四川省成都七中高考数学一诊试卷(文科)

合集下载

2020年四川省成都七中高考数学一诊试卷(文科)

2020年四川省成都七中高考数学一诊试卷(文科)

2020年四川省成都七中高考数学一诊试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的))=()1. 复数z=a+bi(a, b∈R)的虚部记作Im(z)=b,则Im(3+i1+iA.−2B.−1C.1D.22. 执行如图所示的程序框图,输出的S值为()A.3B.−6C.10D.−153. 关于函数f(x)=|tanx|的性质,下列叙述不正确的是()A.f(x)的最小正周期为π2B.f(x)是偶函数(k∈Z)对称C.f(x)的图象关于直线x=kπ2)(k∈Z)内单调递增D.f(x)在每一个区间(kπ, kπ+π24. 已知a>0,b>0,则“a≤1且b≤1”是“a+b≤2且ab≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5. 某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6. 在约束条件:{x ≤1y ≤2x +y −1≥0 下,目标函数z =ax +by(a >0, b >0)的最大值为1,则ab 的最大值等于( ) A.12B.38C.14D.187. 已知正项等比数列{a n }中,S n 为其前n 项和,且a 2a 4=1,S 3=7则S 5=( ) A.152 B.314C.334D.1728. 双曲线x 26−y 23=1的渐近线与圆(x −3)2+y 2=r 2(r >0)相切,则r =( )A.√3B.2C.3D.69. 已知函数f(x)对∀x ∈R 都有f(x)=f(4−x),且其导函数f′(x)满足当x ≠2时,(x −2)f′(x)>0,则当2<a <4时,有( ) A.f(2a )<f(2)<f(log 2a) B.f(2)<f(2a )<f(log 2a) C.f(log 2a)<f(2a )<f(2) D.f(2)<f(log 2a)<f(2a )10. 对圆(x −1)2+(y −1)2=1上任意一点P(x, y),若点P 到直线l 1:3x −4y −9=0和l 2:3x −4y +a =0的距离和都与x ,y 无关,则a 的取值区间为( ) A.[6, +∞) B.[−4, 6] C.(−4, 6) D.(−∞, −4]11. 若a →,b →,c →满足,|a →|=|b →|=2|c →|=2,则(a →−b →)⋅(c →−b →)的最大值为( )A.10B.12C.5√3D.6√212. 点M ,N 分别是棱长为1的正方体ABCD −A 1B 1C 1D 1中棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1 // 面AMN ,则PA 1的长度范围为( ) A.[1,√52]B.[3√24,√52]C.[3√24,32]D.[1,32]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上)命题“∀x ∈N ,x 2>1”的否定为________.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为________.设O 、F 分别是抛物线y 2=2x 的顶点和焦点,M 是抛物线上的动点,则|MO||MF|的最大值为________.若实数a ,b ∈(0, 1)且ab =14,则11−a +21−b 的最小值为________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知c =3,且sin(C −π6)⋅cosC =14. (1)求角C 的大小;(2)若向量m →=(1, sinA)与n →=(2, sinB)共线,求a 、b 的值.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .参考数据:如图,在三棱柱ABC −A 1B 1C 1中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱CC 1的中点.(1)求证:CD // 平面A1EB;(2)求证:AB1⊥平面A1EB;(3)若AB=2,求三棱锥A1−B1BE的体积.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(−√2, 0),F2(√2, 0),以椭圆短轴为直径的圆经过点M(1, 0).(1)求椭圆C的方程;(2)过点M的直线l与椭圆C相交于A、B两点,设点N(3, 2),记直线AN,BN的斜率分别为k1,k2,问:k1+k2是否为定值?并证明你的结论.已知函数f(x)=tx+lnx(t∈R).(1)当t=−1时,证明:f(x)≤−1;(2)若对于定义域内任意x,f(x)≤x⋅e x−1恒成立,求t的范围?请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分).[选修4-4:坐标系与参数方程]在极坐标系下,知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ−π4)=√22(ρ≥0,0≤θ≤2π).(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0, π)时,求圆O和直线l的公共点的极坐标.[选修4-5:不等式选讲](本小题满分0分)已知函数f(x)=|2x+3|+|2x−1|.(Ⅰ)求不等式f(x)≤5的解集;(Ⅱ)若关于x的不等式f(x)<|m−1|的解集非空,求实数m的取值范围.参考答案与试题解析2020年四川省成都七中高考数学一诊试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】B【考点】复数的运算【解析】直接由复数代数形式的乘除运算化简3+i1+i,再根据题目中定义的复数的虚部,可得答案.【解答】∵3+i1+i =(3+i)(1−i)(1+i)(1−i)=4−2i2=2−i,又复数z=a+bi(a, b∈R)的虚部记作Im(z)=b,∴Im(3+i1+i)=−1.2.【答案】C【考点】程序框图【解析】根据程序框图判断,程序的运行功能是求S=−12+22−32+42,计算可得答案.【解答】由程序框图知,程序的运行功能是求S=−12+22−32+42−…可得:当i=5时,不满足条件i<5,程序运行终止,输出S=−12+22−32+42=10.3.【答案】A【考点】正切函数的图象【解析】根据正切函数的性质与性质,结合绝对值的意义,对选项中的命题分析、判断即可.【解答】对于函数f(x)=|tanx|的性质,根据该函数的图象知,其最小正周期为π,A错误;又f(−x)=|tan(−x)|=|tanx|=f(x),所以f(x)是定义域上的偶函数,B正确;根据函数f(x)的图象知,f(x)的图象关于直线x=kπ2(k∈Z)对称,C正确;根据f(x)的图象知,f(x)在每一个区间(kπ, kπ+π2)(k∈Z)内单调递增,D正确.4.【答案】A【考点】充分条件、必要条件、充要条件【解析】a>0,b>0,“a≤1且b≤1”可得:“a+b≤2且ab≤1”,反之不成立:取a=32,b=12,即可判断出结论.【解答】∵a>0,b>0,“a≤1且b≤1”可得:“a+b≤2且ab≤1”,反之不成立:取a=32,b=12,满足a+b≤2且ab≤1,而a≤1且b≤1不成立.故“a≤1且b≤1”是“a+b≤2且ab≤1”的充分不必要条件.5.【答案】C【考点】由三视图求体积(组合型)由三视图求体积【解析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.【解答】由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=12π×22×2+12×π×4×4+2×4+2×4×2+2×4+2×2×2=12π+40.故选:C.6.【答案】D【考点】简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数取得最大值,确定a,b的关系,利用基本不等式求ab的最大值.【解答】作出不等式组对应的平面区域如图:(阴影部分),由z =ax +by(a >0, b >0),则y =−ab x +zb ,平移直线y =−ab x +zb ,由图象可知当直线y =−ab x +zb 经过点A(1, 2)时直线的截距最大,此时z 最大为1. 代入目标函数z =ax +by 得a +2b =1. 则1=a +2b ≥2√2ab ,则ab ≤18当且仅当a =2b =12时取等号, ∴ ab 的最大值等于18, 7.【答案】 B【考点】等比数列的前n 项和 【解析】由已知条件利用等比数列的通项公式和前n 项和公式得{a 1q ∗a 1q 3=1a 1(1−q 3)1−q=7q >0,由此能求出S 5.【解答】解:由已知得:{a 1q ⋅a 1q 3=1,a 1(1−q 3)1−q =7,q >0,解得a 1=4,q =12, ∴ S 5=a 1(1−q 5)1−q=4×(1−125)1−12=314.故选B . 8.【答案】 A【考点】双曲线的渐近线 直线与圆的位置关系 点到直线的距离公式 【解析】求出渐近线方程,再求出圆心到渐近线的距离,根据此距离和圆的半径相等,求出r . 【解答】解:双曲线的渐近线方程为y =2,即x ±√2y =0, 圆心(3, 0)到直线的距离d =√(√2)2+1=√3,∴r=√3.故选A.9.【答案】D【考点】利用导数研究函数的单调性【解析】由f(x)=f(4−x),可知函数f(x)关于直线x=2对称,由(x−2)f′(x)>0,可知f(x)在(−∞, 2)与(2, +∞)上的单调性,从而可得答案.【解答】∵函数f(x)对定义域R内的任意x都有f(x)=f(4−x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)⇔f′(x)(x−2)>0,∴当x>2时,f′(x)>0,f(x)在(2, +∞)上的单调递增;同理可得,当x<2时,f(x)在(−∞, 2)单调递减;f(x)的最小值为f(2)∵2<a<4,∴1<log2a<2,∴2<4−log2a<3,又4<2a<16,f(log2a)=f(4−log2a),f(x)在(2, +∞)上的单调递增;∴f(log2a)<f(2a),∴f(2)<f(log2a)<f(2a),10.【答案】A【考点】直线与圆的位置关系【解析】由题意可得|3x−4y+a|+|3x−4y−9|可以看作点P到直线m:3x−4y+a=0与直线l:3x−4y−9=0距离之和的5倍,根据点到直线的距离公式解得即可.【解答】设z=|3x−4y+a|+|3x−4y−9|=5(|3x−4y−9|5+|3x−4y+a|5),故|3x−4y+a|+|3x−4y−9|可以看作点P(x, y)到直线l2:3x−4y+a=0与直线l1:3x−4y−9=0距离之和的5倍,∵|3x−4y+a|+|3x−4y−9|的取值与x,y无关,∴这个距离之和与点P在圆上的位置无关,如图所示:可知直线l1平移时,P点与直线l1,l2的距离之和均为l1,l2的距离,即此时圆在两直线内部,当直线l2的与圆相切时,|3−4+a|5=1,化简得|a−1|=5,解得a=6或a=−4(舍去),∴a≥6.故选:A.11.【答案】 B【考点】平面向量数量积的性质及其运算 【解析】利用向量的数量积公式化简表达式,转化求解最大值即可. 【解答】a →,b →,c →满足,|a →|=|b →|=2|c →|=2,则(a →−b →)⋅(c →−b →)=a →⋅c →−a →⋅b →−b →⋅c →+b →2=2cos <a →,c →>−4cos <a →,b →>−2cos <b →,c →>+4≤12,当且仅当a →,c →同向,a →,b →,反向,b →,c →反向时,取得最大值.12.【答案】 B【考点】点、线、面间的距离计算 【解析】取B 1C 1的中点E ,BB 1的中点F ,连结A 1E ,A 1F ,EF ,取EF 中点O ,连结A 1O ,推导出平面AMN // 平面A 1EF ,从而点P 的轨迹是线段EF ,由此能求出PA 1的长度范围. 【解答】取B 1C 1的中点E ,BB 1的中点F ,连结A 1E ,A 1F ,EF ,取EF 中点O ,连结A 1O , ∵ 点M ,N 分别是棱长为1的正方体ABCD −A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴ AM // A 1E ,MN // EF ,∵ AM ∩MN =M ,A 1E ∩EF =E , ∴ 平面AMN // 平面A 1EF ,∵ 动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1 // 面AMN , ∴ 点P 的轨迹是线段EF ,∵ A 1E =A 1F =√12+(12)2=√52,EF =12√12+12=√22,∴ A 1O ⊥EF ,∴ 当P 与O 重合时,PA 1的长度取最小值:A 1O =(√52)(√24)=3√24,当P 与E (或F )重合时,PA 1的长度取最大值:A 1E =A 1F =√52.∴ PA 1的长度范围为[3√24, √52].二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上) 【答案】∃x 0∈N ,x 02≤1【考点】 命题的否定 【解析】直接利用全称命题的否定是特称命题,写出结果即可. 【解答】因为全称命题的否定是特称命题,所以,命题“∀x ∈N ,x 2>1”的否定为∃x 0∈N ,x 02≤1 【答案】 360【考点】频率分布直方图 【解析】设出公差,利用9个小长方形面积和为1,求出公差,然后求解中间一组的频数. 【解答】设公差为d ,那么9个小长方形的面积分别为0.02,0.02+d ,0.02+2d ,0.02+3d ,0.02+4d ,0.02+3d ,0.02+2d ,0.02+d ,0.02,而9个小长方形的面积和为 1,可得0.18+16d =1 解得d =0.8216,∴ 中间一组的频数为:1600×(0.02+4d)=360. 【答案】2√33. 【考点】 抛物线的求解 【解析】设M(m, n)到抛物线y 2=2x 的准线x =−12的距离等于d ,由抛物线的定义可得|MO||MF|=√m 2+n 2m+12=√1+m−14m 2+m+14,令m −14=t ,利用基本不等式可求得最大值. 【解答】解:焦点F(12, 0),设M(m, n),则n 2=2m ,m >0,设M 到准线x =−12的距离等于d , 则由抛物线的定义得|MO||MF|=√m 2+n 2m+12=√1+m−14m 2+m+14,令m −14=t , 依题意知,m >0, 若t >0,则m−14m 2+m+14=tt 2+32t+916=1t+916t +32≤13, ∴ t max =13,此时(|MO||MF|)max =√1+13=2√33; 若−14<t <0,y =t +916t+32单调递减,故y <−1,1y ∈(−1, 0);综上所述,(|MO||MF|)max =2√33. 故答案为:2√33. 【答案】4+4√23 【考点】基本不等式及其应用 【解析】 先根据条件消掉b ,将b =14a 代入原式得11−a +8a4a−1,再列项并用贴“1“法,最后应用基本不等式求其最小值. 【解答】因为ab =14,所以b =14a , 因此11−a +21−b =11−a +21−14a,=11−a +8a4a−1, =11−a +2(4a−1)+24a−1,=11−a +24a−1+2, =2(14a−1+24−4a )+2,=23(14a−1+24−4a )[(4a −1)+(4−4a)]+2, =23[1+2+4−4a4a−1+2(4a−1)4−4a]+2,≥23(3+2√2)+2=4+4√23,当且仅当a =√24+22,取“=”,及11−a +21−b 的最小值为4+4√23, 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤) 【答案】sin(C −π6)⋅cosC =(sinCcos π6−cosCsin π6)⋅cosC=√3sinCcosC−1cos2C=√34sin2C−1+cos2C4=12sin(2C−π6)−14=14,∴sin(2C−π6)=1;又0<C<π,∴−π6<2C−π6<11π6,∴2C−π6=π2,解得C=π3;向量m→=(1, sinA)与n→=(2, sinB)共线,∴2sinA−sinB=0,∴sinB=2sinA,即b=2a①;又c=3,C=π3,∴c2=a2+b2−2abcosC=a2+b2−ab=9②;由①②联立解得a=√3,b=2√3.【考点】三角函数中的恒等变换应用平面向量数量积的性质及其运算【解析】(1)利用三角恒等变换化简sin(C−π6)⋅cosC=14,即可求出C的值;(2)根据向量m→、n→共线,得出sinB=2sinA,即b=2a①;由余弦定理得出a2+b2−ab=9②,①②联立解得a、b的值.【解答】sin(C−π6)⋅cosC=(sinCcosπ6−cosCsinπ6)⋅cosC=√32sinCcosC−12cos2C=√34sin2C−1+cos2C4=12sin(2C−π6)−14=14,∴sin(2C−π6)=1;又0<C<π,∴−π6<2C−π6<11π6,∴2C−π6=π2,解得C=π3;向量m→=(1, sinA)与n→=(2, sinB)共线,∴2sinA−sinB=0,∴sinB=2sinA,即b=2a①;又c=3,C=π3,∴c2=a2+b2−2abcosC=a2+b2−ab=9②;由①②联立解得a=√3,b=2√3.【答案】(1)由列联表得K2=100(26×20−30×34)256×44×50×50≈0.6494<0.708,所以没有60%的把握认为“古文迷”与性别有关.