高等数学期末考试全真模拟卷(附参考答案)
高等数学下期末试题(七套附答案)

⾼等数学下期末试题(七套附答案)⾼等数学(下)试卷⼀⼀、填空题(每空3分,共15分)(1)函数的定义域为(2)已知函数,则(3)交换积分次序,=(4)已知是连接两点的直线段,则(5)已知微分⽅程,则其通解为⼆、选择题(每空3分,共15分)(1)设直线为,平⾯为,则() A. 平⾏于 B. 在上 C.垂直于D. 与斜交(2)设是由⽅程确定,则在点处的() A.B.C. D.(3)已知是由曲⾯及平⾯所围成的闭区域,将在柱⾯坐标系下化成三次积分为() A. B. C.D.(4)已知幂级数,则其收敛半径()A.B. C.D.三、计算题(每题8分,共48分)1、求过直线:且平⾏于直线:的平⾯⽅程2、已知,求,3、设,利⽤极坐标求4、求函数的极值5、计算曲线积分,其中为摆线从点到的⼀段弧 6、求微分⽅程满⾜的特解得分阅卷⼈四.解答题(共22分)1、利⽤⾼斯公式计算,其中由圆锥⾯与上半球⾯所围成的⽴体表⾯的外侧2、(1)判别级数的敛散性,若收敛,判别是绝对收敛还是条件收敛;()(2)在求幂级数的和函数()⾼等数学(下)试卷⼆⼀.填空题(每空3分,共15分)(1)函数的定义域为;(2)已知函数,则在处的全微分;之间的⼀段弧,则;(5)已知微分⽅程,则其通解为 .⼆.选择题(每空3分,共15分)(1)设直线为,平⾯为,则与的夹⾓为();A. B. C. D.(2)设是由⽅程确定,则(); A.B.C. D.(3)微分⽅程的特解的形式为(); A.B.C. D.(4)已知是由球⾯所围成的闭区域, 将在球⾯坐标系下化成三次积分为(); A B.C.D.(5)已知幂级数,则其收敛半径().B. C.D.三.计算题(每题8分,共48分)得分阅卷⼈5、求过且与两平⾯和平⾏的直线⽅程.6、已知,求,.8、求函数的极值.得分9、利⽤格林公式计算,其中为沿上半圆周、从到的弧段.6、求微分⽅程的通解.四.解答题(共22分)1、(1)()判别级数的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)()在区间内求幂级数的和函数 .2、利⽤⾼斯公式计算,为抛物⾯的下侧⾼等数学(下)模拟试卷三⼀.填空题(每空3分,共15分)1、函数的定义域为.2、= .3、已知,在处的微分 .4、定积分 .5、求由⽅程所确定的隐函数的导数 .⼆.选择题(每空3分,共15分)1、是函数的间断点(A)可去(B)跳跃(C)⽆穷(D)振荡2、积分= .(A) (B)(C) 0 (D) 13、函数在内的单调性是。
高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷C)及参考答案

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷C )一、选择题(每题4分,共40分) 1.设函数()f x 在0x 处可导,则极限000()()lim2h f x h f x h h→+−−=A .0()f x ′B .02()f x ′C .01()2f x ′D .20[()]f x ′2.函数11(e e)tan ()(e e)xxx f x x +⋅=−在区间[π,π]−上的第一类间断点是A .0B .1C..π23.设sin 20()sin d xf x t t =∫,34()g x x x =+,则当0x →时,()f x 是()g x 的A .等价无穷小B .同阶但非等价无穷小C .高阶无穷小D .低阶无穷小4.设()d arcsin xf x x x C =+∫,则1d ()x f x =∫A .3223(1)4x C −−+B .2233(1)4x C −+C .3221(1)3x C −−+D .2232(1)3x C −+5.微分方程3232e x y y y x ′′′−+=−有特解形式 A .e x ax b + B .e x ax b c ++ C .e x ax bx + D .e x ax b cx ++6.已知函数()f x 在[0,1]上二阶可导,且10()d 0f x x =∫,则A .当()0f x ′<时,102f<B . 当()0f x ′′<时,102f<C .当()0f x ′>时,102f<D . 当()0f x ′′>时,102f<7.已知1()(12ln )f x x x ′=+,且(1)1f =,则()f x =A .ln |12ln |1x ++B .1ln |12ln |12x ++C .1ln |12ln |2x +.2ln |12ln |1x ++8.把24y ax =及00(0)xx x >所围成的图形绕x 轴旋转,所得旋转体的体积V =A .20πaxB .02πaxC .30πaxD .202πax9.设π40ln sin d I x x =∫,π40ln cos d J x x =∫,π40ln cot d K x x =∫,则 A .I J K << B .I J K >> C .J I K << D .J I K >>10.函数()f x 为连续函数,则21d ()d d f x t t x +=∫ A .0B .(2)(1)f f −C .(2)(1)f x f x +−+D .(2)f x +二、填空题(每题4分,共24分)1.极限30tan sin lim ln(1)x x xx →−=+___________.2.设函数()f x 连续,20()()d x x xf t t ϕ=∫,若(1)1ϕ=,(1)5ϕ′=,则(1)f =___________.3.已知2121x y f x − = +,2()arctan f x x ′=,则0d x y ==___________.4.定积分41220201sin 3||d 1x x x x x x − += +∫___________.5.广义积分2=∫___________.6.设()d ()f x x F x C =+∫,则(2)d f x x =∫___________.