a p13858851,12,122222222=+=⇒+-==->xxacaacaa,椭圆方程为:),(),,),,0(),,(),0,(),0,(2221mcQFycxPFmQyxPcFcF-=-=-(则设)1,0(),1,0()1,0(12∈∈⇒∈⇒>-yxaa⎩⎨⎧=++=-⊥=+=)()(,//).,(),,(112211mycxcycxcmQFPFQFPFmcQFycxPF得:由所以动点P 过定直线.【定曲线问题】【例3】(2014·福建卷) 已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率.(2)如图16,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8, 所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2, 此时双曲线E 的方程为x 24-y216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝ ⎛⎭⎪⎫-mk,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m 2+k .由S △OAB =12|OC |·|y 1-y 2|,得 12⎪⎪⎪⎪⎪⎪-m k ·⎪⎪⎪⎪⎪⎪2m2-k -2m 2+k =8,解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c x y x y x y x y x y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 01=-+y x即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x 得y 1=2t 1-2m , 同理得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0. 因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0, 即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0, 所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0, 因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k2,又因为△OAB 的面积为8,所以12 |OA |·|OB |· sin∠AOB =8,又易知sin∠AOB =45,所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4.所以-m 24-k2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2-y 24a 2=1,由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0. 因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0, 即(k 2-4)(a 2-4)=0,所以a 2=4, 所以双曲线E 的方程为x 24-y 216=1.当l ⊥x 轴时,由△OAB 的面积等于8可得l :x =2,又易知l :x =2与双曲线E :x 24-y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.【定量问题】【例4】(2014·江西卷) 如图17所示,已知双曲线C :x 2a2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),所以B ⎝ ⎛⎭⎪⎫c2,-c 2a .又直线OA 的方程为y =1ax ,则A ⎝ ⎛⎭⎪⎫c ,c a ,所以k AB =c a -⎝ ⎛⎭⎪⎫-c 2a c -c 2=3a .又因为AB ⊥OB ,所以3a ·⎝ ⎛⎭⎪⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0). 因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝ ⎛⎭⎪⎫2,2x 0-33y 0,直线l 与直线x =32的交点为N 32,32x 0-33y 0,则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝ ⎛⎭⎪⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2. 又P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值.【例5】(2013.江西卷)如图,椭圆经过点离心率,直线的方程为. (1) 求椭圆的方程;(2) 是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.解:(1)由在椭圆上得, ①依题设知,则 ②②代入①解得.故椭圆的方程为.(2)方法一:由题意可设的斜率为, 则直线的方程为 ③代入椭圆方程并整理,得,设,则有④在方程③中令得,的坐标为.从而. 