(2)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为5×3050=3人,“非古文迷”有5×2050=2人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(Ⅲ)因为ξ为所抽取的3人中“古文迷”的人数,所以ξ的所有取值为1,2,3.P(ξ=1)=C31C22C53=310,P(ξ=2)=C32C21C53=35,P(ξ=3)=C33C53=110.所以随机变量ξ的分布列为于是Eξ=1×310+2×35+3×110=95.【考点】求解线性回归方程【解析】(Ⅰ)求出K2,与临界值比较,即可得出结论;(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,即可得出结论;(Ⅲ)ξ的所有取值为1,2,3.求出相应的概率,即可求随机变量ξ的分布列与数学期望.【解答】(1)由列联表得K2=100(26×20−30×34)256×44×50×50≈0.6494<0.708,所以没有60%的把握认为“古文迷”与性别有关.(2)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为5×3050=3人,“非古文迷”有5×2050=2人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(Ⅲ)因为ξ为所抽取的3人中“古文迷”的人数,所以ξ的所有取值为1,2,3.P(ξ=1)=C31C22C53=310,P(ξ=2)=C32C21C53=35,P(ξ=3)=C33C53=110.所以随机变量ξ的分布列为于是Eξ=1×310+2×35+3×110=95.【答案】证明:设AB1和A1B的交点为O,连接EO,连接OD.因为O为A1B的中点,D为AB的中点,所以OD // BB1且OD=12BB1.又E是CC1中点,所以EC // BB1,且EC=12BB1,所以EC // OD且EC=OD.所以,四边形ECOD为平行四边形.所以EO // CD.又CD平面A1BE,EO⊂平面A1BE,所以CD // 平面A1BE.证明:因为三棱柱各侧面都是正方形,所以BB1⊥AB,BB1⊥BC.所以BB1⊥平面ABC.因为CD⊂平面ABC,所以BB1⊥CD.由已知得AB=BC=AC,所以CD⊥AB,所以CD⊥平面A1ABB1.由(1)可知EO // CD,所以EO⊥平面A1ABB1.所以EO⊥AB1.因为侧面是正方形,所以AB1⊥A1B.又EO∩A1B=O,EO⊂平面A1EB,A1B⊂平面A1EB,所以AB1⊥平面A1BE.由条件求得BE=√5=A1E,A1B=2√2,所以S△A1BE =√6,所以三棱锥A1−B1BE的体积为:V A1−B1BE =V B1−A1BE=13S△A1BE⋅|B1O|=13×√6×√2=2√33.【考点】直线与平面平行直线与平面垂直【解析】(1)设AB1和A1B的交点为O,连接EO,连接OD,推导出四边形ECOD为平行四边形.从而EO // CD.由此能证明CD // 平面A1BE.(2)推导出BB1⊥AB,BB1⊥BC.从而BB1⊥平面ABC,BB1⊥CD,推导出CD⊥AB,从而CD⊥平面A1ABB1.由EO // CD,得EO⊥平面A1ABB1.从而EO⊥AB1.因为侧面是正方形,得AB1⊥A1B.由此能证明AB1⊥平面A1BE.(3)三棱锥A1−B1BE的体积为V A1−B1BE =V B1−A1BE=13S△A1BE⋅|B1O|,由此能求出结果. 【解答】证明:设AB 1和A 1B 的交点为O ,连接EO ,连接OD . 因为O 为A 1B 的中点,D 为AB 的中点,所以OD // BB 1且OD =12BB 1.又E 是CC 1中点,所以EC // BB 1,且EC =12BB 1,所以EC // OD 且EC =OD . 所以,四边形ECOD 为平行四边形.所以EO // CD .又CD 平面A 1BE ,EO ⊂平面A 1BE ,所以CD // 平面A 1BE . 证明:因为三棱柱各侧面都是正方形, 所以BB 1⊥AB ,BB 1⊥BC .所以BB 1⊥平面ABC .因为CD ⊂平面ABC ,所以BB 1⊥CD . 由已知得AB =BC =AC ,所以CD ⊥AB ,所以CD ⊥平面A 1ABB 1.由(1)可知EO // CD , 所以EO ⊥平面A 1ABB 1.所以EO ⊥AB 1.因为侧面是正方形,所以AB 1⊥A 1B . 又EO ∩A 1B =O ,EO ⊂平面A 1EB ,A 1B ⊂平面A 1EB , 所以AB 1⊥平面A 1BE .由条件求得BE =√5=A 1E ,A 1B =2√2, 所以S △A 1BE =√6,所以三棱锥A 1−B 1BE 的体积为:V A 1−B 1BE =V B 1−A 1BE =13S △A 1BE ⋅|B 1O|=13×√6×√2=2√33.【答案】 ∵ 椭圆C:x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(−√2, 0),F 2(√2, 0), 以椭圆短轴为直径的圆经过点M(1, 0), ∴ {c =√2b =1a 2=b 2+c 2 ,解得a =√3,b =1,∴ 椭圆C 的方程为x 23+y 2=1.k 1+k 2是定值.证明如下:设过M 的直线:y =k(x −1)=kx −k 或者x =1 ①x =1时,代入椭圆,y =±√63,∴ 令A(1, √63),B(1, −√63),k 1=2−√633−1,k 2=2+√633−1,∴ k 1+k 2=2. ②y =kx −k 代入椭圆,(3k 2+1)x 2−6k 2x +(3k 2−3)=0设A(x 1, y 1),B(x 2, y 2). 则x 1+x 2=6k 23k 2+1,x 1x 2=3k 2−33k 2+1,y 1+y 2=6k 33k 3+1−2k =−2k3k 3+1,y 1y 2=k 2x 1x 2−k 2(x 1+x 2)+k 2=−2k 23k 2+1,k 1=2−y 13−x 1,k 2=2−y23−x 2,∴ k 1+k 2=6−3y 1−2x 2+x 2y 1+6−3y 2−2x 1+x 1y 2(3−x 1)(3−x 2)=2.【考点】 椭圆的离心率 【解析】(1)由椭圆的两个焦点分别为F 1(−√2, 0),F 2(√2, 0),以椭圆短轴为直径的圆经过点M(1, 0),列出方程组,能求出椭圆C 的方程.(2)设过M 的直线:y =k(x −1)=kx −k 或者x =1,x =1时,代入椭圆,能求出k 1+k 2=2;把y =kx −k 代入椭圆,得(3k 2+1)x 2−6k 2x +(3k 2−3)=0,由此利用韦达定理能求出k 1+k 2=2. 【解答】 ∵ 椭圆C:x 2a2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(−√2, 0),F 2(√2, 0),以椭圆短轴为直径的圆经过点M(1, 0), ∴ {c =√2b =1a 2=b 2+c 2 ,解得a =√3,b =1,∴ 椭圆C 的方程为x 23+y 2=1.k 1+k 2是定值.证明如下:设过M 的直线:y =k(x −1)=kx −k 或者x =1 ①x =1时,代入椭圆,y =±√63,∴ 令A(1, √63),B(1, −√63),k 1=2−√633−1,k 2=2+√633−1,∴ k 1+k 2=2. ②y =kx −k 代入椭圆,(3k 2+1)x 2−6k 2x +(3k 2−3)=0 设A(x 1, y 1),B(x 2, y 2). 则x 1+x 2=6k 23k 2+1,x 1x 2=3k 2−33k 2+1,y 1+y 2=6k 33k 3+1−2k =−2k3k 3+1,y 1y 2=k 2x 1x 2−k 2(x 1+x 2)+k 2=−2k 23k 2+1,k 1=2−y 13−x 1,k 2=2−y23−x 2,∴ k 1+k 2=6−3y 1−2x 2+x 2y 1+6−3y 2−2x 1+x 1y 2(3−x 1)(3−x 2)=2.【答案】证明:即是证明lnx −x ≤−1,设g(x)=lnx −x +1,g ′(x)=1−x x,当0<x <1,g ′(x)>0,g(x)单调递增;当x >1,g ′(x)<0,g(x)单调递减; 所以g(x)在x =1处取到最大值,即g(x)≤g(1)=0,所以lnx −x ≤−1得证; 解法一:原式子恒成立即t ≤e x −lnx+1x在(0, +∞)恒成立,由(1)可以得到x ≥lnx +1,所以x ⋅e x ≥ln(x ⋅e x )+1=lnx +x +1, 所以e x ≥lnx+x+1x =lnx+1x+1,所以e x −lnx+1x≥1,当且仅当x ⋅e x =1时取=,于是t 的取值范围是(−∞, 1].解法二:设ℎ(x)=xe x −tx −lnx(x >0),原题即ℎ(x)≥1恒成立, 因为ℎ(x)=(x +1)e x −t −1x ,而$h"(x) = (x + 2)e^{x} + \frac{1}{x^{2}} > 0$, 所以ℎ′(x)单调递增,又因为x →0时,ℎ′(x)→−∞,当x →+∞时,ℎ′(x)→+∞, 所以ℎ′(x)在(0, +∞)存在唯一零点,设为x 0.所以ℎ(x 0)=(x 0+1)e x 0−t −1x 0=0,所以t =(x 0+1)e x 0−1x 0,且ℎ(x)在(0, x 0)上单调递减,在(x 0, +∞)上单调递增,于是ℎ(x)的最小值为ℎ(x 0)=x 0e x 0−tx 0−lnx 0=−x 02⋅e x 0−lnx 0+1,原题即−x 02⋅e x 0−lnx 0+1≥1,即x 02⋅e x 0+lnx 0≤0,由此式子必然0<x 0<1,x 02⋅e x 0≤−lnx 0,把后面的不等式两边同时取对数整理后得x 0+lnx 0≤ln(−lnx 0)+(−lnx 0),易证明函数y =x +lnx 是增函数,所以得x 0≤−lnx 0,所以e x 0≤1x 0,故由t =(x 0+1)e x 0−1x 0,得到t ≤(x 0+1)1x 0−1x 0=1,于是t 的取值范围是(−∞, 1]. 解法三:原式子恒成立即t ≤e x −lnx+1x在(0, +∞)恒成立,设φ(x)=e x −lnx+1x,φ′(x)=x 2e x +lnxx 2,设Q(x)=x 2e x +lnx ,Q ′(x)=(x 2+2x)e x +1x >0,所以Q(x)单调递增,且Q(12)<0,Q(1)>0,所以Q(x)有唯一零点x 0,而且x 02⋅e x 0+lnx 0=0,所以x 02⋅e x 0=−lnx 0, 两边同时取对数得x 0+lnx 0=ln(−lnx 0)+(−lnx 0),易证明函数y =x +lnx 是增函数,所以得x 0=−lnx 0,所以e x 0=1x 0,所以由φ(x)在(0, x 0)上单调递减,在(x 0, +∞)上单调递增, 所以φ(x)≥φ(x 0)=e x 0−lnx 0+1x 0=1x 0−−x 0+1x 0=2,于是t 的取值范围是(−∞, 1]. 【考点】利用导数研究函数的单调性 利用导数研究函数的最值【解析】(1)事实上,只需证明函数g(x)=lnx −x +1的最大值小于等于0即可; (2)解法一,转化为证明t ≤e x −lnx+1x在(0, +∞)恒成立,结合(1)的结论即可得证;解法二,直接构造函数ℎ(x)=xe x −tx −lnx(x >0),证明其大于等于1恒成立即可;解法三,转化为证明t ≤e x −lnx+1x在(0, +∞)恒成立,设φ(x)=e x −lnx+1x,求其最小值即可. 【解答】证明:即是证明lnx −x ≤−1,设g(x)=lnx −x +1,g ′(x)=1−x x,当0<x <1,g ′(x)>0,g(x)单调递增;当x >1,g ′(x)<0,g(x)单调递减; 所以g(x)在x =1处取到最大值,即g(x)≤g(1)=0,所以lnx −x ≤−1得证; 解法一:原式子恒成立即t ≤e x −lnx+1x在(0, +∞)恒成立,由(1)可以得到x ≥lnx +1,所以x ⋅e x ≥ln(x ⋅e x )+1=lnx +x +1, 所以e x ≥lnx+x+1x =lnx+1x+1,所以e x −lnx+1x≥1,当且仅当x ⋅e x =1时取=,于是t 的取值范围是(−∞, 1].解法二:设ℎ(x)=xe x −tx −lnx(x >0),原题即ℎ(x)≥1恒成立, 因为ℎ(x)=(x +1)e x −t −1x ,而$h"(x) = (x + 2)e^{x} + \frac{1}{x^{2}} > 0$, 所以ℎ′(x)单调递增,又因为x →0时,ℎ′(x)→−∞,当x →+∞时,ℎ′(x)→+∞, 所以ℎ′(x)在(0, +∞)存在唯一零点,设为x 0.所以ℎ(x 0)=(x 0+1)e x 0−t −1x 0=0,所以t =(x 0+1)e x 0−1x 0,且ℎ(x)在(0, x 0)上单调递减,在(x 0, +∞)上单调递增,于是ℎ(x)的最小值为ℎ(x 0)=x 0e x 0−tx 0−lnx 0=−x 02⋅e x 0−lnx 0+1,原题即−x 02⋅e x 0−lnx 0+1≥1,即x 02⋅e x 0+lnx 0≤0,由此式子必然0<x 0<1,x 02⋅e x 0≤−lnx 0,把后面的不等式两边同时取对数整理后得x 0+lnx 0≤ln(−lnx 0)+(−lnx 0),易证明函数y =x +lnx 是增函数,所以得x 0≤−lnx 0,所以e x 0≤1x 0,故由t =(x 0+1)e x 0−1x 0,得到t ≤(x 0+1)1x 0−1x 0=1,于是t 的取值范围是(−∞, 1]. 解法三:原式子恒成立即t ≤e x −lnx+1x在(0, +∞)恒成立,设φ(x)=e x −lnx+1x,φ′(x)=x 2e x +lnxx 2,设Q(x)=x 2e x +lnx ,Q ′(x)=(x 2+2x)e x +1x >0,所以Q(x)单调递增,且Q(12)<0,Q(1)>0,所以Q(x)有唯一零点x 0,而且x 02⋅e x 0+lnx 0=0,所以x 02⋅e x 0=−lnx 0, 两边同时取对数得x 0+lnx 0=ln(−lnx 0)+(−lnx 0),易证明函数y =x +lnx 是增函数,所以得x 0=−lnx 0,所以e x 0=1x 0,所以由φ(x)在(0, x 0)上单调递减,在(x 0, +∞)上单调递增, 所以φ(x)≥φ(x 0)=e x 0−lnx 0+1x 0=1x 0−−x 0+1x 0=2,于是t 的取值范围是(−∞, 1].请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分).[选修4-4:坐标系与参数方程] 【答案】圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ, 故圆O 的直角坐标方程为:x 2+y 2−x −y =0, 直线l:ρsin(θ−π4)=√22,即ρsinθ−ρcosθ=1,则直线的直角坐标方程为:x −y +1=0.由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得{x 2+y 2−x −y =0x −y +1=0 ,解得{x =0y =1 . 即圆O 与直线l 的在直角坐标系下的公共点为(0, 1), 转化为极坐标为(1,π2).【考点】圆的极坐标方程 【解析】(1)圆O 的极坐标方程化为ρ2=ρcosθ+ρsinθ,由此能求出圆O 的直角坐标方程;直线l 的极坐标方程化为ρsinθ−ρcosθ=1,由此能求出直线l 的直角坐标方程.(2)圆O 与直线l 的直角坐标方程联立,求出圆O 与直线l 的在直角坐标系下的公共点,由此能求出圆O 和直线l 的公共点的极坐标. 【解答】圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ, 故圆O 的直角坐标方程为:x 2+y 2−x −y =0, 直线l:ρsin(θ−π4)=√22,即ρsinθ−ρcosθ=1,则直线的直角坐标方程为:x −y +1=0. 由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得{x 2+y 2−x −y =0x −y +1=0 ,解得{x =0y =1 . 即圆O 与直线l 的在直角坐标系下的公共点为(0, 1), 转化为极坐标为(1,π2).[选修4-5:不等式选讲](本小题满分0分) 【答案】(1)原不等式为:|2x +3|+|2x −1|≤5, 能正确分成以下三类:当x ≤−32时,原不等式可转化为−4x −2≤5,即−74≤x ≤−32; 当−32<x <12时,原不等式可转化为4≤5恒成立,所以−32<x <12;当x ≥12时,原不等式可转化为4x +2≤5,即12≤x ≤34. 所以原不等式的解集为{x|−74≤x ≤34}.(2)由已知函数f(x)={−4x −2,x ≤−324,−32<x <124x +2,x ≥12 ,可得函数y =f(x)的最小值为4,由f(x)<|m −1|的解集非空得:|m −1|>4. 解得m >5或m <−3. 【考点】绝对值不等式的解法与证明 【解析】(Ⅰ)零点分段求解不等式即可;(Ⅱ)由题意得到关于实数m 的不等式,求解不等式即可求得最终结果. 【解答】(1)原不等式为:|2x +3|+|2x −1|≤5, 能正确分成以下三类:当x ≤−32时,原不等式可转化为−4x −2≤5,即−74≤x ≤−32; 当−32<x <12时,原不等式可转化为4≤5恒成立,所以−32<x <12; 当x ≥12时,原不等式可转化为4x +2≤5,即12≤x ≤34. 所以原不等式的解集为{x|−74≤x ≤34}.(2)由已知函数f(x)={−4x −2,x ≤−324,−32<x <124x +2,x ≥12 ,可得函数y =f(x)的最小值为4,由f(x)<|m −1|的解集非空得:|m −1|>4. 解得m >5或m <−3.。

