化工原理实验上册 知识点总结 归纳 华东理工大学 华理 实验考试适用
化工原理知识点总结笔记

化工原理知识点总结笔记一、化工原理概述化工原理是化学工程学的基础和核心分支,是研究化工过程基本原理和规律的一门学科。
在化工生产中,化工原理被广泛应用于控制反应过程、设计分离装置、优化工艺条件等方面。
化工原理主要包括热力学、化学动力学、传质传热、流体力学等方面的知识。
二、化工热力学热力学是研究能量转化和宏观物质运动规律的学科,化工热力学是将热力学原理应用于化工过程的一种方法。
化工热力学主要包括热力学基本原理、热力学性质、热力学循环等内容。
在化工过程中,热力学原理被用于计算反应热、确定工艺条件、分析热平衡等方面。
1. 热力学基本原理热力学基本原理包括能量守恒、熵增原理、热力学第一定律、热力学第二定律等。
能量守恒原理指出在封闭系统中,能量的总量是不变的;熵增原理指出封闭系统中熵总是增加的;热力学第一定律指出能量既不会被创建,也不会被销毁,只会在不同形式之间转化;热力学第二定律规定了热能不可能自发地从低温物体传递给高温物体。
2. 热力学性质热力学性质包括物质的热力学性质和烃的三相平衡等内容。
物质的热力学性质是指物质在不同温度、压力下的性质表现,例如,比热容、热膨胀系数、热导率等;烃的三相平衡是指烃在气态、液态和固态之间的平衡关系,包括气液平衡、固液平衡、气固平衡等。
3. 热力学循环热力学循环是指利用热能转换成机械能的过程,如蒸汽轮机循环、汽轮机循环、空气循环等。
在化工领域,热力学循环常常用于设计和优化化工过程中的能量转化装置。
三、化学动力学化学动力学是研究化学反应速率和反应机理的学科,主要包括反应速率、反应动力学方程、反应机理等内容。
在化工生产中,化学动力学常用于优化反应条件、控制反应速率、提高产物收率等方面。
1. 反应速率反应速率是指单位时间内反应物的消耗量或产物的生成量,通常用化学反应方程式来表示,如:A + B → C + D,反应速率可表示为:-d[A]/dt = -d[B]/dt = d[C]/dt = d[D]/dt。
化工原理知识点总结

化工原理知识点总结化工原理是化学工程学科的基础,它涉及到物质的转化、物质的相互作用以及反应工程等方面的知识。
在化工工程的学习和实践中,我们需要掌握一些重要的化工原理知识点。
本文将对化工原理的一些重要知识点进行总结,以帮助读者更好地理解和运用这些知识。
一、反应速率反应速率是化学反应在单位时间内发生的变化量,是衡量反应快慢的重要指标。
反应速率与反应物浓度、温度、压力等因素有关。
通过调控反应物浓度、温度等条件,可以改变反应速率。
了解反应速率可以帮助我们设计和优化反应工艺。
二、化学平衡化学平衡是指在化学反应中,正向反应和反向反应同时进行,且反应物和生成物的浓度不再发生变化。
化学平衡的达到和维持是通过控制温度、压力和物质浓度等条件来实现的。
理解化学平衡可以帮助我们进行化工反应的控制和工艺的优化。
三、热力学热力学是研究热量和功与物质转化与变化关系的学科。
其中,熵是一个非常重要的概念。
它表示了系统的无序程度,可以衡量系统内部的能量分布。
热力学可以帮助我们预测和计算化学反应的能量变化,以及判断一个化学反应是否可行。
四、物质平衡物质平衡是指在化工过程中,通过对物料和能量的输入和输出进行平衡计算,以达到化工过程的稳定和高效。
通过物质平衡计算,我们可以确定所需的原料用量、催化剂用量以及产品产量等重要参数,从而帮助我们进行过程设计和工艺优化。
五、传热传热是指物体之间热量的传递过程。
在化工过程中,通过控制和优化传热方式,可以提高反应速率、改善产物纯度,以及降低能源消耗等。
了解传热原理可以帮助我们设计合理的传热设备和加热方式,提高化工过程的效率。
六、传质传质是指物质在不同相之间的传递过程。
在化工工程中,往往需要在两相之间传质,以实现反应物质的接触和反应。
通过控制传质速率和传质方式,可以提高反应效率和选择性,进一步优化化工工艺。
七、催化剂催化剂是指在反应中增加反应速率,但自身不参与反应消耗的物质。
催化剂可以提高反应速率、改善产物选择性、降低反应温度等。
化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。
化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。
2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。
(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。
在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。
(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。
化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。
(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。
(4)流体力学流体力学是研究流体运动规律和流体性质的科学。
在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。
这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。
二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。
因此,分析化学平衡是化工过程设计和运行中的重要内容。
2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。
热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。
3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。
热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。
三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。
化工原理知识点总结整理