三、解答题(每题6分,共36分)1.设函数()y f x =是由方程21e yx y −+=所确定的隐函数,求22d d x yx=.2. 由3y x =,2x =,0y =所围成的平面图形分别绕x 轴和y 轴旋转一周,计算所得几何体的体积.3.计算定积分.(1)10x x ∫.(2)x ∫.4.求微分方程d 24d yxy x x=−+满足(0)0y =的特解.5.证明:当0x >时,arctan ln(1)1xx x+>+.6.设函数()f x 在[,]a b 上连续,在(,)a b 内具有一阶和二阶导数.证明:若在(,)a b 内()0f x ′′>,则对12[,]x x a b ∀∈,有12121212()()3333f x x f x f x +<+ .《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷C )解答参考一、选择题(每题4分,共40分) 1.设函数()f x 在0x 处可导,则极限000()()lim2h f x h f x h h→+−−=A .0()f x ′B .02()f x ′C .01()2f x ′D .20[()]f x ′答案 A 解析 000000000()()()()()()1limlim ()22h h f x h f x h f x h f x f x h f x f x h h h →→+−−+−−−′=+= −,故本题选A . 2.函数11(e e)tan ()(e e)xxx f x x +⋅=−在区间[π,π]−上的第一类间断点是A .0B .1C..π2答案 A解析 在区间[π,π]−上()f x 的间断点有0,π2±,显然,π2±均为第二类间断点(无穷间断点),下面考察0x =.因1100e e e e lim ()lim lim 1e e e e txt t x x x f x ++→+∞→→++===−−,1100e e e elim ()lim lim 1e e e et xt t x x x f x −−→−∞→→++===−−−, 所以0x =是函数的第一类间断点(跳跃间断点),故本题选A . 3.设sin 20()sin d xf x t t =∫,34()g x x x =+,则当0x →时,()f x 是()g x 的A .等价无穷小B .同阶但非等价无穷小C .高阶无穷小D .低阶无穷小答案 B 解析 因sin 2222043323232000000sin d ()sin(sin )sin 11lim lim limlim lim lim ()434343433xx x x x x x t t f x x x x g x x x x x x x x x x →→→→→→======+++++∫, 所以当0x →时,()f x 是()g x 的同阶但非等价无穷小,故选B 项.4.设()d arcsin xf x x x C =+∫,则1d ()x f x =∫A .3223(1)4x C −−+B .2233(1)4x C −+C .3221(1)3x C −−+D .2232(1)3x C −+答案 C解析 因为()d arcsin xf x x x C =+∫,两边求导得()xf x =所以1()f x =.因此3222111d )(1)()23x x x x C f x =−−=−−+∫∫,5.微分方程3232e x y y y x ′′′−+=−有特解形式 A .e x ax b +B .e x ax b c ++C .e x ax bx +D .e x ax b cx ++答案 D解析 原方程对应齐次方程的特征方程为21232012r r r r −+=⇒==,.考虑2112323e e x x y y y x y ax b c c ′′′−+⇒+++,考虑2112322e e e e x x x x y y y y cx c c ′′′−+=−⇒=++,根据线性微分方程的叠加原理可知,原方程通解为212e e e x x x ax b cx c c ++++,故选D 项.6.已知函数()f x 在[0,1]上二阶可导,且10()d 0f x x =∫,则A .当()0f x ′<时,102f<B . 当()0f x ′′<时,102f<C .当()0f x ′>时,102f<D . 当()0f x ′′>时,102f<答案 D思路分析 条件中出现二阶可导,可尝试泰勒公式.解析 将()f x 泰勒展开:21111()()2222f x f f x f x ξ ′′′=+−+− ,(0,1)ξ∈,所以 21101111()d ()d 2222f x x ff x f x x ξ′′′=+−+− ∫∫ 21110001111d d ()d 2222f x f x x f x x ξ ′′′+−+− ∫∫∫210110()d 022f f x x ξ′′++−=∫,所以当()0f x ′′>时,102f< ,故本题选D .7.已知1()(12ln )f x x x ′=+,且(1)1f =,则()f x =A .ln |12ln |1x ++B .1ln |12ln |12x ++C .1ln |12ln |2x +.2ln |12ln |1x ++答案 B 解析 因为111111()(1)()d (1)d 1d(12ln )(12ln )212ln xx x f x f f t t f t t t t t=+=+=++++∫∫∫ 1111[ln(12ln )]ln |12ln |122x t x =++=++,8.把24y ax =及00(0)xx x >所围成的图形绕x 轴旋转,所得旋转体的体积V =A .20πaxB .02πaxC .30πaxD .202πax答案 D解析 由旋转体体积公式可得022πd π4d 2πx x V y x ax x ax ==⋅=∫∫,故本题选D . 9.