2020年四川省成都七中高考数学一诊试卷(文科)-教师用卷

2020年四川省成都七中高考数学一诊试卷(文科)-教师用卷

2020年四川省成都七中高考数学一诊试卷(文科)副标题题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,则Im(3+i1+i)=()A. −2B. −1C. 1D. 2【答案】B【解析】解:∵3+i1+i =(3+i)(1−i)(1+i)(1−i)=4−2i2=2−i,又复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,∴Im(3+i1+i)=−1.故选:B.直接由复数代数形式的乘除运算化简3+i1+i,再根据题目中定义的复数的虚部,可得答案.本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题.2.执行如图所示的程序框图,输出的S值为()A. 3B. −6C. 10D. −15【答案】C【解析】解:由程序框图知,程序的运行功能是求S=−12+22−32+42−⋯可得:当i=5时,不满足条件i<5,程序运行终止,输出S═−12+22−32+42=10.故选:C.根据程序框图判断,程序的运行功能是求S=−12+22−32+42,计算可得答案.本题考查了循环结构的程序框图,解答此类问题的关键是判断程序框图的功能.3.关于函数f(x)=|tanx|的性质,下列叙述不正确的是()A. f(x)的最小正周期为π2B. f(x)是偶函数C. f(x)的图象关于直线x=kπ2(k∈Z)对称D. f(x)在每一个区间(kπ,kπ+π2)(k∈Z)内单调递增【答案】A【解析】【分析】本题考查了正切函数的图象与性质,是基础题.根据正切函数的图象与性质,结合绝对值的意义,对选项中的结论进行判断即可.【解答】解:对于函数f(x)=|tanx|,根据该函数的图象与性质知,其最小正周期为π,A错误;又f(−x)=|tan(−x)|=|tanx|=f(x),所以f(x)是定义域上的偶函数,B正确;根据函数f(x)的图象与性质知,f(x)的图象关于直线x=kπ2(k∈Z)对称,C正确;根据f(x)的图象与性质知,f(x)在每一个区间(kπ,kπ+π2)(k∈Z)内单调递增,D正确.故选:A.4.已知a>0,b>0,则“a≤1且b≤1”是“a+b≤2且ab≤1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】解:∵a>0,b>0,“a≤1且b≤1”可得:“a+b≤2且ab≤1”,反之不成立:取a=32,b=12,满足a+b≤2且ab≤1,而a≤1且b≤1不成立.故“a≤1且b≤1”是“a+b≤2且ab≤1”的充分不必要条件.故选:A.a>0,b>0,“a≤1且b≤1”可得:“a+b≤2且ab≤1”,反之不成立:取a=32,b=12,即可判断出结论.本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.5.某几何体的三视图如图所示,则该几何体的表面积为()A. 36+12πB. 36+16πC. 40+12πD. 40+16π【答案】C【解析】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=12π×22×2+12×π×4×4+2×4+2×4×2+2×4+2×2×2=12π+40.故选:C.几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.本题考查了几何体的常见几何体的三视图,几何体表面积计算,属于中档题.6.在约束条件:{x≤1y≤2x+y−1≥0下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于()A. 12B. 38C. 14D. 18【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分),由z=ax+by(a>0,b>0),则y=−ab x+zb,平移直线y=−ab x+zb,由图象可知当直线y=−abx+zb经过点A(1,2)时直线的截距最大,此时z最大为1.代入目标函数z=ax+by得a+2b=1.则1=a+2b≥2√2ab,则ab≤18当且仅当a=2b=12时取等号,∴ab 的最大值等于18,故选:D .作出不等式组对应的平面区域,利用目标函数取得最大值,确定a ,b 的关系,利用基本不等式求ab 的最大值.本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基本方法.7. 已知正项等比数列{a n }中,S n 为其前n 项和,且a 2a 4=1,S 3=7则S 5=( )A. 152B. 314C. 334D. 172【答案】B【解析】【分析】本题考查等比数列的前5项和的求法,解题时要认真审题,注意等比数列的性质的合理运用,属于基础题.由已知条件利用等比数列的通项公式和前n 项和公式得{a 1q ⋅a 1q 3=1a 1(1−q 3)1−q=7q >0,由此能求出S 5.【解答】解:由已知得: {a 1q ⋅a 1q 3=1a 1(1−q 3)1−q=7q >0,解得a 1=4,q =12, ∴S 5=a 1(1−q 5) 1−q=4(1−125)1−12=314.故选:B .8. 双曲线x 26−y 23=1的渐近线与圆(x −3)2+y 2=r 2(r >0)相切,则r =( )A. √3B. 2C. 3D. 6【答案】A【解析】【分析】本题考查双曲线的性质、点到直线的距离公式,属于基础题.求出渐近线方程,再求出圆心到渐近线的距离,根据此距离和圆的半径相等,求出r . 【解答】解:双曲线的渐近线方程为y =√2,即x ±√2y =0, 圆心(3,0)到直线的距离d =√(√2)2+1=√3,∴r =√3. 故选:A .9. 已知函数f(x)对∀x ∈R 都有f(x)=f(4−x),且其导函数f′(x)满足当x ≠2时,(x −2)f′(x)>0,则当2<a <4时,有( )A. f(2a)<f(2)<f(log2a)B. f(2)<f(2a)<f(log2a)C. f(log2a)<f(2a)<f(2)D. f(2)<f(log2a)<f(2a)【答案】D【解析】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4−x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)⇔f′(x)(x−2)>0,∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;同理可得,当x<2时,f(x)在(−∞,2)单调递减;f(x)的最小值为f(2)∵2<a<4,∴1<log2a<2,∴2<4−log2a<3,又4<2a<16,f(log2a)=f(4−log2a),f(x)在(2,+∞)上的单调递增;∴f(log2a)<f(2a),∴f(2)<f(log2a)<f(2a),故选:D.由f(x)=f(4−x),可知函数f(x)关于直线x=2对称,由(x−2)f′(x)>0,可知f(x)在(−∞,2)与(2,+∞)上的单调性,从而可得答案.本题综合考查了导数的运用,函数的对称性,单调性的运用,综合运用对数解决问题的能力,属于中档题.10.对圆(x−1)2+(y−1)2=1上任意一点P(x,y),若点P到直线l1:3x−4y−9=0和l2:3x−4y+a=0的距离和都与x,y无关,则a的取值区间为()A. [6,+∞)B. [−4,6]C. (−4,6)D. (−∞,−4]【答案】A【解析】解:设z=|3x−4y+a|+|3x−4y−9|=5(|3x−4y−9|+5|3x−4y+a|),5故|3x−4y+a|+|3x−4y−9|可以看作点P(x,y)到直线l2:3x−4y+a=0与直线l1:3x−4y−9=0距离之和的5倍,∵|3x−4y+a|+|3x−4y−9|的取值与x,y无关,∴这个距离之和与点P在圆上的位置无关,如图所示:可知直线l1平移时,P点与直线l1,l2的距离之和均为l1,l2的距离,即此时圆在两直线内部,=1,当直线l2的与圆相切时,|3−4+a|5化简得|a−1|=5,解得a=6或a=−4(舍去),∴a≥6.故选:A.由题意可得|3x−4y+a|+|3x−4y−9|可以看作点P到直线m:3x−4y+a=0与直线l:3x−4y−9=0距离之和的5倍,根据点到直线的距离公式解得即可.本题考查了直线和圆的位置关系,以及点到直线的距离公式,考查数学转化思想方法,属于难题.11. 若a ⃗ ,b ⃗ ,c ⃗ 满足,|a ⃗ |=|b ⃗ |=2|c ⃗ |=2,则(a ⃗ −b ⃗ )⋅(c ⃗ −b ⃗ )的最大值为( ) A. 10 B. 12 C. 5√3 D. 6√2 【答案】B【解析】解:a ⃗ ,b ⃗ ,c ⃗ 满足,|a ⃗ |=|b ⃗ |=2|c ⃗ |=2, 则(a ⃗ −b ⃗ )⋅(c ⃗ −b ⃗ )=a ⃗ ⋅c ⃗ −a ⃗ ⋅b ⃗ −b ⃗ ⋅c ⃗ +b ⃗ 2=2cos <a ⃗ ,c ⃗ >−4cos <a ⃗ ,b⃗ >−2cos <b ⃗ ,c ⃗ >+4≤12, 当且仅当a ⃗ ,c ⃗ 同向,a ⃗ ,b ⃗ ,反向,b ⃗ ,c ⃗ 反向时,取得最大值.故选:B .利用向量的数量积公式化简表达式,转化求解最大值即可.本题考查了向量的数量积的运算,数量积的模的最值的求法,属于基础题.12. 点M ,N 分别是棱长为1的正方体ABCD −A 1B 1C 1D 1中棱BC ,CC 1的中点,动点P在正方形BCC 1B 1(包括边界)内运动,且PA 1//面AMN ,则PA 1的长度范围为( )A. [1,√52]B. [3√24,√52]C. [3√24,32]D. [1,32]【答案】B【解析】解:取B 1C 1的中点E ,BB 1的中点F ,连结A 1E ,A 1F ,EF ,取EF 中点O ,连结A 1O , ∵点M ,N 分别是棱长为1的正方体ABCD −A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM//A 1E ,MN//EF ,∵AM ∩MN =M ,A 1E ∩EF =E , ∴平面AMN//平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1//面AMN ,∴点P 的轨迹是线段EF , ∵A 1E =A 1F =√12+(12)2=√52,EF =12√12+12=√22, ∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值:A 1O =√(√52)2+(√24)2=3√24,当P 与E(或F)重合时,PA 1的长度取最大值:A 1E =A 1F =√52.∴PA 1的长度范围为[3√24,√52]. 故选:B .取B 1C 1的中点E ,BB 1的中点F ,连结A 1E ,A 1F ,EF ,取EF 中点O ,连结A 1O ,推导出平面AMN//平面A 1EF ,从而点P 的轨迹是线段EF ,由此能求出PA 1的长度范围. 本题考查线段长度的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题(本大题共4小题,共20.0分)13.命题“∀x∈N,x2>1”的否定为______ .【答案】∃x0∈N,x02≤1【解析】解:因为全称命题的否定是特称命题,所以,命题“∀x∈N,x2>1”的否定为∃x0∈N,x02≤1故答案为:∃x0∈N,x02≤1直接利用全称命题的否定是特称命题,写出结果即可.本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.14.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为______.【答案】360【解析】解:设公差为d,那么9个小长方形的面积分别为0.02,0.02+d,0.02+2d,0.02+3d,0.02+4d,0.02+3d,0.02+2d,0.02+d,0.02,而9个小长方形的面积和为1,可得0.18+16d=1解得d=0.8216,∴中间一组的频数为:1600×(0.02+4d)=360.故答案为:360.设出公差,利用9个小长方形面积和为1,求出公差,然后求解中间一组的频数.本题考查频率分布直方图的应用,考查计算能力.15.设O、F分别是抛物线y2=2x的顶点和焦点,M是抛物线上的动点,则|MO||MF|的最大值为______.【答案】2√33.【解析】解:焦点F(12,0),设M(m,n),则n2=2m,m>0,设M到准线x=−12的距离等于d,则由抛物线的定义得|MO||MF|=√m2+n2m+12=√1+m−14m2+m+14,令m−14=t,依题意知,m>0,若t>0,则m−14m2+m+14=tt2+32t+916=1t+916t+32≤13,∴t max =13,此时(|MO||MF|)max =√1+13=2√33;若−14<t <0,y =t +916t+32单调递减,故y <−1,1y ∈(−1,0); 综上所述,(|MO||MF|)max =2√33. 故答案为:2√33. 设M(m,n)到抛物线y 2=2x 的准线x =−12的距离等于d ,由抛物线的定义可得|MO||MF|=√m 2+n 2m+12=√1+m−14m 2+m+14,令m −14=t ,利用基本不等式可求得最大值.本题考查抛物线的定义、简单性质,基本不等式的应用,体现了换元的思想,属于难题.16. 若实数a ,b ∈(0,1)且ab =14,则11−a +21−b 的最小值为______. 【答案】4+4√23【解析】解:因为ab =14,所以b =14a , 因此11−a +21−b =11−a +21−14a,=11−a +8a4a−1, =11−a +2(4a−1)+24a−1,=11−a +24a−1+2,=2(14a−1+24−4a )+2,=23(14a−1+24−4a )[(4a −1)+(4−4a)]+2, =23[1+2+4−4a4a−1+2(4a−1)4−4a]+2,≥23(3+2√2)+2=4+4√23, 当且仅当a =√24+22,取“=”, 及11−a +21−b 的最小值为4+4√23, 故答案为:4+4√23, 先根据条件消掉b ,将b =14a 代入原式得11−a +8a4a−1,再列项并用贴“1“法,最后应用基本不等式求其最小值.