注意到共线,则有,即有.2222+=1(>>0)x y C a b a b :3(1,),2P 1=2e l =4x C AB F P AB l M ,,PA PB PM 123,,.k k k λ123+=.k k k λλ3(1,)2P 221914a b +=2a c =223bc =2221,4,3c a b ===C 22143x y +=AB k AB (1)y k x =-223412x y +=2222(43)84(3)0k x k x k +-+-=1122(,),(,)A x yB x y 2212122284(3),4343k k x x x x k k -+==++4x =M (4,3)k 121231233331222,,11412y y k k k k k x x ---====----,,A F B AFBF k k k ==121211y ykx x ==--所以⑤④代入⑤得, 又,所以.故存在常数符合题意. 方法二:设,则直线的方程为:,令,求得, 从而直线的斜率为,联立 ,得,则直线的斜率为:,直线的斜率为:,所以,故存在常数符合题意.【突破提高】1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------1212122322()1x x k x x x x +-=-⋅-++22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++312k k =-1232k k k +=2λ=000(,)(1)B x y x ≠FB 00(1)1y y x x =--4x =003(4,)1y M x -PM 0030212(1)y x k x -+=-0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩0000583(,)2525x y A x x ---PA 00102252(1)y x k x -+=-PB 020232(1)y k x -=-00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---2λ=1.若AB 是过椭圆中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,,分别表示直线AM ,BM 的斜率,则=( )A. B. C. D.【解析】本题可用特殊值法.不妨设弦AB 为椭圆的短轴.M 为椭圆的右顶点,则A (0,b ),B (0,-b ),M (a ,0).所以.故选B .2.设e 1,e 2分别为具有公共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足1·2=0,则e 21+e 22e 1e 22的值为________. 解析:设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,|F 1F 2|=2c , 由题意得|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2, ∴|PF 1|2+|PF 2|2=2a 21+2a 22. 又∵1·2=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2,即2a 21+2a 22=4c 2.∴⎝ ⎛⎭⎪⎫a 1c 2+⎝ ⎛⎭⎪⎫a 2c 2=2,即1e 21+1e 22=2,即e 21+e 22e 1e 22=2.3.过抛物线:(>0)的焦点作直线交抛物线于两点,若线段与的长分别为,则的值必等于( ).A .B .C .D .解法1:(特殊值法) 令直线与轴垂直,则有:,所以有解法2:(参数法) 如图1,设,且,分别垂直于准线于.,抛物线(>0)的焦点,准线.∴ :又由,消去得, ∴,22221(b 0)x y a a b +=>>PFPF PF PF m 2y ax =a F l ,P Q PF FQ ,p q 11p q --+2a 12a 4a 4a l x l 14y a =12p q a ⇒==114p q a --+=11(,)P x y 22(,)Q x y PM QN ,M N 114p PM y a ==+214q QN y a ==+2y ax =a 1(0,)4F a 14y a =-l 14y kx a =+l m x 222168(12)10a y a k y -++=212122121,216k y y y y a a ++==∴∴.4.已知点P 是双曲线 (a >0,b >0)右支上一点,F 1,F 2分别为双曲线的左、右焦点,H 为△PF 1F 2的内心。
高中数学_圆锥曲线中的定点定值问题教学设计学情分析教材分析课后反思

教学设计【学习目标】1、知识与技能目标:通过实物感知空间点、线、面之间的相互关系以及相互之间的位置关系;2、过程与方法目标:通过让学生举实例、观察几何体等探究点、线、面之间的关系;3、情感、态度与价值观:通过运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣.【学习重点、难点】1、重点:从运动的观点初步认识点线面体之间的生成关系和位置关系;2、难点:通过几何体的直观图观察其基本元素间的关系以及注意到空间中的存在既不平行也不相交的直线.教学方法:学-议-导-练课前设计:(1)提前印发学案,自学质疑课要求学生通过问题的引导先认真阅读题意,独立思考,借助于微课完成自学质疑学案。
(2)不明白的地方通过小组合作讨论完善,不明白的做记录训练展示课上攻破.教学过程一、定值问题1、已知椭圆)0(12222>>=+b a by a x 上任意一点P ,点M (0,b ),N(0,-b)在椭圆上,求证:PN PM k k ⋅为定值。
设计:通过问题提出的形式,引导学生分析条件,转化为可解决问题的条件,突出关键条件的挖掘,及时给予总结。