化工原理知识点总结整理化工原理是化学工程学科的基础,是化工工程师必备的知识。
以下是对化工原理的知识点进行总结整理。
1.物质的组成和结构:-原子:是化学元素的最小单位,由质子、中子和电子组成。
-分子:由两个或多个原子通过化学键连接而成。
-离子:失去或获得电子的原子,具有正负电荷。
正离子失去电子,负离子获得电子。
-化学键:是原子之间的力,将原子与原子连接起来。
-分子式:用化学符号表示分子中原子的种类和数目。
-结构式:用化学符号和线条表达分子中原子的排列方式。
2.化学反应:-化学平衡:反应物与生成物的浓度达到一定比例,反应停止。
-反应速率:反应物转变为生成物的速率。
-化学平衡常数:表示反应物与生成物在化学平衡时的浓度比例。
-反应热:反应物与生成物之间的能量差异。
3.理想气体:-理想气体状态方程:PV=nRT,其中P为气体的压力,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。
-理想气体的性质:不受物质的吸引力和斥力影响,分子间无体积。
4.流体力学:-流体:物质形状可变的物质,包括气体和液体。
-流动:流体在空间内由高压区域到低压区域的运动。
-流速:流体运动的速度。
-流量:在单位时间内通过流体的量。
-流体的黏性:流体内部摩擦阻力。
5.物质传递:-质量传递:物质从高浓度区域向低浓度区域的传递。
-热传递:热量从高温区域向低温区域的传递。
-动量传递:力从物体上的一个部分传递到另一个部分。
6.浓度与溶液:-浓度:表示溶液中溶质的量。
-溶解度:单位质量的溶剂中可以溶解的最大量溶质。
-饱和溶液:溶质在溶剂中达到最大溶解度所得到的溶液。
7.离子交换与配位化学:-离子交换:阳离子与阳离子、阴离子与阴离子之间的置换反应。
-配位化学:原子或离子通过化学键与金属离子形成配合物。
8.化学工程设备与仪器:-塔:用于气液或液液传质和反应的设备。
-反应器:用于进行化学反应的设备。
-分离设备:用于分离物质的设备,如蒸馏塔、萃取塔等。
化工原理上 知识点总结

化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。
化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。
化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。
2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。
其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。
3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。
在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。
二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。
物质平衡的基本概念包括输入、输出、积累和转化等概念。
输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。
2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。
物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。
物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。
3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。
例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。
化工原理上册知识点

1、单元操作: 在各种化工生产过程中,除化学反应外的其余物理操作称为单元操作。
包括流体的流动与输送、沉降、过滤、搅拌、压缩、传热、蒸发、结晶、干燥、精馏、吸收、萃取、冷冻等2、真空度:当被测流体的绝对压强小于外界压强时,用真空表进行测量。
真空表的读数表示被测流体的绝对压强低于当地大气压强的数值,称为真空度,即:真空度=大气压强—绝对压强= —表压强3、牛顿流体:凡遵循牛顿黏性定律的液体为牛顿型液体,所有气体和大多数液体为牛顿液体4、层流流动:是流体两种流动形态之一,当管内流动的Re 小于2000时,即为层流流动,此时流体质点在管内呈平行直线流动,无不规则运动和相互碰撞及混杂5、理想流体:黏度为零的流体。
实际自然中并不存在,引入理想流体的概念,对研究实际流体起重要作用6、泵的特性曲线:特性曲线是在一定转速下,用常温清水在常压下测得。
表示离心泵的压头、效率和轴功率与流量之间的关系曲线7、流体边界层:速度为u的均匀流平行经过固体壁面时,与壁面接触的流体,因分子附着力而静止不动,壁面附近的流体层由于粘性而减速,此减速效应将沿垂直于壁面的流体内部方向逐渐减弱,在离壁面一定距离处,流速已接近于均匀流的速度,在此层内存在速度梯度,该薄层称为流体边界层8、泵的工作点:管路特性曲线和泵特性曲线的交点9、泵的安装高度:泵的吸入口轴线与贮液槽液面间的垂直距离(Z s,m)泵的安装高度直接影响泵的吸液能力10、泵的压头:也称泵的扬程。
是泵的主要性能参数之一,是泵给予单位重量(N)液体的有效能量,以H表示,其单位为m。
11、边界层分离:当物体沿曲面流动或流动中遇到障碍物时,不论是层流还是湍流,会发生边界层脱离壁面的现象12、完全湍流区:—Re曲线趋于水平线,即摩擦系数只与有关,而与Re准数无关的一个区域,又h f与u2成正比,所以又称为阻力平方区13、风压:风压是单位体积的气体流过风机时所获得的能量,以H T表示,单位为J/m3(Pa)。
化工原理知识点归纳总结