设π40ln sin d I x x =∫,π40ln cos d J x x =∫,π40ln cot d K x x =∫,则 A .I J K <<B .I J K >>C .J I K <<D .J I K >>答案 A解析 当π0,4x∈时,1cos sin 0x x >>>,cos cot cos sin x x x x =>,所以I J K <<,故本题选A .10.函数()f x 为连续函数,则21d ()d d f x t t x +=∫ A .0 B .(2)(1)f f − C .(2)(1)f x f x +−+ D .(2)f x +答案 C解析 令u x t =+,则2211()d ()d x x f x t t f u u +++=∫∫,所以2211d d ()d()d (2)(1)d d x x f x t t f u u f x f x x x +++==+−+∫∫, 故本题选C .二、填空题(每题4分,共24分)1.极限30tan sin lim ln(1)x x xx →−=+___________.答案12解析 方法一 由泰勒公式知,当0x →时,33tan ()3x x x o x =++,33sin ()6x x x o x =−+,故3333331tan sin ()()()362x x x x x o x x o x x o x −=++−−+=+ ,于是可知31tan sin ~2x x x −,又33ln(1)~x x +,故 333001tan sin 12lim lim ln(1)2x x xx x x x →→−==+. 方法二 2332200001tan sin sin (1cos )1cos 12lim lim lim lim ln(1)cos 2x x x x xx x x x x x x x x x →→→→−−−====+⋅. 2.设函数()f x 连续,2()()d x x xf t t ϕ=∫,若(1)1ϕ=,(1)5ϕ′=,则(1)f =___________.答案 2解析 由题可知20()()d x x x f t t ϕ=∫,220()()d 2()x x f t t x f x ϕ′=+∫,故1(1)()d 2(1)f t t f ϕ′=+∫,1(1)()d 1f t t ϕ==∫, 则(1)(1)2(1)5f ϕϕ′=+=,所以(1)2f =.3.已知2121x y f x − = +,2()arctan f x x ′=,则0d x y ==___________.答案 πd x解析 令21212121x u x x −==−++,故 2d 4d (21)u x x =+, 当0x =时,1u =−,所以000d d d ()(1)πd d d x x x y u u f u f xx x ===′′=⋅=−⋅= ,因此0d πd x y x ==.4.定积分41220201sin 3||d 1x x x x x x − += +∫___________. 答案32解析 441112220202020111sin sin 3||d d 3||d 11x x x x x x x x x x x x x −−− +=+ ++∫∫∫. 第一个积分被积函数是奇函数,积分区间对称,故积分值为0;第二个积分被积函数为偶函数,积分区间对称,所以14112342020100sin 333||d 23d 2142x x x x x x x x x − +==⋅= + ∫∫. 5.广义积分2=∫___________.答案 π思路分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当2∫3∫均收敛时,原反常积分才收敛.解析 因为32222π[arcsin(3)]lim arcsin(3)2xx x++→=−=−−=∫∫,43334π[arcsin(3)]lim arcsin(3)2xx x−−→−=−=∫∫,所以2πππ22=+=∫.6.设()d()f x x F x C=+∫,则(2)df x x=∫___________.答案1(2)2F x C+解析令2t x=,则111(2)d()d()(2)222f x x f t t F t C F x C==+=+∫∫.三、解答题(每题6分,共36分)1.设函数()y f x=是由方程21e yx y−+=所确定的隐函数,求22ddxyx=.解将0x=代入方程21e yx y−+=解得0y=.对方程21e yx y−+=两边求导得2e yx y y′′−=①将0x=,0y=代入①得(0)0y′=.式①两端再求导得22e e()y yy y y′′′′′−=+②将0x=,0y=,(0)0y′=代入②得22d1dxyx==.2.由3y x=,2x=,0y=所围成的平面图形分别绕x轴和y轴旋转一周,计算所得几何体的体积.解所求体积为222600128ππdπd7xV y x x x===∫∫.1258882228333000564ππ28πd32ππ()d32ππd32ππ[]35yV x y y y y y y=⋅⋅−=−=−=−⋅=∫∫∫.或用柱壳法计算2224500164π2πd2πd2π55yV xy x x x x====∫∫.3.计算定积分.(1)1x x ∫.解令sinx t=,则ππ1424222000sin cos d sin(1sin)dx x t t t t t t=−∫∫∫ππ46220031π531ππsin d sin d422642232t t t t=−=⋅⋅−⋅⋅⋅=∫∫.注这里用到了华里士公式ππ22001321,123sin d cos d131π,222n nnn n nn nI x x x xn n nn n−−××××−===−−××××−∫∫为大于的奇数为正偶数.(2)x∫.解令tanx t=,则πππ2444000sec1ππd d csc d(1tan)sec sin cos44tx t t t tt t t t==++++ ∫∫∫π4ππln csc cot44t t+−+=.4.求微分方程d24dy xy xx=−+满足(0)0y=的特解.