本题考查基本不等式的应用,属于中档题.三、解答题(本大题共7小题,共82.0分)17.设△ABC的内角A、B、C的对边分别为a、b、c,已知c=3,且sin(C−π6)⋅cosC=14.(1)求角C的大小;(2)若向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,求a、b的值.【答案】解:(1)sin(C−π6)⋅cosC=(sinCcosπ6−cosCsinπ6)⋅cosC =√32sinCcosC−12cos2C=√34sin2C−1+cos2C4=12sin(2C−π6)−14=14,∴sin(2C−π6)=1;又0<C<π,∴−π6<2C−π6<11π6,∴2C−π6=π2,解得C=π3;(2)向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,∴2sinA−sinB=0,∴sinB=2sinA,即b=2a①;又c=3,C=π3,∴c2=a2+b2−2abcosC=a2+b2−ab=9②;由①②联立解得a=√3,b=2√3.【解析】(1)利用三角恒等变换化简sin(C−π6)⋅cosC=14,即可求出C的值;(2)根据向量m⃗⃗⃗ 、n⃗共线,得出sinB=2sinA,即b=2a①;由余弦定理得出a2+b2−ab=9②,①②联立解得a、b的值.本题考查了三角恒等变换以及向量共线定理和正弦、余弦定理的应用问题,是综合性题目.18.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据:P(K2≥k0)0.500.400.250.050.0250.010 k00.4550.708 1.321 3.841 5.024 6.635【答案】解:(Ⅰ)由列联表得K2=100(26×20−30×34)256×44×50×50≈0.6494<0.708,所以没有60%的把握认为“古文迷”与性别有关.(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为5×3050=3人,“非古文迷”有5×2050=2人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人,(Ⅲ)因为ξ为所抽取的3人中“古文迷”的人数,所以ξ的所有取值为1,2,3.P(ξ=1)=C31C22C53=310,P(ξ=2)=C32C21C53=35,P(ξ=3)=C33C53=110.所以随机变量ξ的分布列为ξ123P 31035110于是Eξ=1×310+2×35+3×110=95.【解析】本题考查独立性检验知识的运用,考查随机变量ξ的分布列与数学期望,考查学生的计算能力,属于中档题.(Ⅰ)求出K2,与临界值比较,即可得出结论;(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,即可得出结论;(Ⅲ)ξ的所有取值为1,2,3.求出相应的概率,即可求随机变量ξ的分布列与数学期望.19.如图,在三棱柱ABC−A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点.(1)求证:CD//平面A1EB;(2)求证:AB1⊥平面A1EB;(3)若AB=2,求三棱锥A1−B1BE的体积.【答案】解:(1)证明:设AB1和A1B的交点为O,连接EO,连接OD.因为O为A1B的中点,D为AB的中点,所以OD//BB1且OD=12BB1.又E是CC1中点,所以EC//BB1,且EC=12BB1,所以EC//OD且EC=OD.所以,四边形ECOD为平行四边形.所以EO//CD.又CD⊄平面A1BE,EO⊂平面A1BE,所以CD//平面A1BE.(2)证明:因为三棱柱各侧面都是正方形, 所以BB 1⊥AB ,BB 1⊥BC .所以BB 1⊥平面ABC.因为CD ⊂平面ABC ,所以BB 1⊥CD . 由已知得AB =BC =AC ,所以CD ⊥AB , 所以CD ⊥平面A 1ABB 1.由(1)可知EO//CD , 所以EO ⊥平面A 1ABB 1.所以EO ⊥AB 1.因为侧面是正方形,所以AB 1⊥A 1B .又EO ∩A 1B =O ,EO ⊂平面A 1EB ,A 1B ⊂平面A 1EB , 所以AB 1⊥平面A 1BE .(3)解:由条件求得BE =√5=A 1E ,A 1B =2√2, 所以S △A 1BE =√6,所以三棱锥A 1−B 1BE 的体积为:V A 1−B 1BE =V B 1−A 1BE =13S △A 1BE ⋅|B 1O|=13×√6×√2=2√33. 【解析】(1)设AB 1和A 1B 的交点为O ,连接EO ,连接OD ,推导出四边形ECOD 为平行四边形.从而EO//CD.由此能证明CD//平面A 1BE .(2)推导出BB 1⊥AB ,BB 1⊥BC.从而BB 1⊥平面ABC ,BB 1⊥CD ,推导出CD ⊥AB ,从而CD ⊥平面A 1ABB 1.由EO//CD ,得EO ⊥平面A 1ABB 1.从而EO ⊥AB 1.因为侧面是正方形,得AB 1⊥A 1B .由此能证明AB 1⊥平面A 1BE .(3)三棱锥A 1−B 1BE 的体积为V A 1−B 1BE =V B 1−A 1BE =13S △A 1BE ⋅|B 1O|,由此能求出结果. 本题考查线面平行、线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(−√2,0),F 2(√2,0),以椭圆短轴为直径的圆经过点M(1,0). (1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于A 、B 两点,设点N(3,2),记直线AN ,BN 的斜率分别为k 1,k 2,问:k 1+k 2是否为定值?并证明你的结论. 【答案】解:(1)∵椭圆C :x 2a +y 2b =1(a >b >0)的两个焦点分别为F 1(−√2,0),F 2(√2,0),以椭圆短轴为直径的圆经过点M(1,0), ∴{c =√2b =1a 2=b 2+c 2,解得a =√3,b =1,∴椭圆C 的方程为x 23+y 2=1.(2)k 1+k 2是定值.证明如下:设过M 的直线:y =k(x −1)=kx −k 或者x =1 ①x =1时,代入椭圆,y =±√63,∴令A(1,√63),B(1,−√63), k 1=2−√633−1,k 2=2+√633−1,∴k 1+k 2=2. ②y =kx −k 代入椭圆,(3k 2+1)x 2−6k 2x +(3k 2−3)=0设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=6k 23k 2+1,x 1x 2=3k 2−33k 2+1,y1+y2=6k33k3+1−2k=−2k3k3+1,y1y2=k2x1x2−k2(x1+x2)+k2=−2k23k2+1,k1=2−y13−x1,k2=2−y23−x2,∴k1+k2=6−3y1−2x2+x2y1+6−3y2−2x1+x1x2(3−x1)(3−x2)=2.【解析】(1)由椭圆的两个焦点分别为F1(−√2,0),F2(√2,0),以椭圆短轴为直径的圆经过点M(1,0),列出方程组,能求出椭圆C的方程.(2)设过M的直线:y=k(x−1)=kx−k或者x=1,x=1时,代入椭圆,能求出k1+ k2=2;把y=kx−k代入椭圆,得(3k2+1)x2−6k2x+(3k2−3)=0,由此利用韦达定理能求出k1+k2=2.本题考查椭圆方程的求法,考查两直线斜率之和是否为定值的判断与证明,是中档题,解题时要认真审题,注意椭圆性质的合理运用.21.已知函数f(x)=tx+lnx(t∈R).(1)当t=−1时,证明:f(x)≤−1;(2)若对于定义域内任意x,f(x)≤x⋅e x−1恒成立,求t的范围?【答案】解:(1)证明:即是证明lnx−x≤−1,设g(x)=lnx−x+1,g′(x)=1−xx,当0<x<1,0'/>,g(x)单调递增;当x>1,,g(x)单调递减;所以g(x)在x=1处取到最大值,即g(x)≤g(1)=0,所以lnx−x≤−1得证;(2)解法一:原式子恒成立即t≤e x−lnx+1x在(0,+∞)恒成立,由(1)可以得到x≥lnx+1,所以x⋅e x≥ln(x⋅e x)+1=lnx+x+1,所以e x≥lnx+x+1x =lnx+1x+1,所以e x−lnx+1x≥1,当且仅当x⋅e x=1时取=,于是t的取值范围是(−∞,1].解法二:设ℎ(x)=xe x−tx−lnx(x>0),原题即ℎ(x)≥1恒成立,因为ℎ′(x)=(x+1)e x−t−1x ,而ℎ″(x)=(x+2)e x+1x2>0,所以单调递增,又因为x→0时,,当x→+∞时,,所以在(0,+∞)存在唯一零点,设为x0.所以ℎ′(x0)=(x0+1)e x0−t−1x=0,所以t=(x0+1)e x0−1x,且ℎ(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,于是ℎ(x)的最小值为ℎ(x0)=x0e x0−tx0−lnx0=−x02⋅e x0−lnx0+1,原题即−x02⋅e x0−lnx0+1≥1,即x02⋅e x0+lnx0≤0,由此式子必然0<x0<1,x02⋅e x0≤−lnx0,把后面的不等式两边同时取对数整理后得x0+lnx0≤ln(−lnx0)+(−lnx0),易证明函数y=x+lnx是增函数,所以得x0≤−lnx0,所以e x0≤1x,故由t=(x0+1)e x0−1x0,得到t≤(x0+1)1x−1x0=1,于是t的取值范围是(−∞,1].解法三:原式子恒成立即t ≤e x −lnx+1x在(0,+∞)恒成立,设φ(x)=e x −lnx+1x,φ′(x)=x 2e x +lnxx 2,设Q(x)=x 2e x +lnx ,Q′(x)=(x 2+2x)e x +1x >0,所以Q(x)单调递增,且Q(12)<0,Q(1)>0,所以Q(x)有唯一零点x 0,而且x 02⋅e x 0+lnx 0=0,所以x 02⋅e x 0=−lnx 0, 两边同时取对数得x 0+lnx 0=ln(−lnx 0)+(−lnx 0),易证明函数y =x +lnx 是增函数,所以得x 0=−lnx 0,所以e x 0=1x 0,所以由φ(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以φ(x)≥φ(x 0)=e x 0−lnx 0+1x 0=1x 0−−x 0+1x 0=2,于是t 的取值范围是(−∞,1].【解析】(1)事实上,只需证明函数g(x)=lnx −x +1的最大值小于等于0即可; (2)解法一,转化为证明t ≤e x −lnx+1x在(0,+∞)恒成立,结合(1)的结论即可得证;解法二,直接构造函数ℎ(x)=xe x −tx −lnx(x >0),证明其大于等于1恒成立即可;解法三,转化为证明t ≤e x −lnx+1x在(0,+∞)恒成立,设φ(x)=e x −lnx+1x,求其最小值即可.本题考查利用导数证明不等式,考查利用导数研究函数的单调性,极值及最值,以及不等式的恒成立问题,考查推理论证及运算求解能力,属于中档题.22. 在极坐标系下,知圆O :ρ=cosθ+sinθ和直线l :ρsin(θ−π4)=√22(ρ≥0,0≤θ≤2π).(1)求圆O 与直线l 的直角坐标方程;(2)当θ∈(0,π)时,求圆O 和直线l 的公共点的极坐标.【答案】解:(1)圆O :ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ, 故圆O 的直角坐标方程为:x 2+y 2−x −y =0, 直线l :ρsin(θ−π4)=√22,即ρsinθ−ρcosθ=1,则直线的直角坐标方程为:x −y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得{x 2+y 2−x −y =0x −y +1=0,解得{x =0y =1.即圆O 与直线l 的在直角坐标系下的公共点为(0,1), 转化为极坐标为(1,π2).【解析】(1)圆O 的极坐标方程化为ρ2=ρcosθ+ρsinθ,由此能求出圆O 的直角坐标方程;直线l 的极坐标方程化为ρsinθ−ρcosθ=1,由此能求出直线l 的直角坐标方程. (2)圆O 与直线l 的直角坐标方程联立,求出圆O 与直线l 的在直角坐标系下的公共点,由此能求出圆O 和直线l 的公共点的极坐标.本题考查直线与圆的直角坐标方程的求法,考查圆与直线的公共点的极坐标的求法,涉及到参数方程、普通方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.23. 已知函数f(x)=|2x +3|+|2x −1|.(Ⅰ)求不等式f(x)≤5的解集;(Ⅱ)若关于x 的不等式f(x)<|m −1|的解集非空,求实数m 的取值范围. 【答案】解:(Ⅰ)原不等式为:|2x +3|+|2x −1|≤5, 能正确分成以下三类:当x ≤−32时,原不等式可转化为−4x −2≤5,即−74≤x ≤−32; 当−32<x <12时,原不等式可转化为4≤5恒成立,所以−32<x <12; 当x ≥12时,原不等式可转化为4x +2≤5,即12≤x ≤34. 所以原不等式的解集为{x|−74≤x ≤34}.(Ⅱ)由已知函数f(x)={−4x −2,x ≤−324,−32<x <124x +2,x ≥12,可得函数y =f(x)的最小值为4,由f(x)<|m −1|的解集非空得:|m −1|>4. 解得m >5或m <−3.【解析】(Ⅰ)零点分段求解不等式即可;(Ⅱ)由题意得到关于实数m 的不等式,求解不等式即可求得最终结果.本题考查了绝对值不等式的解法,分类讨论的数学思想等,重点考查学生对基础概念的理解和计算能力,属于中等题.。