思考:1.能否考虑特殊点P 求出定值?2.若P 为任意点时,PN PM k k ⋅怎么表示?3.曲线上的点满足怎样的关系式?能否借助此关系消去其中的未知量?二、定点问题2、 如图,已知AOB 的一个顶点为抛物线22y x 的顶点O ,A,B 两点都在抛物线上,且OA 垂直OB ;求证:直线AB 与抛物线的对称轴相交于定点.设计:通过问题提出的形式,引导学生分析条件,转化为可解决问题的条件,注重方法思路的分析,重视一题多解,注重运算技巧的点拨()()()222221212212143)4(3k k m m x x mk x x k m kx m kx y y +-=+++=++=1.求证直线AB 与抛物线对称轴交于定点说明直线AB 斜率无论怎么变化都是围绕一定点转动,能否先考虑特殊情况求出定点。
高中数学:圆锥曲线中的定值、定点问题

高中数学:圆锥曲线中的定值、定点问题【基础回顾】一、课本基础提炼1.将直线方程与圆锥曲线方程联立,消去y得到关于x的方程mx2+nx+p=0.(1)若m≠0,当△>0时,直线与圆锥曲线有两个交点. 当△=0时,直线与圆锥曲线有且只有一个公共点,此时直线与双曲线相切. 当△<0时,直线与圆锥曲线无公共点.(2)当m=0时,若圆锥曲线为双曲线,则直线与双曲线只有一个交点,此时直线与双曲线的渐近线平行;若圆锥曲线为抛物线,则直线与抛物线只有一个交点,此时直线与抛物线的对称轴平行.(3)设直线与圆锥曲线的交点A(x1,y1),B(x2,y2),则2. 直线y=kx+b(k≠0)与椭圆相交于A(x1,y1),B(x2,y2)两点,则弦长二、二级结论必备1.对与圆锥曲线有关的中点弦问题,常用点差法,及设出弦的端点坐标,代入曲线方程,两式相减,利用中点公式和直线的斜率公式即可得出直线的斜率.2. 已知抛物线y2=2px(p>0),过其焦点的直线交抛物线于A、B 两点(如右图所示),设A(x1,y1),B(x2,y2).则有以下结论:(1)|AB|=x1+x2+p,或(α为AB所在直线的倾斜角);(3)y1y2=-p2.(4)以AB为直径的圆与抛物线的准线相切.3.过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p4.椭圆与双曲线的通径长为5.P(x0,y0)是抛物线C上一点,F为抛物线的焦点.(1)当焦点在x轴正半轴上时,(2)当焦点在x轴负半轴上时,(3)当焦点在x轴正半轴上时,(4)当焦点在x轴正半轴上时,【技能方法】定点问题解题技巧:(1)引进参数法。
设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点,即为所求定点。
(2)特殊到一般法。
从特殊位置入手,找到定点,再证明该定点与变量无关。
定值问题解题技巧:(1)特殊方法。
圆锥曲线的定点定值问题

圆锥曲线的定点定值问题(最新版)目录一、圆锥曲线的定点定值问题概述1.定点问题的定义与求解方法2.定值问题的定义与求解方法3.圆锥曲线中定点定值问题的重要性二、定点问题的求解方法1.引进参数法2.直接解法三、定值问题的求解方法1.函数与方程思想2.转化与化归思想3.数形结合思想四、圆锥曲线中定点定值问题的典型例题分析1.椭圆中的定点定值问题2.双曲线中的定点定值问题3.抛物线中的定点定值问题五、总结与展望1.圆锥曲线中定点定值问题的解题技巧与方法2.对学生逻辑思维能力与计算能力的培养正文一、圆锥曲线的定点定值问题概述圆锥曲线是解析几何中的重要内容,也是高考数学中的热点问题。
圆锥曲线中的定点定值问题,主要包括定点问题和定值问题。
定点问题是指在运动变化过程中,直线或曲线恒过平面内的某个或某几个定点,而定值问题则是指几何量在运动变化中保持不变。
这类问题对学生的逻辑思维能力和计算能力有较高的要求,是高考数学中的难点之一。
二、定点问题的求解方法1.引进参数法在解决定点问题时,我们可以引入适当的参数,将问题转化为关于参数的方程或不等式,然后求解参数的取值范围,进而得到定点的坐标。
2.直接解法对于一些简单的定点问题,我们可以直接通过解析几何中的公式和定理求解。
例如,当直线与圆相交时,直线上的定点可以通过求解直线与圆的交点得到。
三、定值问题的求解方法1.函数与方程思想在解决定值问题时,我们通常可以将问题转化为函数与方程的问题。
通过寻找合适的函数关系,我们可以得到定值的表达式,进而求解问题。
2.转化与化归思想在解决定值问题时,我们可以通过转化与化归的思想,将问题转化为更容易解决的形式。
例如,在解决椭圆中的定值问题时,我们可以将椭圆转化为圆,从而简化问题。
3.数形结合思想在解决定值问题时,我们可以利用数形结合的思想,通过几何图形的性质和公式,得到定值的表达式。
例如,在解决抛物线中的定值问题时,我们可以通过抛物线的几何性质,得到定值的表达式。
高中数学:圆锥曲线中的定值、定点问题
高中数学:圆锥曲线中的定值、定点问题【基础回顾】一、课本基础提炼1.将直线方程与圆锥曲线方程联立,消去y得到关于x的方程mx2+nx+p=0.(1)若m≠0,当△>0时,直线与圆锥曲线有两个交点. 当△=0时,直线与圆锥曲线有且只有一个公共点,此时直线与双曲线相切. 当△<0时,直线与圆锥曲线无公共点. (2)当m=0时,若圆锥曲线为双曲线,则直线与双曲线只有一个交点,此时直线与双曲线的渐近线平行;若圆锥曲线为抛物线,则直线与抛物线只有一个交点,此时直线与抛物线的对称轴平行.(3)设直线与圆锥曲线的交点A(x1,y1),B(x2,y2),则2. 直线y=kx+b(k≠0)与椭圆相交于A(x1,y1),B(x2,y2)两点,则弦长二、二级结论必备1.对与圆锥曲线有关的中点弦问题,常用点差法,及设出弦的端点坐标,代入曲线方程,两式相减,利用中点公式和直线的斜率公式即可得出直线的斜率.2. 已知抛物线y2=2px(p>0),过其焦点的直线交抛物线于A、B两点(如右图所示),设A(x1,y1),B(x2,y2).则有以下结论:(1)|AB|=x1+x2+p,或(α为AB所在直线的倾斜角);(3)y1y2=-p2.(4)以AB为直径的圆与抛物线的准线相切.3.过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p4.椭圆与双曲线的通径长为5.P(x0,y0)是抛物线C上一点,F为抛物线的焦点.(1)当焦点在x轴正半轴上时,(2)当焦点在x轴负半轴上时,(3)当焦点在x轴正半轴上时,(4)当焦点在x轴正半轴上时,【技能方法】定点问题解题技巧:(1)引进参数法。