解易知该方程对应的齐次方程d2dy xyx=−的通解为2e xy C−=,设原方程的解为2()e xy u x−=,代入原方程整理得2()4e xu x x′=,两端积分得2()2e xu x C=+,进而可得原方程的通解为22e xy C−=+.又因为(0)20y C=+=,故2C=−.所以满足条件的特解为222e xy−=−.5.证明:当0x>时,arctanln(1)1xxx+>+.证令()(1)ln(1)arctanf x x x x=++−,[0,)x∈+∞.显然函数()f x在[0,)x∈+∞时可导,且7 21()ln(1)10(0)1f x x x x ′=++−>>+, 所以函数()f x 在[0,)+∞上单调增加,故()(0)0f x f >=,从而 arctan ln(1)1x x x+>+. 6.设函数()f x 在[,]a b 上连续,在(,)a b 内具有一阶和二阶导数.证明:若在(,)a b 内()0f x ′′>,则对12[,]x x a b ∀∈,有12121212()()3333f x x f x f x +<+ . 证 设12x x <.令0121233x x x =+,根据拉格朗日中值定理可得,110202(,)(,)x x x x ξξ∃∈∈,,使得 011011212()()()()()()3f x f x f x x f x x ξξ′′−=−=−, 202012211()()()()()()3f x f x f x x f x x ξξ′′−=−=−. 于是01202112211222[()()]2[()()]()[()()]()()()033f x f x f x f x x x f f x x f ξξξξξ′′′′−−−=−−=−−<. 故0123()()2()0f x f x f x −−<,所以01212()()()33f x f x f x <+,即得 12121212()()3333f x x f x f x +<+ .。
高数期末考试题大题及答案

高数期末考试题大题及答案一、极限题目1:求函数 \( f(x) = \frac{3x^2 - x}{x^2 + 2} \) 在 \( x \to \infty \) 时的极限。
解答:首先,我们可以通过分子分母同时除以 \( x^2 \) 来简化函数:\[ f(x) = \frac{3 - \frac{1}{x}}{1 + \frac{2}{x^2}} \]当 \( x \to \infty \) 时,\( \frac{1}{x} \) 和\( \frac{2}{x^2} \) 都趋向于 0,所以:\[ \lim_{x \to \infty} f(x) = \frac{3 - 0}{1 + 0} = 3 \]二、导数与微分题目2:求函数 \( g(x) = x^3 - 2x^2 + x \) 的导数。
解答:使用幂函数的导数规则,我们有:\[ g'(x) = 3x^2 - 4x + 1 \]三、积分题目3:计算定积分 \( \int_{0}^{1} x^2 dx \)。
解答:首先,我们需要找到 \( x^2 \) 的原函数,即:\[ F(x) = \int x^2 dx = \frac{x^3}{3} + C \]然后,我们可以计算定积分:\[ \int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1^3}{3} -\frac{0^3}{3} = \frac{1}{3} \]四、无穷级数题目4:判断级数 \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 的收敛性。
解答:该级数可以重写为:\[ \sum_{n=1}^{\infty} \left(\frac{1}{n} -\frac{1}{n+1}\right) \]这是一个交错级数,我们可以通过比较测试来判断其收敛性。
由于每一项都是正的且递减,我们可以得出结论,该级数是收敛的。
《高等数学》考试模拟题及答案

《高等数学》考试模拟题(一)一、求极限(每小题4分,共16分)1.1limcos 2n n n π→∞2.0tan limx kx x →4.1lim ()ln ln x x x x→∞-二、导数、微分及其应用(每小题6分,共30分)1.ln y x x =,求y '2.arccos y x x =y '3.求隐函数的导数求dy dx :cos()xy x = 3.1sin()sin()y xy x xy +-4.求x y x e =的n 阶导数。
5.利用微分求arcsin0.4983的近似值。
三、计算不定积分、定积分和反常积分(每小题6分,共36分) 1.121x x dx e ⎰2.arctan xdx ⎰ 2.21arctan ln(1)2x x x C -++3 111ln 21x C x x -+++4.42 0tan xdx π⎰5.⎰6. 0sin x x dx e -+∞⎰四、证明题(每小题6分,共18分)1.按极限定义证明3lim(31)8x x →-=。
2.证明sin sin a b a b -≤-, a b 、为任意实数。
3.若方程11100n n n n a x a x a x a --++++= 有一个正根0x ,证明方程 12121(1)20n n n n na x n a x a x a ---+-+++= 必有一个小于0x 的正根。
模拟题参考答案(一)一、1. 0 2. k 3. e 4. -1二、1.1ln x +2.arccos x3.1sin()sin()y xy x xy +- 4.()x x n e +5.0.00176π-或0.5216三、1.1x C e -+2.21arctan ln(1)2x x x C -++ 3.111ln 21x C x x -+++ 4.14π-5.3π+ 6.12四、1.0, =3εεδ∀>∃,当03x δ<-<时,318333x x δε--=-<=。
高等数学下期末试题七套附答案