成都七中高 2020 届一诊模拟数学文科

成都七中高 2020 届一诊模拟数学文科

成都七中高2020届一诊模拟数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分,考试时间 120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数),(R b a bi a z ∈+=的虚部记作b z =)Im(,则3Im()1i i ++=()(A)-1(B)0(C)1(D)22、执行如图所示的程序框图,输出的S 值为()(A)3(B)-6(C)10(D)-153、关于函数()tan f x x =的性质,下列叙述不.正确的是()(A))(x f 的最小正周期为2π(B))(x f 是偶函数(C))(x f 的图象关于直线()2k x k Z π=∈对称(D))(x f 在每一个区间(,),2k k k Z πππ+∈内单调递增4、已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5、某几何体的三视图如图所示,则该几何体的表面积为(A)π1236+(B)π1636+(C)π1240+(D)π1640+6、在约束条件⎪⎩⎪⎨⎧≥-+≤≤01,2,1:y x y x 下,目标函数z ax by =+(0,0a b >>)的最大值为1,则ab 的最大值等于()(A)21(B)83(C)41(D)81三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17、设ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知3=c ,且sin(2)16C π-=.(1)求角C 的大小;(2)若向量)sin ,1(A =与)sin ,2(B =共线,求b a ,的值.18、学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如下表:(1)根据上表数据判断能否有60%的把握认为“古文迷”与性别有关?(2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;参考公式:22(),()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++参考数据:19、如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证:CD ∥平面1A EB ;(Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)若2=AB ,求三棱锥BE B A 11-体积古文迷非古文迷合计男生262450女生302050合计564410020()P K k ≥0.5000.4000.2500.0500.0250.0100k 0.4550.708 1.321 3.841 5.024 6.635DB CE B 1C 1A A 120、已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(F ,2F ,以椭圆短轴为直径的圆经过点(1,0)M .(1)求椭圆C 的方程;(2)过点M 斜率为k 的直线l 与椭圆C 相交于B A ,两点,设点(3,2)N ,记直线BN AN ,的斜率分别为12,k k ,问:12k k +是否为定值?并证明你的结论.21、已知函数()ln ()f x tx x t R =+∈(1)当1t =-时,证明:()1f x ≤-(2)若对于定义域内任意x ,1)(-⋅≤xe x xf 恒成立,求t 的范围?请考生在第22、23两题中任选一题作答。

高考数学模拟试题与解析-成都七中2024学年高三上一诊模拟文科数学试卷解析版

高考数学模拟试题与解析-成都七中2024学年高三上一诊模拟文科数学试卷解析版

成都七中2023—2024学年度2024届高三(上)一诊模拟试卷数学(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2230A x x x =∈--<Z ,则集合A 的子集个数为()A.3B.4C.8D.162.已知a 为实数,若复数()()i 12i a +-为纯虚数,则a =()A.2- B.12-C.12D.23.一组数据共含大小不一的7个数值,其平均数和方差分别为1x 和21s ,若去掉一个最大值和一个最小值,则剩下的数据其平均数和方差分别为2x 和22s ,则一定有()A.12x x <B.12x x >C.2212s s < D.2212s s >4.与y =有相同定义域的函数是()A.23y x= B.2y =C.()lg 10x y =D.ln xy e =5.若向量a ,b 满足:1a = ,()a b a +⊥ ,2a b -= ,则b =()A.2C.106.阅读如图所示的程序框图,运行相应的程序.若输出的S 为1112,则判断框中填写的内容可以是()A.4n ≤B.5n ≤C.6n ≤D.8n ≤7.已知a ,b ,c ∈R ,则“a b ≤”的必要不充分条件可以是()A.11a b≤ B.ac bc≤ C.22ac bc≤ D.22a b≤8.抛物线C :22y px =(0p >)的顶点为O ,斜率为1的直线l 过点()2,0p ,且与抛物线C 交于A ,B 两点,若OAB △的面积为,则该抛物线的准线方程为()A.1x =- B.22x =-C.2x =-D.x =9.设m ,n 是两条不相同的直线,α,β是两个不重合的平面,则下列命题错误的是()A.若m α⊥,//n β,//αβ,则m n ⊥B.若//n α,n β⊥,则αβ⊥C.若m 、n 是异面直线,m α⊂,//m β,n β⊂,//n α,则//αβ.D.若m n ⊥,m β⊥,则//n β10.已知3παβ-=,tan tan αβ-=()cos αβ+的值为()A.12B.13C.14-D.16-11.与曲线在某点处的切线垂直,且过该点的直线称为曲线在某点处的法线,若曲线4y x =的法线的纵截距存在,则其最小值为()A.34 B.1C.1716D.5412.已知双曲线C :22221x y a b-=(0a >,0b >)的左焦点为F ,过F 的直线与圆222x y a +=相切于点Q ,与双曲线的右支交于点P ,若2PQ QF =,则双曲线C 的离心率为()A.133B.132C.32D.43第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)13.函数()()()21f x x x a =+-是偶函数,则a =______.14.若x ,y 满足约束条件320,0,0,x y x y y -+≤⎧⎪-≤⎨⎪≥⎩则2z x y =-的最大值为______.15.半球的表面积与其内最大正方体的表面积之比为______.16.如图,在ABC △所在平面内,分别以AB ,BC 为边向外作正方形ABEF 和正方形BCHG .记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S .已知34S =,且sin sin 4sin sin a A c C a C B +=,则FH =______.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.(12分)某企业生产的产品按质量分为一等品和二等品,该企业计划对现有生产设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取200件产品作为样本,产品的质量情况统计如表:一等品二等品合计设备改造前12080200设备改造后15050200合计270130400(1)判断是否有99%的把握,认为该企业生产的这种产品的质量与设备改造有关;(2)按照分层抽样的方法,从设备改造前的产品中取得了5件产品,其中有3件一等品和2件二等品.现从这5件产品中任选2件,求选出的这2件全是一等品的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.0500.0100.0010k 3.8416.63510.82818.(12分)在等比数列{}n a 和等差数列{}n b 中,1122a b ==,222a b =,3322a b =+.(1)求数列{}n a 和{}n b 的通项公式;(2)令2n n n b c a =,记数列{}n c 的前n 项积为n T ,其中11T c =,证明:916n T ≤.19.(12分)如图,平面四边形ABCD 中,//BC AD ,90ADC ∠=︒,120ABC ︒∠=,E 是AD 上的一点,24AB BC DE a ===(0a >),F 是EC 的中点,以EC 为折痕把EDC △折起,使点D 到达点P 的位置,且PC BF ⊥.(1)证明:平面PEC ⊥平面ABCE ;(2)求点C 到平面PAB 的距离.20.(12分)设函数()()sin sin 1cos cos x a F x x a x a λλ-=-+--,其中0,2a π⎛⎫∈ ⎪⎝⎭.(1)若1λ=,讨论()F x 在,2a π⎛⎫⎪⎝⎭上的单调性;(2)若12λ≤,证明:当,2x a π⎛⎫∈ ⎪⎝⎭时,不等式()()0x a F x -<恒成立.21.(12分)在平面直角坐标系xOy 中,O 为坐标原点,动点(),D x y 与定点)3,0F的距离和D 到定直线433x =的距离的比是常数32,设动点D 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知定点(),0P t ,20t -<<,过点P 作垂直于x 轴的直线l ,过点P 作斜率大于0的直线l '与曲线C 交于点G ,H ,其中点G 在x 轴上方,点H 在x 轴下方.曲线C 与x 轴负半轴交于点A ,直线AG ,AH 与直线l 分别交于点M ,N ,若A ,O ,M ,N 四点共圆,求t 的值.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数),α为l 的倾斜角,且()0,απ∈,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2221cos ρθ=+.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A 、B 两点,点()0,1P 恰为线段AB 的三等分点,求sin α.23.(10分)选修4-5:不等式选讲已知()2f x x m =+(m ∈R ).(1)当0m =时,求不等式()25f x x +-<的解集;(2)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.参考答案(文科)一、单选题:共12道小题,每题5分.共60分.123456789101112CADDBCCADDAB二、填空题:共4道小题,每题5分,共20分.13.1214.1-15.34π16.三、解答题:共5道大题,共70分.17.(12分)解:(1)∵()22400120501508040010.256 6.63520020027013039K ⨯-⨯===>⨯⨯⨯,∴有99%的把握认为该企业生产的这种产品的质量与设备改造有关.(2)在取出的5件产品中,3件一等品记为a ,b ,c ,2件二等品记为D ,E ,从这5件产品中任选2件的所有情况为ab ,ac ,aD ,aE ,bc ,bD ,bE ,cD ,cE ,DE ,共10种,其中2件全是一等品的情况为ab ,ac ,bc ,共3种,∴选出的2件全是一等品的概率为310.18.(12分)解:(1)设数列{}n a 的公比为q ,数列{}n b 的公差为d ,由1122a b ==,有12a =,11b =,又由222a b =,有()221q d =+,有1q d =+,又由3322a b =+,有()222122q d =++,有222q d =+,可得22q q =,得2q =或0q =(舍去),1d =,故2nn a =,n b n =;(2)证明:由(1)知:222n n n n b n c a ==,*n ∈N ,则()222111121222n nn n n n n n n c c +++++--=-=当3n ≥时,10n n c c +-<,即345670c c c c c >>>>>⋅⋅⋅>,而112c =,21c =,398c =,41c =,当4n ≥时,有111n n n T c T ++=<,则112T =,212T =,3916T =,456916T T T =>>>⋅⋅⋅,故916n T ≤.19.(12分)解:(1)由//BC AD ,90ADC ∠=︒,2AB BC DE ==,所以平面四边形ABCD 为直角梯形,设24AB BC DE a ===,因为120ABC ︒∠=.所以在Rt CDE △中,CD =,4EC a =,3tan 3DE ECD CD ∠==,则30ECD ∠=︒,又90ADC BCD ︒∠=∠=,所以60BCE ∠=︒,由4EC BC AB a ===,所以BCE △为等边三角形,又F 是EC 的中点,所以BF EC ⊥,又BF PC ⊥,EC ,PC ⊂平面PEC ,EC PC C = ,则有BF ⊥平面PEC ,而BF ⊂平面ABCE ,故平面PEC ⊥平面ABCE .(2)在Rt PEC △中,122PE DE PF EC a ====,取EF 中点O ,所以PO EF ⊥,由(1)可知平面PEC ⊥平面ABCE ,平面PEC 平面ABCE EC =,所以PO ⊥平面ABCE .过O 作OH AB ⊥于H ,连PH ,则由PO ⊥平面ABCE ,AB ⊂平面ABCE ,所以AB PO ⊥,又AB OH ⊥,PO OH O = ,则AB ⊥平面POH ,又PH ⊂平面POH ,所以AB PH ⊥,在Rt POH △中,PO =,OH BF ==,所以PH =,设C 到平面PAB 的距离为d ,由C PAB P ABC V V --=,即1133PAB BEC S d S OP ⨯⨯=⨯⨯△△,即1111443232a a ⨯⨯=⨯⨯⨯.可得2155d a ==.20.(12分)解:(1)由1λ=知,()sin sin cos x aF x a x a -=--,()()()()2cos sin sin x x a x a F x x a '---=--,令()()()cos sin sin G x x x a x a =--+-,由()()sin 0G x x x a '=->,知()G x 在,2a π⎛⎫⎪⎝⎭上单增,有()()0G x G a >=,即()0F x '>,亦知()F x 在,2a π⎛⎫⎪⎝⎭上单调递增.(2)由12λ≤知,当,2x a π⎛⎫∈ ⎪⎝⎭时,()()()()()1cos cos sin sin x a F x x a x a x a λλ-=-+---⎡⎤⎣⎦()()()cos cos cos sin sin a x x x a x a λ=-+---⎡⎤⎣⎦()()()1cos cos cos sin sin 2a x x x a x a ⎡⎤≤-+---⎢⎥⎣⎦,令()()()()1cos cos sin sin 2f x a x x a x a =+---,()()()11cos cos sin 22f x a x x a x =---',()()1cos 02f x x a x =--'<',知()f x '在,2a π⎛⎫⎪⎝⎭上单减,有()()0f x f a '<=',亦知()f x 在,2a π⎛⎫⎪⎝⎭上单减,有()()0f x f a <=,即()()0x a F x -<.21.(12分)解:(132=,两边平分并化简得2214x y +=,即曲线C 的方程.(2)设点()11,G x y ,()22,H x y .直线GH :()y k x t =-(0k >)与椭圆C 的方程2214x y +=联立,消去y 得()()22222148440k x k tx k t +-+-=.由韦达定理:2122814k t x x k +=+,221224414k t x x k-⋅=+.由条件,直线AG 的方程为()1122y y x x =++,直线AH 的方程为()2222yy x x =++,于是可得()1122M y t y x +=+,()2222N y t y x +=+.因为A ,O ,M ,N 四点共圆,由相交弦定理可知()()()2M N y y t t -=-+,化简得()()1212222y y tx x t =+++又()11y k x t =-,()22y k x t =-,代入整理得:()()()2212121212242k x x t x x t t x x x x t -++=++++.将韦达定理代入化简得:()224242t t t t -=++,即23t =-.22.(10分)解:【详解】(1)由曲线C 的极坐标方程为2221cos ρθ=+,可得222cos 2ρρθ+=,又由cos x ρθ=,sin y ρθ=,代入可得2222x y +=,即曲线C 的直角坐标方程为2212y x +=.(2)把直线参数方程cos 1sin x t y t αα=⎧⎨-+⎩(t 为参数),代入曲线C 的直角坐标方程2212y x +=,整理得()221cos 2sin 10t t αα++⋅-=,设A ,B 对应的参数分别为1t ,2t ,得1222sin 1cos t t αα+=-+,12211cos t t α⋅=-+,因为点()0,1P 恰为线段AB 的三等分点,不妨设2AP PB =,则122t t =,所以122t t =-,代入1222sin 1cos t t αα+=-+,12211cos t t α⋅=-+,化简得22sin 9α=,又因为()0,απ∈,所以2sin 3α=.23.(10分)解:(1)当0m =时,不等式225x x +-<可转化为:0225x x x <⎧⎨-+-<⎩或02225x x x ≤≤⎧⎨-+<⎩或2225x x x >⎧⎨+-<⎩整理得:01x x <⎧⎨>-⎩或023x x ≤≤⎧⎨<⎩或273x x >⎧⎪⎨<⎪⎩所以不等式的解集为713x x ⎧⎫-<<⎨⎩⎭.(2)因为2222222x x m x x m m --+≤---=+若()222x f x m --<恒成立.只需来解22m m +<即可从而2222m m m m ⎧+<⎨+>-⎩解得1m <-或2m >。