设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点,即为所求定点。
(2)特殊到一般法。
从特殊位置入手,找到定点,再证明该定点与变量无关。
定值问题解题技巧:(1)特殊方法。
高中数学:圆锥曲线中的定点定值问题
高中数学:圆锥曲线中的定点定值问题
定点定值方法归纳
一、研究定点、定值问题的基本思路
解析几何中的定点、定值及探索性问题主要以解答题形式考查,一般以椭圆或抛物线为背景,试题难度较大.解决问题时注意代数方程是解决定点定值问题的桥梁。
二、定点问题基本有一下两种思考方式
(1)引进参数法:引进动点坐标或者动线中的系数作为参数,表示变化量,再通过条件,构造变化量对应的方程,研究变化量方程的关系(特别是变化量任意改变对应方程恒成立问题),找到定点。
(2)探索法:根据动点或动线的一些特殊情况,先探索出定点,再证明该定点与变量无关。
三、解决定值问题也有如下类似的思考方式
(1)引进参数法:引进参数作为变化量,最后利用代数式说明所求定值的代数式与参数无关。
(2)探索法:用特殊情况探索出定值,最后再利用代数式证明定值。
高考真题
例题精选
参考答案
▍
▍ ▍▍。
第09讲 圆锥曲线中的定点、定值问题讲义——2024届高三数学一轮复习
第09讲 圆锥曲线中的定点、定值问题考点25 直接推理法求定点【常用方法】直接推理法求定点的一般步骤(1)一选(设参):选择变量,定点问题中的定点,不随某一个量的变化而变化,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).(2)二求(用参):求出定点所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程. (3)三定点(消参):对上述方程进行必要的化简,即可得到定点坐标. 【典例分析25】1、已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为32 ,F 1,F 2分别为椭圆的左、右焦点,点P 为椭圆上一点,△F 1PF 2面积的最大值为3 .(1)求椭圆C 的方程;(2)过点A (4,0)作关于x 轴对称的两条不同的直线l 1和l 2,l 1交椭圆于M (x 1,y 1),l 2交椭圆于N (x 1,y 2),且x 1≠x 2,证明直线MN 过定点,并求出该定点坐标.考点26 逆推法求定点【常用方法】证明直线或曲线过某一定点(定点坐标已知),可把要证明的结论当条件,逆推上去,若得到使已知条件成立的结论,则证明了直线或曲线过定点. 【典例分析26】2、设O 为坐标原点,动点M 在椭圆C :x 22 +y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2 NM → .(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP → ·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .3、如图,已知椭圆C :x 2a 2+y 2=1的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切,其中a >1.(1)求椭圆的方程;(2)不过点A 的动直线l 与椭圆C 相交于P ,Q 两点,且AP ⊥AQ ,证明:动直线l 过定点,并且求出该定点坐标.考点27 变量法求定值【常用方法】求解定值问题常用的方法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 【典例分析27】1、已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,离心率为12 ,点D )23,1(是椭圆C 上一点.(1)求椭圆C 的方程;(2)若直线l 过椭圆C 的右焦点F 2且与椭圆交于P ,Q 两点,直线AP ,AQ 与直线x =4分别交于点M ,N .求证:M ,N 两点的纵坐标之积为定值.2、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),过椭圆左焦点F 的直线x -43y +3=0与椭圆C 在第一象限交于点M ,三角形MFO 的面积为34. (1)求椭圆C 的标准方程;(2)过点M 作直线l 垂直于x 轴,直线MA 、MB 交椭圆分别于A 、B 两点,且两直线关于直线l 对称,求证:直线AB 的斜率为定值.。
圆锥曲线中的定点,定值问题