高等数学〔下〕试卷一一、填空题〔每空3分,共15分〕〔1〕函数11z x y x y =++-的定义域为〔2〕函数arctany z x =,那么zx ∂=∂〔3〕交换积分次序,2220(,)y y dy f x y dx⎰⎰=〔4〕L 是连接(0,1),(1,0)两点的直线段,那么()Lx y ds +=⎰〔5〕微分方程230y y y '''+-=,那么其通解为二、选择题〔每空3分,共15分〕 〔1〕设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,那么〔〕 A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交〔2〕设是由方程2222xyz x y z +++=确定,那么在点(1,0,1)-处的dz =〔〕A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - 〔3〕Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为〔〕 A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰〔4〕幂级数,那么其收敛半径〔〕A. 2B. 1C. 12 D.2〔5〕微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=〔〕A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题〔每题8分,共48分〕1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 22(,)z f xy x y =,求z x ∂∂,zy ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰,其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程xxy y xe '+=满足11x y ==的特解四.解答题〔共22分〕1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体外表的外侧(10)'2、〔1〕判别级数111(1)3n n n n ∞--=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔6'〕〔2〕在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数〔6'〕高等数学〔下〕试卷二一.填空题〔每空3分,共15分〕〔1〕函数24x y z -=的定义域为; 〔2〕函数xyz e =,那么在(2,1)处的全微分dz =;〔3〕交换积分次序,ln 1(,)e x dx f x y dy⎰⎰=;〔4〕L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,那么L yds =⎰;〔5〕微分方程20y y y '''-+=,那么其通解为.二.选择题〔每空3分,共15分〕〔1〕设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,那么L 与π的夹角为〔〕;A. 0B. 2πC. 3πD. 4π〔2〕设是由方程333z xyz a -=确定,那么z x ∂=∂〔〕;A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D.2xy z xy - 〔3〕微分方程256x y y y xe '''-+=的特解y *的形式为y *=〔〕;A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++〔4〕Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为〔〕; A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰〔5〕幂级数1212nnn n x ∞=-∑,那么其收敛半径〔〕.A. 2B. 1C. 12 D.2三.计算题〔每题8分,共48分〕5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、(sin cos ,)x yz f x y e +=,求z x ∂∂,zy ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1y y x x '-=++的通解.四.解答题〔共22分〕1、〔1〕〔6'〕判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔2〕〔4'〕在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学〔下〕模拟试卷三一.填空题〔每空3分,共15分〕1、函数arcsin(3)y x =-的定义域为.2、22(2)lim 332n n n n →∞++-=.3、2ln(1)y x =+,在1x =处的微分dy =. 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题〔每空3分,共15分〕1、2x =是函数22132x y x x -=-+的连续点 〔A 〕可去 〔B 〕跳跃 〔C 〕无穷 〔D 〕振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是。
高等数学上期末考试试题及参考答案
高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。
高等数学期末考试试卷(含答案)完整版本
高等数学期末考试试卷(含答案)完整版本一、高等数学选择题
1.点是函数的极值点.