化工原理知识点归纳总结一、化工原理概述化工原理是化学工程的基础课程,主要介绍了化学工程领域中的基本原理和基本概念。
它涵盖了化学反应、热力学、传质与传热等方面的知识。
化工原理对于理解和掌握化工过程的基本原理和技术具有重要意义,是化学工程学习和实践的基础。
本文主要对化工原理中的关键知识点进行归纳总结,以帮助读者系统地了解化工原理的基本概念和原理。
二、化工原理知识点归纳1. 化学反应化学反应是化学工程过程中的核心环节。
化工原理中介绍了化学反应的基本概念和原理,包括反应速率的表达式、反应热、反应平衡等内容。
化学反应的速率表达式可以用来描述反应速率与反应物浓度之间的关系,常见的表达式有零级、一级和二级反应速率方程。
反应热是指化学反应放热或吸热的现象,它在化学工程过程中对于了解和控制反应过程具有重要意义。
反应平衡是指化学反应两个方向之间达到动态平衡状态的现象,化工原理中介绍了反应平衡的基本原理和计算方法。
2. 热力学热力学是研究能量转化和传递规律的科学,是化学工程过程中的基本理论。
化工原理中介绍了热力学的基本概念和原理,包括热力学函数、热力学平衡、热力学循环等内容。
热力学函数是描述系统能量状态和性质的函数,常见的热力学函数有内能、焓、熵等。
热力学平衡是指系统达到热力学平衡状态的过程,它对于化工过程的热平衡和物质平衡具有重要意义。
热力学循环是指在不同状态点之间进行能量转化的循环过程,化工原理中介绍了常见的热力学循环,如卡诺循环、斯特林循环等。
3. 传质与传热传质与传热是化工过程中的重要环节,是控制化工过程效率和产品品质的关键因素。
化工原理中介绍了传质与传热的基本原理和计算方法,包括质量传递、热传递、质量传递系数和传热系数等内容。
质量传递是指组分在不同相之间发生的传递过程,化工原理中介绍了质量传递的基本原理和影响因素。
热传递是指热量在不同相之间发生的传递过程,化工原理中介绍了热传递的基本原理和传热方式。
质量传递系数和传热系数是描述传质与传热速率的参数,化工原理中介绍了其计算方法和影响因素。
化工原理知识点总结复习重点