成都七中高一诊模拟数学试卷(文科)答案

成都七中高一诊模拟数学试卷(文科)答案

成都七中高20XX 届一诊模拟数学试卷(文科)考试时间:120分钟 总分:150分 命题人:张世永 刘在廷 审题人:巢中俊一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.) 1.已知集合{}1,0,A a =-,{}|01B x x =<<,若A B ≠∅,则实数a 的取值范围是( )A {}1B (,0)-∞C (1,)+∞D (0,1)2.复数1()1ii i-⋅+的虚部为( ) A -2 B -1 C 0 D 13. 定义行列式运算:12142334,a a a a a a a a =-将函数cos () sin xf x x =的图象向左平移m 个单位(0)m >,若所得图象对应的函数为偶函数,则m 的最小值是( )A 23πB 3πC 8πD 56π4.阅读下边的程序框图,若输出S 的值为-14,则判断框内可填写( ) A .i<6 ? B .i<8 ? C .i<5 ? D. i<7 ?5.在平面直角坐标系中,若角α的顶点在坐标原点,始边 在x 轴的非负半轴上,终边经过点(3,4)P a a -(其中0a <) 则sin cos αα+的值为( )A 15-B 4 5-C 53D 156.已知命题:(,0),34x xp x ∃∈-∞<;命题:(0,),sin q x x x ∀∈+∞>则下列命题中真命题是( ) A p q ∧ B ()p q ∨⌝ C ()p q ∧⌝ D ()p q ⌝∧7. 已知正项等比数列{}n a 满足7652a a a =+。

若存在两项,m n a a14a =,则19m n +的最小值为( ) A 83 B 114 C 145 D 1768.平面四边形ABCD 中,,且AD AB ⊥,现将ABD ∆沿着对角线BD 翻折成/A BD ∆,则在/A BD ∆折起至转到平面BCD 内的过程中,直线/A C 与平面BCD 所成的最大角的正切值为( )A 1B 12CD 9. 已知)(x f 、)(x g 都是定义在R 上的函数,()0g x ≠,//()()()()0f x g x f x g x -<, ()()x f x a g x =,25)1()1()1()1(=--+g f g f ,则关于x的方程250((0,1))2abx b ++=∈有两个不同实根的概率为( ) A51B52 C53 D541A10. 已知()f x 是定义在[1,1]-上的奇函数,当12x x ≤时,12()()f x f x ≤。

2024届成都市高三数学(文)上学期一诊联考试卷附答案解析

2024届成都市高三数学(文)上学期一诊联考试卷附答案解析

2024届成都市高三数学(文)上学期一诊联考试卷2023.12(试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()22,0πsin ,02x x f x xx ⎧-<⎪=⎨≥⎪⎩,则()()11f f -+=()A .1-B .0C .1D .22.普法知识宣传小组打算从某小区的2000人中抽取25人进行法律知识培训,拟采取系统抽样方式,为此将他们一一编号为12000~,并对编号由小到大进行分段,假设从第一个号码段中随机抽出的号码是2,那么从第三个号码段中抽出的号码为()A .52B .82C .162D .2523.已知复数41i i i z -=+(i 为虚数单位),则z 的虚部为()A .1-B .1C .i -D .i 4.若数列{}n a 满足113,21n n a a a n +==-+,则234a a a ++=()A .6B .14C .22D .375.已知向量((),2,0a b =-= ,则cos ,a b =()A .32B .12C .12-D.6.若实数,x y 满足2020310x y x y x y -≥⎧⎪-≤⎨⎪+-≥⎩,则x y +的最小值为()A .0B .37C .35D .17.已知函数()f x 的大致图象如图所示,则()f x 的解析式可以为()A .()22e e 1x x x f x =-B .()22e e 1xxx f x =+C .()()()241ln 2xf x x x -=++D .()()24ln 11x f x x +=+8.已知平面,,,,a b αβγαβγβ⋂=⋂=,则α γ是a b 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.若11ln 22a =,22ln 33b =,1e c =-,则()A .c b a <<B .b<c<a C .c<a<bD .b a c<<10.已知()0,πα∈,且sin 2αα=,则tan α=()A .B .33C D 11.若[)20,,1e xx x ax ∞∈+++≤恒成立,则实数a 的最大值为()A .eB .2C .1D .e 2-12.已知圆22:40C x y +--=经过椭圆2222Ω:1(0)x y a b a b +=>>的两个焦点12,F F ,圆C 和椭圆Ω在第二象限的交点为12,24N NF NF ⋅=,则椭圆Ω的离心率为()A .B .63C .22D .12第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知集合{2},{lg }A x xB x y x =<==∣∣,则A B =.14.曲线()321f x x x =++在点()()1,1f 处的切线方程为.15.记n S 为公差不为零的等差数列{}n a 的前n 项和.若714S =,且3a ,4a ,6a 成等比数列,则2024a 的值为.16.已知侧面积为的圆锥内接于球O ,若圆锥的母线与底面所成角的正切值为12,则球O 的表面积为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,正四棱柱1111ABCD A B C D -中,M 为1AA 的中点,2AB =,14AA =.(1)求证:1C M ⊥平面BDM ;(2)求三棱锥1M BC D-的体积.18.某校高中阶段实行体育模块化课程教学,在高一年级开设了篮球和羽毛球两个模块课程,从该校高一年级随机抽取的100名男生和100名女生中,统计出参加上述课程的情况如下:男生女生总计参加篮球模块课程人数602080参加羽毛球模块课程人数4080120总计100100200(1)根据上述列联表,是否有99.9%的把握认为该校高一年级体育模块化课程的选择与性别有关;(2)根据抽取的200名学生的模块化课程成绩,每个模块课程的前3名获得参加体育模块化教学推广大使的评选资格,若在有评选资格的6名学生中随机选出2人作为体育模块化课程教学的推广大使,求这2人来自不同模块化课程的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++()20P K k ≥0.0250.0100.0050.0010k 5.0246.6357.87910.82819.已知函数()2cos 2cos 1f x x x x =+-.在锐角ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足()1f A =.(1)求A 的值;(2)若1b =,求a c +的取值范围.20.在平面直角坐标系中,动点C 到点()1,0F 的距离与到直线=1x -的距离相等.(1)求动点C 的轨迹方程;(2)若直线:l y x m =+与动点C 的轨迹交于P ,Q 两点,当PQF △的面积为2时,求直线l 的方程.21.已知函数()2e e x f x x=-.(1)求函数()f x 的单调区间;(2)求证:()()e ln cosf x x x >+.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.选修4—4:坐标系与参数方程22.在平面直角坐标系xOy 中,已知直线1C 的参数方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数,π02α<<).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos22ρθ=.(1)当π3α=时,求直线1C 的普通方程;(2)已知点()2,0P ,若直线1C 交曲线2C 于,A B 两点,且4PA PB ⋅=,求α的值.选修4—5:不等式选讲23.已知函数()21,f x x a x a =-++∈R.(1)当4a =时,求不等式()7f x ≥的解集;(2)若()2f x a>,求a 的取值范围.1.B【分析】根据分段函数分段求值即可.【详解】由于函数()22,0πsin ,02x x f x xx ⎧-<⎪=⎨≥⎪⎩,所以()()()2π1sin1,11212f f ==-=--=-,则()()11110f f -+=-+=.故选:B.2.C【分析】根据系统抽样的特点确定第三个号码段中抽出的号码即可.【详解】采取系统抽样方式,从2000人中抽取25人,那么分段间隔为20008025=,第一个号码是2,那么第三个号码段中抽出的号码是2280162+⨯=.故选:C.3.A【分析】利用虚数单位的幂的运算及除法运算法则计算化简后,根据虚部的定义得到答案.【详解】∵()()()22421i 1i 1i 12i i 12i 1i i i i 11i 1i 1i 1(1)z ----+--======-+++----,∴z 的虚部为-1,故选:A.4.D【分析】根据条件求出234,,a a a ,即可得出结果.【详解】∵113,21n n a a a n +==-+,∴212116a a =-+=,3222111a a =-+=,4323120a a =-+=,∴2346112037a a a ++=++=.故选:D.5.C【分析】利用向量的夹角公式即可求解.【详解】因为((),2,0a b =-=,所以1cos ,2a b a b a b-⨯⋅===-.故选:C.6.B【分析】先作出不等式组表示的平面区域,然后令x y z +=,当直线y x z =-+在y 轴上截距最小时,x y +取最小,观察图象可得答案.【详解】作出不等式2020310x y x y x y -≥⎧⎪-≤⎨⎪+-≥⎩表示的平面区域如图:令x y z +=,则y x z =-+,即当直线y x z =-+在y 轴上截距最小时,x y +取最小,即y x z =-+过点21,77A ⎛⎫ ⎪⎝⎭时,x y +取最小值213777+=.故选:B.7.B【分析】由图可知,函数的定义域为R ,是奇函数,当0x >时()0f x >,由此判断各选项可得出结果.【详解】对于A ,当0x =时,02e 1e 10x -=-=,()22e e 1xxx f x =-无意义,故A 错误;对于B ,()22e ,e 1x x x f x x =∈+R ,()()()222122e 2e e 1e 1e 11e xx x x x x x x x f x f x ---⋅--===-=-+++,则()f x 是奇函数,当0x >时,20e 0,e x x >>,则()0f x >;对于C ,当0x >时,()210,ln 2ln10x x +>+>=,则()0f x <,故C 错误;对于D ,()()24ln 1,1x f x x x +=∈+R,则()()()()224ln 14ln 1()11x x f x f x x x -++-===-++,则()f x 是偶函数,故D 错误,综上,B 正确.故选:B.8.A【分析】结合面面平行的性质定理和线面平行的性质定理即可判断.【详解】因为α γ,,a b αβγβ⋂=⋂=,所以由面面平行的性质定理可得a b ,则充分性成立;因为a b ,,a b αβγβ⋂=⋂=可知,所以a b γγ⊄⎧⎨⊂⎩,则a γ∥,又b a αα⊄⎧⎨⊂⎩,则b αP ,当l αγ= 时,由线面平行的性质定理可知a l b ,则必要性不成立;综上所述,α γ是a b 的充分不必要条件.故选:A.9.C【分析】根据,,a b c 的特征可构造函数()ln f x x x=,利用导数求得函数单调性即可比较它们的大小.【详解】易知111lne e e c =-=,构造函数()()ln ,0,f x x x x =∈+∞,则()ln 1f x x '=+;令()0f x '=,解得1e x =,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>;可得()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e⎛⎫+∞ ⎪⎝⎭上单调递增;又易知112e 23<<,所以112e 23c f a f b f ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c<a<b .故选:C10.B【分析】将已知条件两边平方,结合“1”的代换化为齐次式,再由弦化切求值即可.【详解】由题设222(sin )sin cos 3cos 4αααααα=-+=,所以4=,且()0,πα∈,故22tan 34tan 4ααα-+=+,即223tan 11)0ααα++=+=,所以tan α=.故选:B 11.D【分析】先确定0x =时的情况,在当0x >时,参变分离可得2e 1x x a x --≤,构造函数()2e 1x f x x x -=-,求出函数()f x 的最小值即可.