A、正确
B、不正确
【答案】B
2.不定积分.
A、
B、
C、
D、
【答案】A
3.微分方程的通解是().
A、
B、
C、
D、
【答案】B
4.设函数,则.
A、正确
B、不正确
【答案】A
5.不定积分,其中为任意常数.
A、正确
B、不正确
【答案】B
6..
A、正确
B、不正确
【答案】A
7.函数的图形如图示,则函数的单调减少区间为
( ).
A、
B、
C、
D、
【答案】D
8.设函数,则().A、
B、
C、
D、
【答案】A
9.极限.
A、正确
B、不正确
【答案】A
10.设函数,则().A、
B、
C、
D、
【答案】A
11. ( ).
A、
B、
C、
D、
【答案】B
12.不定积分( ).
A、
B、
C、
D、
【答案】B
13.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
14.是偶函数.
A、正确
B、不正确
【答案】A
15.函数在点处连续.
A、正确
B、不正确
【答案】A。
高数模拟试卷2及答案
第二学期期末考试模拟试卷2课程名称:高等数学 闭卷 A 卷 120分钟一、填空题(每小题3分,共15分)1. 设u=x 4+y 4-4x 2y 2 ,则u x x =12x 2-8y 2 2. 设u=xy+y/x ,则u y = x+1/x3. 函数z=x 2+4xy-y 2+6x-8y+12的驻点是 (1, -2)4. 设幂级数∑∞=0n nn xa的收敛半径是4,则幂级数∑∞=+012n n nx a的收敛半径是 R=25. 设Σ是柱面x 2+y 2=4介于1≤z ≤3之间部分曲面,它的法向指向含oz 轴的一侧,则⎰⎰∑++dxdyz y x 222= 0二、单选(每小题2分,共8分)1、函数z f x y =(,)在点(,)x y 00处连续是它在该点偏导数存在的:(A)必要而非充分条件; (B)充分而非必要条件;(C)充分必要条件; (D)既非充分又非必要条件。
答(A ) 2、微分方程y x y y ''=''+'满足条件y’(2)=1, y(2)=1的解是 (A) y=(x-1)2 (B) y=(x+1/2)2-21/4 (C) y=1/2(x-1)2+1/2 (D) y=(x-1/2)2-5/4答(C )3、若方程0=+'+''qy y p y 的系数p+qx=0,则该方程有特解 (A) y=x (B) y=e x (C) y=e – x (D) y=sin x 答(A )4、微分方程x y y sin ='+'''的一个特解应具有形式 答(D ) (A) Asin x (B) Acos x (C) Asin x +Bcos x (D) x(Asinx+Bcosx) 三、解答下列各题1. (本小题6分)利用二重积分计算由曲面z=x 2+y 2,y=1,z=0,y=x 2所围成的曲顶柱体的体积。
高等数学模拟试题与答案
A.f'(x)B.f'(x)C.f'(x)D.f'(x)baf(x)dx是(a) 27、定积分A.一个常数B.f(x)的一个原函数C.一个函数族D.一个非负常数28、naxyxe,那么高阶导数(n)y (c)A.naxaxnaxae B.n!C.n!e D.!nae29、假设f(x)dxF(x)c,那么s inxf(cosx)dx等于(b)A.F(sinx)cB.F(sinx)cC.F(cosx)cD.F(cosx)c 30、微分方程xy'y3的通解是(b)c3y3ycyx B.x C. A.21,yx x(,0]的反函数是(c) 31、函数c3x D.ycx3A.yx1,x[1,)B.yx1,x[0,)C.yx1,x[1,)D.yx1,x[1,) 32、当x0时,以下函数中为x的高阶无穷小的是(a) A.1cosx B. 2xx C.sinx D.x33、假设函数f(x)在点x0 处可导,那么|f(x)|在点x处(c)A.可导B.不可导C.连续但未必可导D.不连续34、当xx0时,和(0)都是无穷小.