圆锥曲线中的定点,定值问题《学习目标》:1. 探究直线和椭圆,抛物线中的定点定值问题2. 体会数形结合,转化与化归的思想3. 培养学生分析问题,逻辑推理和运算的能力活动一 根深蒂固:题根:已知AB 是圆O 的直径,点P 是圆O 上异于A,B 的两点,k 1,k 2是直线PA,PB 的斜率,则k 1k 2= -1.问题1 这是一个师生都很熟悉的结论,这个结论能否类比推广到其它一些圆锥曲线呢?问题2 如图,点P 是椭圆x 24+y 2=1上除长轴的两个顶点外的任一点,A,B 是该椭圆长轴的2个端点,则直线PA,PB 的斜率之积为______.问题 3 椭圆)0(12222>>=+b a by a x 长轴的两个顶点与椭圆上除这两个顶点外的任一点连线斜率之积为______ .问题4 .证明: 设 A 、B 是椭圆22221(0)x y a b a b+=>>上关于原点对称的两点,点P 是该椭圆上不同于A,B 的任一点,直线PA,PB 的斜率为k 1,k 2,则k 1k 2 为22b a -活动二 根深叶茂:问题5(2012年南通二模卷)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D.若cos∠F 1BF 2=725,则直线CD 的斜率为__________.问题6:(2011年全国高考题江苏卷18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12422=+y x 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k 。
(1)略 (2)略(3)对任意k>0,求证:PA ⊥PB活动三 节外生枝:问题7:(2013年苏北四市高三一模18)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x yE a b a b+=>>的焦距为2,且过点. (1)求椭圆E 的方程;(2)若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点M .①设直线OM 的斜率为1,k 直线BP 的斜率为2k ,求证:12k k 为定值;②设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.问题8:椭圆C 的中心在坐标原点,焦点在x 轴上,该椭圆经过点P ⎝ ⎛⎭⎪⎫1,32且离心率为12. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.课堂小结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中的定值定
点问题
2019届高二文科数学新课改试验学案(10)
---圆锥曲线中的定值定点问题
1.已知椭圆()2222:10x y C a b a b +=>>
的离心率为2,
点(在C 上. (I )求C 的方程;
(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M , 证明:直线OM 的斜率与直线l 的斜率乘积为定值.
2.已知椭圆C :过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率;
(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N , 求证:四边形ABNM 的面积为定值.
22
221x y a b
+=
3.椭圆()2222:10x y C a b a b +=>>的离心率为12
,其左焦点到点()2,1P (I )求椭圆C 的标准方程
(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标.
<圆锥曲线中的定值定点问题>答案
1.【答案】(I )22
22184
x y +=(II )见试题解析
试题解析:
【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.
2.
.
从而四边形的面积为定值.
【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.
32
c e a ==ABNM
3.解:(1
)1::22c e a b c a =
=⇒=,设左焦点()1,0F c -
1PF ∴==,解得
1c = 2,a b ∴==∴椭圆方程为22
143
x y += (2)由(1)可知椭圆右顶点()2,0D
设()()1122,,,A x y B x y ,Q 以AB 为直径的圆过()2,0D
DA DB ∴⊥即DA DB ⊥u u u r u u u r 0DA DB ∴⋅=u u u r u u u r
()()11222,,2,DA x y DB x y =-=-u u u r u u u r Q
()()()121212*********DA DB x x y y x x x x y y ∴⋅=--+=-+++=u u u r u u u r ①
联立直线与椭圆方程:223412
y kx m x y =+⎧⇒⎨+=⎩()()222348430k x mkx m +++-= ()2121222438,4343
m mk x x x x k k -∴+=-=++ ()()()2212121212y y kx m kx m k x x mk x x m ∴=++=+++
()
22222222438312434343
k m mk mk m k m k k k -⋅-=-+=+++,代入到① ()222
222438312240434343
m mk m k DA DB k k k --⋅=+⋅++=+++u u u r u u u r 2222
2412161612312043
m mk k m k k -++++-∴=+ ()()22716407220m mk k m k m k ∴++=⇒++=
27
m k ∴=-或2m k =- 当27m k =-时,22:77l y kx k k x ⎛⎫=-=- ⎪⎝⎭ l ∴恒过2,07⎛⎫ ⎪⎝⎭
当2m k =-时,():22l y kx k k x =-=- l ∴恒过()2,0,但()2,0为椭圆右顶点,不符
题意,故舍去l ∴恒过2,07⎛⎫ ⎪⎝⎭
3.。