【详解】当0x =时,01e ≤,不等式成立;当0x >时,2e 1x x a x --≤恒成立,即min 2e 1x a x x ⎛⎫ ⎪⎝⎭-≤-,令()2e 1x f x x x -=-,则()()()()()2222e e 1e 11x x x x x f x x x x x x -------'==,因为0x >时,e 10xx -->(后证)所以当01x <<时,()0f x '<,()f x 单调递减,当1x >时,()0f x ¢>,()f x 单调递减,故()()1mine 1e 2111f x f --===-,所以e 2a ≤-,即实数a 的最大值为e 2-.证明当0x >时,e 10xx -->,令()=e 1--x g x x ,0x >,则()=e 10x g x '->,则()g x 在()0,∞+上单调递增,所以()()00g x g >=,即e 10xx -->.故选:D.12.C【分析】先根据圆与x 轴的交点求出椭圆的焦点,然后利用圆周角的性质求出12cos F NF ∠,进而根据余弦定理及椭圆的定义可求出a ,则离心率可得.【详解】对于圆22:40C x y +--=,即(2216x y +-=,圆心为(0,,半径为4当0y =时,2x =±,当0x =时,124,4y y ==,即如图点()0,4B 即椭圆2222Ω:1(0)x y a b a b +=>>的两个焦点为()()122,0,2,0F F -,即2c =,又圆C 和椭圆Ω在第二象限的交点为N ,由圆周角的性质可得1212F NF F BF ∠=∠,则2212121cos cos 2cos 1212F NF F BF F BO ⎛⎫⎪∠=∠=∠-=⨯-=又由121122124cos 2N NF NF F NF F NF NF ⋅==∠=得1232NF NF =-,又()(()22212121212326c 22o 224s 1NF NF NF NF F NF NF NF +-∠=---=-+得(()2422163224a -=--,解得a =所以离心率c ea ==.故选:C.13.{}|02x x <<【分析】求出集合,A B 中元素范围,再求交集即可.【详解】{}{}|2|22A x x x x =<=-<<,{}{}lg |0B x y x x x ===>∣,则{}|02A B x x ⋂=<<.故答案为:{}|02x x <<.14.52y x =-【分析】首先求()1f 和()1f ',代入()()()111y f f x '-=-.【详解】因为2()32f x x x '=+,所以所求切线的斜率(1)325k f '==+=,而(1)1113f =++=,故所求的切线方程为35(1)y x -=-,即52y x =-.故答案为:52y x =-.15.2022【分析】根据等差数列的性质可得42a =,结合等比中项可得1d =,结合等差数列的定义分析求解.【详解】因为数列{}n a 为等差数列,则74714S a ==,可得42a =,设等差数列{}n a 的公差为0d ≠,因为3a ,4a ,6a 成等比数列,则2436a a a =,即()()4222=-+d d ,解得1d =或0d =(舍去),所以4202420202022=+=a a d .故答案为:2022.16.100π【分析】结合圆锥的几何性质求出圆锥的底面半径,作出轴截面结合勾股定理即可求解.【详解】设底面半径为r,因为圆锥的母线与底面所成角的正切值为12,则圆锥的高为2rh =,母线为2l r==,则其侧面积为1(2π)2r r =,解得4r =,作出圆锥的轴截面,如下图所示:则球的半径为2222()4(2)2rR r R R =+-=+-,解得5R =则球O 的表面积为224π4π(5)100πR =⋅=.故答案为:100π17.(1)证明见解析(2)4【分析】(1)根据正四棱柱的几何性质确定线段长度,结合勾股定理可得1C M DM⊥,1C M BM⊥,再根据线面垂直判定定理即可证得结论;(2)根据三棱锥的等体积转化,结合体积公式求解即可.【详解】(1)如图,连接11A C .正四棱柱1111ABCD A B C D -中,M 为1AA 的中点,2AB =,14AA =,∴221111112AC A D D C =+11122A M AM AA ===,222DM AD AM ∴=+=又22115C D DC CC =+22111123MC AC A M=+.22211C M DM DC +=,∴1C M DM ⊥.同理可得1C M BM⊥.DM BM M = ,DM ⊂平面BDM ,BM ⊂平面BDM ,∴1C M ⊥平面BDM .(2)由(1)知,BM DM BD ===1C M ⊥平面BDM .∴(112111433M BC D C BDM BDM V V S C M --==⋅=⨯⨯=△.三棱锥1C BDM-的体积为4.18.(1)有99.9%的把握认为该校高一年级体育模块化课程的选择与性别有关;(2)35.【分析】(1)应用卡方公式求卡方值,结合独立检验的基本思想得结论即可;(2)由古典概型中的列举法求概率即可.【详解】(1)由列联表数据可得,()222006080402010033.33310.828100100120803K ⨯⨯-⨯==≈>⨯⨯⨯.所以有99.9%的把握认为该校高一年级体育模块化课程的选择与性别有关.(2)设篮球模块课程的前3名为1A ,2A ,3A ,羽毛球模块课程的前3名为1B ,2B ,3B .从这6人中随机选2人的基本事件有()12,A A ,()13,A A ,()11,A B ,()12,A B ,()13,A B ,()23,A A ,()21,A B ,()22,A B ,()23,A B ,()31,A B ,()32,A B ,()33,A B ,()12,B B ,()13,B B ,()23,B B ,共15个.其中选出的这2人来自不同模块化课程的基本事件有()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()31,A B ,()32,A B ,()33,A B 共9个.故所求概率为93155P ==.19.(1)π3A =(2)1,22⎛ ⎝【分析】(1)由三角函数的诱导公式和辅助角公式计算可得;(2)首先由正弦定理和(1)求出122tan2a c B+=+,然后用锐角三角形和(1)求出B 的取值范围,最后结合正切函数公式计算出结果.【详解】(1)()2πcos 2cos 1cos22sin 26f x x x x x x x ⎛⎫=+-+=+ ⎪⎝⎭.由()π2sin 216f A A ⎛⎫=+= ⎪⎝⎭,即1sin 22π6A ⎛⎫+=⎪⎝⎭.ABC 为锐角三角形,ππ7π2,666A ⎛⎫+∈ ⎪⎝⎭,∴π5π266A +=.∴π3A =.(2)由正弦定理,sin sin sin a b c A B C ==.∴32sin a B =,2πsin sin 3sin sin B C c B B ⎛⎫- ⎪⎝⎭==.)22πsin cos 111132sin 2sin 2224sin cos 2tan 222B B B a c B B B B B ⎛⎫- ⎪+⎝⎭+++==++,.ABC 是锐角三角形,∴π02B <<,且2ππ32C B =-<.∴ππ,62B ⎛⎫∈ ⎪⎝⎭,ππ,2124B ⎛⎫∈ ⎪⎝⎭,ππtantanπππ34tan tan 2ππ12341tan tan 34-⎛⎫=-==- ⎪⎝⎭+⨯,()22Btan∈.∴322tan 2B ⎝.∴31,22a c ⎛+∈+ ⎝.综上,a c +的取值范围为1,22⎛+ ⎝.20.(1)24y x =(2)y x =或y x =或y x =.【分析】(1)结合抛物线的定义即可求解;(2)联立直线与抛物线,结合韦达定理及弦长公式和三角形面积公式即可求解.【详解】(1)由题知,动点C 的轨迹是以F 为焦点,=1x -为准线的抛物线.∴动点C 的轨迹方程为24y x =.(2)设()11,P x y ,()22,Q x y由24y x m y x =+⎧⎨=⎩消去x ,得2440y y m -+=.由16160m ∆=->,得1m <.∴124y y +=,124y y m =.由FPQ △的面积121122S PQ d y y =⋅⋅=⋅-∴14+=.∴14+=,即()210m m m +-=.1m <,∴0m =或m =.∴直线l 的方程为y x =或152y x -=+或152y x -=+.21.(1)单减区间为(),1ln 2-∞-,单增区间为()1ln 2,-+∞.(2)证明见解析【分析】(1)利用导数与函数单调性的关系即可得解;(2)构造函数()()2e e e ln 1x h x x x =--+,利用导数判推得()0h x >,进而得证.【详解】(1)因为()2e e x f x x=-,所以()2e ex f x =-',当(),1ln 2x ∈-∞-时,()0f x '<,()f x 单调递减;当()1ln 2,x ∈-+∞时,()0f x ¢>,()f x 单调递增;所以()f x 的单减区间为(),1ln 2-∞-,单增区间为()1ln 2,-+∞.(2)设函数()()2e e e ln 1xh x x x =--+,则()e2e e x h x x '=--,0x >,易得()h x '在()0,∞+上单调递增,且()10h '=,所以当()0,1x ∈,()0h x '<,()h x 单调递减;当()1,x ∈+∞,()0h x '>,()h x 单调递增;所以()()min 10h x h ==,故()2e e e ln 10x x x --+≥,当且仅当1x =时等号成立,即()()e ln 1f x x ≥+,当且仅当1x =时等号成立,因为1cos x ≥,所以()()()e ln 1e ln cosf x x x x ≥+≥+,由于上述不等式取等条件不能同时成立,所以()()e ln cosf x x x >+,得证.【点睛】关键点睛:本题解决的关键是利用中间函数()e ln 1y x =+作为桥梁,简化了证明过程,从而得证.22.0y --=(2)π6α=或π3【分析】(1)将π3α=代入参数方程,然后把参数方程转化为普通方程即可;(2)先求2C 的普通方程,再把1C 代入2C 得到一元二次方程,从而根据t 的几何意义得到α的值.【详解】(1)当π3α=时,求直线1C的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩,化简得直线1C0y --=.(2)因为曲线2C 的极坐标方程为2cos22ρθ=,所以()2222cos2cos sin 2ρθρθθ=-=.又因为=cos ,=sin x y ρθρθ,所以曲线2C 的普通方程为222x y -=.将直线1C 的参数方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数,π02α<<)代入222x y -=,得()()2222cos sin t t αα+-=,化简得2222cos sin 244cos t t t ααα+-+=,即2cos 24cos 20t t αα++=.因为直线1C 交曲线2C 于,A B 两点,所以cos20α≠,即π4≠α,又()2Δ16cos 8cos 281cos 28cos 280.αααα=-=+-=>设,A B 两点对应的参数分别为12,t t ,则12124cos 2,cos 2cos 2t t t t ααα+=-=.因为点()2,0P 在直线1C 上,所以1224cos 2PA PB t t α⋅===,即1cos 22α=,又π02α<<,所以π6α=或π3.23.(1)410,,33⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ (2)2,3⎛⎫-∞- ⎪⎝⎭【分析】(1)代入4a =,分类讨论去绝对值解不等式即可;(2)分2a <-,2a >-,2a >-讨论,通过单调性求出()f x 的最小值,然后利用()min 2f x a>解不等式求出a 的取值范围.【详解】(1)当4a =时,()33,22415,1233,1x x f x x x x x x x ->⎧⎪=-++=-+-≤≤⎨⎪-+<-⎩,因为()7f x ≥,所以3372x x -≥⎧⎨>⎩或5712x x -+≥⎧⎨-≤≤⎩或3371x x -+≥⎧⎨<-⎩,解得43x ≤-或103x ≥,故不等式()7f x ≥的解集为410,,33⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ ;(2)当2a <-时,12a<-,此时()31,1211,1231,2x a x a f x x a x x a x a x a x ⎧⎪-+>-⎪⎪=-++=--≤≤-⎨⎪⎪-+-<⎪⎩,明显函数()f x 在,2a ⎛⎫-∞ ⎪⎝⎭上单调递减,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,故()min 2122a a a f x f a ⎫- -==⎪⎭>⎛⎝,解得25a <-,又2a <-,所以2a <-,当2a >-时,12a>-,此时()31,2211,1231,1a x a x a f x x a x x a x x a x ⎧-+>⎪⎪⎪=-++=---≤≤⎨⎪-+-<-⎪⎪⎩,明显函数()f x 在(),1-∞-上单调递减,在()1,-+∞上单调递增,故()()min 1121f ax f =--=>--,解得23a <-,又2a >-,所以223a -<<-;当2a =-时,此时()312f x x a=+>,综上所述,a 的取值范围是2,3⎛⎫-∞- ⎪⎝⎭.。