当x x时以下可能不是无穷小的是〔d〕A.B.C.D.35、以下函数中不具有极值点的是(c)2yx A.B.2yx C.3yx D. yx 336、f(x)在x3处的导数值为f'(3)2,那么limh0f(3h)f(3)2h(b)33A. 2B.2C.1D.137、设f(x)是可导函数,那么(f(x)dx)为(d)A.f(x)B.f(x)cC.f(x)D.f(x)c38、假设函数f(x)和g(x)在区间(a,b)内各点的导数相等,那么这两个函数在该区间内(d)A.f(x)g(x)x B.相等C.仅相差一个常数D.均为常数二、填空题1、极限limx0x2costdtx=第3页〔共8页〕a2x1x e,那么常数a.2、lim()x022dx3、不定积分xex=.4、设yf(x)的一个原函数为x,那么微分d(f(x)cosx).5、设f(x)x2dxxC ,那么f(x).6、导数ddx x12costd t.7、曲线 3y(x1)的拐点是.8、由曲线 2yx, 24yx及直线y1所围成的图形的面积是.9、曲线yf(x)上任一点切线的斜率为2x并且曲线经过点(1,2)那么此曲线的方程为.10、22f(xy,xy)xyxy,那么ffxy.11、设f(x1)xcosx,那么f(1).12、xa112lim(1)ex,那么常数a. x13、不定积分l nxdx2 x.14、设yf(x)的一个原函数为sin2x,那么微分dy.15、极限limx0x2arcsintdt2x=.16、导数2dxsintdt dx.a17、设0 xtedte ,那么x.18、在区间[0,]x2上由曲线ycosx与直线2 ,y1所围成的图形的面是.19、曲线ysinx在点x23 处的切线方程为.ff20、22fxyxyxy,那么(,)x y.第4页〔共8页〕21、极限limln(1x)sinx01x=22、x1ax2lim()exx,那么常数a.123、不定积分xedx .24、设yf(x)的一个原函数为tanx,那么微分dy.b a f(x)dx0,那么b[f(x)1]dxa25、假设f(x)在[a,b]上连续,且.26、导数d2xsintdt dx.x27、函数y24(x1)2x2x4的水平渐近线方程是.28、由曲线1yyx xx2与直线所围成的图形的面积是.x29、f(3x1)e,那么f(x)=.a,2,3b2,4,30、两向量,平行,那么数量积ab.231、极限l im(1sin)xx x032、973(x1)(ax1)lim8250x(1)x,那么常数a.xsinxdx33、不定积分.34、设函数sin2x ye,那么微分dy.35、设函数f(x)在实数域内连续,那么xf(x)dxf(t)dt.36、导数dx2ttedt dx.a37、曲线y23x4x52(3)x的铅直渐近线的方程为.38、曲线2yx 与2y2x 所围成的图形的面积是.第5页〔共8页〕三、计算题1、求极限:22lim(xx1xx1).x解:lim(11)x2xx2x=x lim(11)x2xx2x/2x= x2、计算不定积分:解:sin2x21sin xdx3、计算二重积分D sinxxdxdy D是由直线yx及抛物线 2yx围成的区域解:4、设zuv而2ln2lnuxyv3x2y.求zxzy解:5、求由方程解:221xyxy确定的隐函数的导数d ydx.第6页〔共8页〕6、计算定积分:2|sinx|dx.解:27、求极限:limx0(x x e) x.解:8、计算不定积分:解:1x 21xedx2x.9、计算二重积分D22(xy)d其中D是由yx,yxa,yay3a(a0)所围成的区域解:10、设u2vze,其中3usinx,vx,求dzdt.解:第7页〔共8页〕dy 11、求由方程yxlny所确定的隐函数的导数解:,dx.f(x) x x2,01,2,01,x,1x2..求x(x)f(t)dt12、设在[0,2]上的表达式. 解:13、求极限:解:limx02x112x.dx14、计算不定积分:解:x lnxlnlnx.第8页〔共8页〕15、计算二重积分D (4xy)dD是圆域222xyy解:16、设z2xyxy,其中y2x3,求dzdt.解:dyy17、求由方程1yxe所确定的隐函数的导数d x. 解:第9页〔共8页〕f(x) 1sin,0,xx20,其它.x(x)f(t)dt求0,18、设内的表达式.