四川省成都市高考数学一诊试卷(文科)含答案解析

四川省成都市高考数学一诊试卷(文科)含答案解析

四川省成都市高考数学一诊试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U=R,A={x|(x+l)(x﹣2)<0},则∁U A=()A.(一∞,﹣1)∪(2,+∞) B.[﹣l,2]C.(一∞,﹣1]∪[2,+∞)D.(一1,2)2.命题“若a>b,则a+c>b+c”的逆命题是()A.若a>b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a≤b,则a+c≤b+c3.双曲线的离心率为()A.4 B.C.D.4.已知α为锐角,且sinα=,则cos(π+α)=()A.一B.C.﹣D.5.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l6.已知x与y之间的一组数据:x1234y m 3.2 4.87.5若y关于x的线性回归方程为=2.1x﹣1.25,则m的值为()A.l B.0.85 C.0.7 D.0.57.已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈[0,)时,f(x)=一x3.则f()=()A.﹣B.C.﹣D.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为()A.B.C.5 D.39.将函数f(x)=sin2x+cos2x图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)10.在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③11.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣312.已知曲线C1:y2=tx (y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+l﹣1也相切,则t的值为()A.4e2B.4e C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.复数z=(i为虚数单位)的虚部为.14.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数t取[0,4]上的任意值时,直线y=t被图1和图2所截得的线段始终相等,则图1的面积为.15.若实数x,y满足约束条件,则3x﹣y的最大值为.16.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某省高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.18.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.20.已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.(I)若直线l1的倾斜角为,|AB|的值;(Ⅱ)设直线AM交直线l于点N,证明:直线BN⊥l.21.已知函数f(x)=xlnx+(l﹣k)x+k,k∈R.(I)当k=l时,求函数f(x)的单调区间;(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,倾斜角为α(α≠)的直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.(I)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(1,0).若点M的极坐标为(1,),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.四川省成都市高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U=R,A={x|(x+l)(x﹣2)<0},则∁U A=()A.(一∞,﹣1)∪(2,+∞) B.[﹣l,2]C.(一∞,﹣1]∪[2,+∞)D.(一1,2)【考点】补集及其运算.【分析】解不等式求出集合A,根据补集的定义写出∁U A.【解答】解:集合U=R,A={x|(x+l)(x﹣2)<0}={x|﹣1<x<2},则∁U A={x|x≤﹣1或x≥2}=(﹣∞,﹣1]∪[2,+∞).故选:C.2.命题“若a>b,则a+c>b+c”的逆命题是()A.若a>b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a≤b,则a+c≤b+c【考点】四种命题.【分析】根据命题“若p,则q”的逆命题是“若q,则p”,写出即可.【解答】解:命题“若a>b,则a+c>b+c”的逆命题是“若a+c>b+c,则a>b”.故选:C.3.双曲线的离心率为()A.4 B.C.D.【考点】双曲线的标准方程.【分析】通过双曲线方程求出a,b,c的值然后求出离心率即可.【解答】解:因为双曲线,所以a=,b=2,所以c=3,所以双曲线的离心率为:e==.故选B.4.已知α为锐角,且sinα=,则cos(π+α)=()A.一B.C.﹣D.【考点】三角函数的化简求值.【分析】根据α为锐角,且sinα=,可得cosα=,利用诱导公式化简cos(π+α)=﹣cosα可得答案.【解答】解:∵α为锐角,sinα=,∴cosα=,那么cos(π+α)=﹣cosα=﹣.故选A.5.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,根据输出的结果为0,得出输入的x.【解答】解:根据题意,模拟程序框图的运行过程,x≤0,y=﹣x2+1=0,∴x=﹣1,x>0,y=3x+2=0,无解,故选:C.6.已知x与y之间的一组数据:x1234y m 3.2 4.87.5若y关于x的线性回归方程为=2.1x﹣1.25,则m的值为()A.l B.0.85 C.0.7 D.0.5【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出y的平均数,进而可求出m 值.【解答】解:∵=2.5,=2.1x﹣1.25,∴=4,∴m+3.2+4.8+7.5=16,解得m=0.5,故选:D.7.已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈[0,)时,f(x)=一x3.则f()=()A.﹣B.C.﹣D.【考点】函数奇偶性的性质.【分析】根据函数奇偶性和条件求出函数是周期为3的周期函数,利用函数周期性和奇偶性的关系进行转化即可得到结论.【解答】解:∵奇函数f(x)满足f(x+3)=f(x),∴函数f(x)是周期为3的函数,∵当x∈[0,)时,f(x)=﹣x3,∴f()=f(﹣6)=f(﹣)=﹣f()=,故选:B.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为()A.B.C.5 D.3【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面是边长为3的正方形,高PA=4.可得最长的棱长为PC.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面是边长为3的正方形,高PA=4.连接AC,则最长的棱长为PC===.故选:B.9.将函数f(x)=sin2x+cos2x图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,求得g(x)图象的一个对称中心.【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+sin2x)=2sin(2x+)图象上所有点向右平移个单位长度,得到函数g (x)=2sin2x的图象,令2x=kπ,求得x=,k∈Z,令k=1,可得g(x)图象的一个对称中心为(,0),故选:D.10.在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③【考点】棱柱的结构特征.【分析】在①中,由AA1EH GF,知四边形EFGH是平行四边形;在②中,平面α与平面BCC1B1平行或相交;在③中,EH⊥平面BCEF,从而平面α⊥平面BCFE.【解答】解:如图,∵在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.∴AA1EH GF,∴四边形EFGH是平行四边形,故①正确;∵EF与BC不一定平行,∴平面α与平面BCC1B1平行或相交,故②错误;∵AA1EH GF,且AA1⊥平面BCEF,∴EH⊥平面BCEF,∵EH⊂平面α,∴平面α⊥平面BCFE,故③正确.故选:C.11.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣3【考点】平面向量数量积的运算.【分析】由A,B是圆O:x2+y2=4上的两个动点,||=2,得到与的夹角为,再根据向量的几何意义和向量的数量积公式计算即可.【解答】解:A,B是圆O:x2+y2=4上的两个动点,||=2,∴与的夹角为,∴•=||•||•cos=2×2×=2,∵M是线段AB的中点,∴=(+),∵=﹣,∴•=(+)•(﹣)=(5||2+3••﹣2||2)=(20+6﹣8)=3,故选:A12.已知曲线C1:y2=tx (y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+l﹣1也相切,则t的值为()A.4e2B.4e C.D.【考点】利用导数研究曲线上某点切线方程.【分析】求出y=的导数,求出斜率,由点斜式方程可得切线的方程,设切点为(m,n),求出y=e x+1﹣1的导数,可得切线的斜率,得到t的方程,解方程可得.【解答】解:曲线C1:y2=tx(y>0,t>0),即有y=,y′=•,在点M(,2)处的切线斜率为•=,可得切线方程为y﹣2=(x﹣),即y=x+1,设切点为(m,n),则曲线C2:y=e x+1﹣1,y′=e x+1,e m+1=,∴m=ln﹣1,n=m•﹣1,n=e m+1﹣1,可得(ln﹣1)•﹣1=e﹣1,即有(ln﹣1)•=,可得=e2,即有t=4e2.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.复数z=(i为虚数单位)的虚部为1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:z==i+1的虚部为1.故答案为:1.14.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数t取[0,4]上的任意值时,直线y=t被图1和图2所截得的线段始终相等,则图1的面积为8.【考点】函数模型的选择与应用.【分析】根据祖暅原理,可得图1的面积=矩形的面积,即可得出结论.【解答】解:根据祖暅原理,可得图1的面积为4×2=8.故答案为8.15.若实数x,y满足约束条件,则3x﹣y的最大值为6.【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=2x可得结论.【解答】解:作出约束条件,所对应的可行域如图,变形目标函数可得y=3x﹣z,平移直线y=3x可知当直线经过点A(2,0)时,直线的截距最小,z取最大值,代值计算可得z=3x﹣y的最大值为6,故答案为:616.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD=.【考点】正弦定理.【分析】由已知利用三角形面积公式可求sin∠ACB=,从而可求∠ACB=,在△ABC中,由余弦定理可得AB,进而可求∠B,在△BCD中,由正弦定理可得CD的值.【解答】解:∵AC=,BC=,△ABC的面积为=AC•BC•sin∠ACB=sin∠ACB,∴sin∠ACB=,∴∠ACB=,或,∵若∠ACB=,∠BDC=<∠BAC,可得:∠BAC+∠ACB>+>π,与三角形内角和定理矛盾,∴∠ACB=,∴在△ABC中,由余弦定理可得:AB===,∴∠B=,∴在△BCD中,由正弦定理可得:CD===.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某省高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由频率分布直方图中小矩形面积之和为1,能求出x=0.004,从而得到甲学校的合格率,由此能求出结果.(Ⅱ)由题意,将乙校样本中成绩等级为C,D的6名学生记为C1,C2,C3,C4,D1,D2,由此利用列举法能求出随机抽取2名学生,抽出的两名学生中至少有一名学生成绩等级为D的概率.【解答】解:(Ⅰ)由题意知10x+0.012×10+0.056×10+0.018×10+0.010×10=1,解得x=0.004,∴甲学校的合格率为1﹣10×0.004=0.96,而乙学校的合格率为:1﹣=0.96,故甲乙两校的合格率相同.(Ⅱ)由题意,将乙校样本中成绩等级为C,D的6名学生记为C1,C2,C3,C4,D1,D2,则随机抽取2名学生的基本事件有:{C1,C2},{C1,C3},{C1,C4},{C1,D1},{C1,D2},{C2,C3},{C2,C4},{C2,D1},{C2,D2},{C3,C4},{C3,D1},{C3,D2},{C4,D1},{C4,D2},{D1,D2},共15个,其中“抽出的两名学生中至少有一名学生成绩等级为D”包含的基本事件有9个,∴抽出的两名学生中至少有一名学生成绩等级为D的概率p=.18.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(I)设等比数列{a n}的公比为q,a4=8a1,可得=8a1,解得q.又a1,a2+1,a3成等差数列,可得2(a2+1)=a1+a3,当然解得a1,利用等比数列的通项公式即可得出.(II)n=1时,a1﹣4=﹣2<0,可得S1=2.当n≥2时,a n﹣4≥0.数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4),再利用等比数列的求和公式即可得出.【解答】解:(I)设等比数列{a n}的公比为q,∵a4=8a1,∴=8a1,a1≠0,解得q=2.又a1,a2+1,a3成等差数列,∴2(a2+1)=a1+a3,∴2(2a1+1)=a1(1+22),解得a1=2.∴a n=2n.(II)n=1时,a1﹣4=﹣2<0,∴S1=2.当n≥2时,a n﹣4≥0.∴数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4)=2+22+23+…+2n﹣4(n﹣1)=﹣4(n﹣1)=2n+1﹣4n+2.∴S n=.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.【考点】球的体积和表面积;直线与平面垂直的判定.【分析】(Ⅰ)推导出PD⊥平面PEF,RG∥PD,由此能证明GR⊥平面PEF.(Ⅱ)设三棱锥P﹣DEF的内切球半径为r,由三棱锥的体积V=,能求出棱锥P﹣DEF的内切球的半径.【解答】证明:(Ⅰ)在正方形ABCD中,∠A、∠B、∠C均为直角,∴在三棱锥P﹣DEF中,PE,PF,PD三条线段两两垂直,∴PD ⊥平面PEF , ∵=,即,∴在△PDH 中,RG ∥PD ,∴GR ⊥平面PEF .解:(Ⅱ)正方形ABCD 边长为4, 由题意PE=PF=2,PD=4,EF=2,DF=2,∴S △PDF =2,S △DEF =S △DPE =4,=6,设三棱锥P ﹣DEF 的内切球半径为r , 则三棱锥的体积:=,解得r=,∴三棱锥P ﹣DEF 的内切球的半径为.20.已知椭圆的右焦点为F ,设直线l :x=5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点. (I )若直线l 1的倾斜角为,|AB |的值;(Ⅱ)设直线AM 交直线l 于点N ,证明:直线BN ⊥l .【考点】直线与椭圆的位置关系.【分析】(I )设直线l 的方程,代入椭圆方程,利用韦达定理及弦长公式即可求得|AB |的值;(Ⅱ)设直线l 1的方程为y=k (x ﹣1),代入椭圆方程,由A ,M ,N 三点共线,求得N点坐标,y0﹣y2=﹣y2=﹣k(x2﹣1),代入,利用韦达定理即可求得y0=y2,则直线BN⊥l.【解答】解:(I)由题意可知:椭圆,a=,b=2,c=1,则F(1,0),E(5,0),M(3,0),由直线l1的倾斜角为,则k=1,直线l的方程y=x﹣1,设A(x1,y1),B(x2,y2),则,整理得:9x2﹣10x﹣15=0,则x1+x2=,x1x2=﹣,则丨AB丨=•=,|AB|的值;(Ⅱ)设直线l1的方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:(4+5k2)x2﹣10k2x+5k2﹣20=0,则x1+x2=,x1x2=,设N(5,y0),由A,M,N三点共线,有=,则y0=,由y0﹣y2=﹣y2=﹣k(x2﹣1)=,==0,∴直线BN∥x轴,∴BN⊥l.21.已知函数f(x)=xlnx+(l﹣k)x+k,k∈R.(I)当k=l时,求函数f(x)的单调区间;(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)当k=1时,f(x)=xlnx+1,f′(x)=lnx+1,由此利用导数性质能求出f(x)的单调区间.(Ⅱ)由f(x)>0恒成立,得xlnx+(1﹣k)x+k>0,推导出k<恒成立,设g(x)=,则g′(x)=,令μ(x)=﹣lnx+x﹣2,则,由此利用导数秘技能求出k的最大整数值.【解答】解:(Ⅰ)当k=1时,f(x)=xlnx+1,∴f′(x)=lnx+1,由f′(x)>0,得x>;由f′(x)<0,得0<x<,∴f(x)的单调递增区间为(,+∞),单调减区间为(0,).(Ⅱ)由f(x)>0恒成立,得xlnx+(1﹣k)x+k>0,∴(x﹣1)k<xlnx+x,∵x>1,∴k<恒成立,设g(x)=,则g′(x)=,令μ(x)=﹣lnx+x﹣2,则,∵x>0,∴μ′(x)>0,μ(x)在(1,+∞)上单调递增,而μ(3)=1﹣ln3<0,μ(4)=2﹣ln4>0,∴存在x0∈(3,4),使μ(x0)=0,即x0﹣2=lnx0,∴当x∈(x0,+∞)时,g′(x)<0,此时函数g(x)单调递减,当x∈(x0,+∞)时,g′(x0)>0,此时函数g(x)单调递增,∴g(x)在x=x0处有极小值(也是最小值),∴==x0∈(3,4),又由k<g(x)恒成立,即k<g(x)min=x0,∴k的最大整数值为3.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,倾斜角为α(α≠)的直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.(I)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(1,0).若点M的极坐标为(1,),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)直线l的参数方程消去参数t,能求出直线l的普通方程;由曲线C的极坐标方程能求出曲线C的直角坐标方程.(Ⅱ)求出点M的直角坐标为(0,1),从而直线l的倾斜角为,由此能求出直线l的参数方程,代入x2=4y,得,由此利用韦达定理和两点间距离公式能求出|PQ|.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数).∴直线l的普通方程为y=tanα•(x﹣1),由曲线C的极坐标方程是ρcos2θ﹣4sinθ=0,得ρ2cos2θ﹣4ρsinθ=0,∴x2﹣4y=0,∴曲线C的直角坐标方程为x2=4y.(Ⅱ)∵点M的极坐标为(1,),∴点M的直角坐标为(0,1),∴tanα=﹣1,直线l的倾斜角为,∴直线l的参数方程为,代入x2=4y,得,设A,B两点对应的参数为t1,t2,∵Q为线段AB的中点,∴点Q对应的参数值为,又P(1,0),则|PQ|=||=3.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)根据题意,由绝对值的性质可以将f(x)≤6转化可得或,解可得x的范围,即可得答案;(Ⅱ)根据题意,由函数f(x)的解析式分析可得f(x)的最小值为4,即n=4;进而可得正数a,b满足8ab=a+2b,即+=8,将2a+b变形可得2a+b=(++5),由基本不等式的性质可得2a+b的最小值,即可得答案.【解答】解:(Ⅰ)根据题意,函数f(x)=x+1+|3﹣x|,x≥﹣1.若f(x)≤6,则有或,解可得﹣1≤x≤4,故原不等式的解集为{x|﹣1≤x≤4};(Ⅱ)函数f(x)=x+1+|3﹣x|=,分析可得f(x)的最小值为4,即n=4;则正数a,b满足8ab=a+2b,即+=8,2a+b=(+)(2a+b)=(++5)≥(5+2)=;即2a+b的最小值为.4月5日。

四川省成都市第七中学2022-2023学年高三上期一诊模拟考试数学(文)试题(含答案解析)

四川省成都市第七中学2022-2023学年高三上期一诊模拟考试数学(文)试题(含答案解析)

B.平面 PAB 和平面 PCM 的交线不与平面 ABCD 平行
C.平面 PBC 内存在无数条直线与平面 PAM 平行
D.平面 PAM 和平面 PBC 的交线不与平面 ABCD 平行
12.已知 a b ,且 ea a eb b 1.01 ,则下列说法正确的有( )
① b 1; ② 0 a 1 ;③ b a 0 ; ④ a b 1. 2
62
cos
2
2 3
cos
2
3
π cos2
6
1
2sin
2
6
1
1 2
1 2
.
答案第 2页,共 14页
故选:C 8.A 【分析】先函数的奇偶性排除两个选项,在根据函数的零点位置及范围内的函数值正反,得
最符合的函数图象即可.
【详解】解:函数 f (x) x cos x ,定义域为 R ,所以 f x x cos x x cos x f x
A.1
B. 2
C. 3
D. 4
2.若复数 z 满足 (z 1) i 1 i ,则 z 的虚部是( )
A.1
B. 1
C. i
3.“ 1 m 7 ”是“方程 x2 y2 1表示椭圆”的( ) m1 7m
A.充分不必要条件
B.必要不充分条件
D. i
C.充要条件
D.既不充分也不必要条件
4.已知圆台形的花盆的上、下底面的直径分别为 8 和 6,该花盆的侧面展开图的扇环
所以函数 y f (x) 为奇函数,故排除 B,D 选项;
当 x 0 时,令 f (x) x cos x 0 得 x π 2kπ,k N ,所以函数 y f (x) 最小正零点为 x π ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a= 2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,==2,由AM∥BC,得M到BC的距离为,∴S△BCM∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.。

相关文档
最新文档