在解:19、求极限:limx42x13x.22解:20、计算不定积分:a rctanx11xxdx解:第10页〔共8页〕21、计算二重积分D2xydD是由抛物线px22ypx和直线2(p0)围成的区域解:22、设zyx而txe,2ty1e 求d zdt.解:四、综合题与证明题1、函数21xsin,x0,f(x)x0,x0在点x0处是否连续?是否可导?2、求函数32y(x1)x的极值. 解:第11页〔共8页〕3、证明:当x0时1xln(x1xx.2)122)12证明:4、要造一圆柱形油罐体积为V问底半径r和高h等于多少时才能使外表积最小?这时底直径与高的比是多少?解:5、设f(x)ln(1x),1x0,1x1x,0x1 讨论f(x)在x0处的连续性与可导性解:,第12页〔共8页〕6、求函数y3x2(1)x的极值.解:0x7、证明:当2 时sinxtanx2x.证明:28、某地区防空洞的截面拟建成矩形加半圆(如图)截面的面积为5m 问底宽x为多少时才能使截面的周长最小从而使建造时所用的材料最省?解:第13页〔共8页〕----6、求函数y3x2(1)x的极值.解:0x7、证明:当2 时sinxtanx2x.证明:28、某地区防空洞的截面拟建成矩形加半圆(如图)截面的面积为5m 问底宽x为多少时才能使截面的周长最小从而使建造时所用的材料最省?解:----1 / 21 6、求函数 y 3x2(1) x 的极值.解:0x 7、证明:当2时sinxtanx2x .证明:2 8、某地区防空洞的截面拟建成矩形加半圆(如图)截面的面积为5m 问底宽x 为多少 时才能使截面的周长最小从而使建造时所用的材料最省? 解:第13页〔共8页〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学期末考试仿真模拟卷
(2019至2020学年第一学期)
一、 单项选择题(15分,每小题3分)
1、当∞→x 时,下列函数为无穷小量的是( )
(A )x Cosx x - (B )x Sinx
(C )1
21-x (D )x x )11(+
2.函数)(x f 在点0x 处连续是函数在该点可导的( ) (A )必要条件 (B )充分条件
(C )充要条件 (D )既非充分也非必要条件 3.设)(x f 在),(b a 内单增,则)(x f 在),(b a 内( ) (A )无驻点 (B )无拐点 (C )无极值点 (D )0)(>'x f
4.设)(x f 在][b a ,内连续,且0)()(<⋅b f a f ,则至少存在一点)
,(b a ∈ξ使( )成立。
(A )0=)(ξf (B )0=')(ξf
(C )0='')(ξf (D ))()()()(a b f a f b f -⋅'=-ξ 5.广义积分)0(>⎰∞
+a dx
a
x p
当( )时收敛。
(A )1>p (B)1<p (C)1≥p (D)1≤p
二、填空题(15分,每小题3分)
1、 若当0→x 时,22~11x ax --,则=a ;
2、设由方程22a xy =所确定的隐函数)(x y y =,则
=dy ; 3、函数)0(82>+
=x x
x y 在区间 单减;
在区间 单增;
4、若x xe x f λ-=)(在2=x 处取得极值,则=λ ;
5、若dx x f dx x xf a ⎰⎰=1
01
02)()(,则=a ;
三、计算下列极限。
(12分,每小题6分)
1、x
x x
x )1(lim +∞→ 2、 2
00
)1(lim x
dt
e x
t x ⎰-→
四、求下列函数的导数(12分,每小题6分)
1、241
x
y -=,求y ' 2、⎪⎩⎪⎨⎧-=+=t t y t x arctan )
1ln(2 ,求22dx y d
五、计算下列积分(18分,每小题6分)
1、dx x
x
x ⎰+++2
1arctan 1 2、
dx x x ⎰-
-22
3cos cos π
π
3、设dt t
t
x f x ⎰=2
1sin )(,计算dx x xf ⎰10)(
六、讨论函数⎪⎪⎩⎪
⎪⎨⎧≤>-=2,
22,cos 2)(π
ππ
πx x x x x x f 的连续性,若有间断点,
指出其类型。
(7分)
七、证明不等式:当0>x 时,2
)1ln(2
x x x ->+ (7分)。