化工原理知识点总结复习重点化工原理是化学工程与工艺专业的一门基础课程,主要介绍化学工程与工艺中的物质平衡、能量平衡和动量平衡等基本原理及其应用。
下面是化工原理的知识点总结和复习重点的详细版:1.化学反应平衡-反应物与生成物的化学计量关系-反应的平衡常数与平衡常数表达式- Le Chatelier原理和平衡移动方向-改变反应条件对平衡的影响2.物质平衡-物质守恒定律-化学工程中常见的物质平衡问题-不可压缩流体的物质平衡-反应器中的物质平衡-非理想流动下的物质平衡3.能量平衡-能量的守恒定律-热力学一、二、三定律-热力学方程与热力学性质-各种热力学过程的分析-标准生成焓与反应焓-反应器中的能量平衡4.动量平衡-动量的守恒定律-流体的运动学性质-流体的连续性方程、动量方程和能量方程-流体的黏度、雷诺数与运动阻力-流体的流动模式与阻力系数5.质量传递-质量传递的基本概念和规律-质量传递过程中的浓度梯度-净质量流率和摩尔质量流率-质量传递的速率方程和传质系数-各种传质装置的设计和分析6.物料的流动-流体的本构关系和流变特性-流体的流变模型和流变学方程-各种物料的流动模式和流动参数-孔板、喷嘴、管道等流体动力装置的设计和分析7.反应工程学-反应器的分类与特性-反应速率方程和反应级数-决定反应速率的因素-等温、非等温反应的热力学分析-反应器的设计和分析8.分离工程学-分离过程的基本原理-平衡闪蒸和分馏过程-萃取、吸附和吸附过程-结晶和干燥过程-分离设备的设计和分析9.管道和设备-化工工艺流程图的绘制-管道的基本特性和设计原则-常见流体设备的结构和工作原理-设备的选择、设计和运行控制以上是化工原理的知识点总结和复习重点的详细版。
在复习时,需要重点掌握每个知识点的基本概念、原理和公式,并通过习题和实例进行巩固和应用。
同时,建议结合实际工程问题,加深对知识点的理解和运用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理实验上册知识点归纳Veeny量纲分析法量纲分析法是通过将变量组合成无量纲数群,从而减少实验自变量的个数,大幅度地减少实验次数,不需要对过程机理有深刻全面的了解。
可以由π定理加以证明。
缺点是降低的工作量有限、实验结果的应用仅限于实验范围,无法分析各种变量对过程的影响。
过程分解与合成法将一个复杂的过程分解为联系较少或相对独立的子过程,再联系起来。
优点是从简到繁,先局部后整体,大幅减少试验次数。
n^a+n^b 缺点是子过程的最优不等于整个过程的最优。
数据处理:列表法、图示法(座标分度比例的确定)、数学函数法。
误差:系统误差(一起、环境)、随机误差(不可控、肉眼,波动)、过失误差压力:液柱式压力计:U型(倒U型)液柱压力计、单管液柱压力计、倾斜式压力计优:精度高弹簧式压力计:弹簧管、膜式微压计、波纹管式优:范围大、结构简单、便宜。
缺:受温度影响。
电气式压力计:快速变化的。
稳定:3/4 不稳定:1/3—2/3温度:接触式:热膨胀(玻璃液体、杆式精度不高)、热电偶、热电阻非接触式:热辐射式高温计流量:速度式流量计:孔板和文丘利流量计、转子流量计(小流量)、涡轮流量计。
粘度高:耙式体积式流量计:湿式气体流量计、皂膜流量计(气体,小流量)质量式流量计:直接式,补偿式。
不受压强、温度、粘度等影响。
实验内容:在管壁相对粗糙度ε/d 一定时,测定流体流经直管的摩擦阻力,确定摩擦系数λ与雷诺数Re 之间的关系:测定流体流经阀门或弯头及其它管件时的局部阻力系数ξ。
要求掌握用因次分析法处理管路阻力问题的实验研究方法,并规划组织实验测定λ和Re;流量—阀门开度流速—流量计ΔP:2个压差计密度:温度计再配上变频器、水槽、泵、阀门、管件等组建成以下循环管路。
计算:u=q/A Re=μρdu 得Re h f =22u d l P ⋅⋅=∆λρ 得λ与h f 同理h ζ2u P 2ζρ∆=得ζ 为什么本实验数据须在对数坐标纸上进行标绘?答:对数可以把乘、除因变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。
掌握管“平衡阀”的功能和用法;用来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,平衡阀能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到平衡的作用。
平衡阀在投运时是打开的,正常运行时是关闭的。
熟悉各种压力计、流量计的正确使用方法。
测流量用转子流量计、测压强用U 形管压差计,差压变送器。
转子流量计,随流量的大小,转子可以上、下浮动。
U 形管压差计结构简单,使用方便、经济。
差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。
实验步骤1. 关闭出口阀,打开两个平衡阀,打开光滑管引压阀、光滑管切换阀、弯头引压阀,关闭其它所有阀;打开引水阀灌泵,放气(开关3次),然后关闭引水阀;检查出口阀处于关闭状态;启动泵。
2. 系统排气(1) 总管排气:出口阀开足5秒后关闭,重复三次,目的为了使总管中的大部分气体被排走。
(2) 引压管排气:依次对4个放气阀进行排气,开、关三次。
(3) 压差计排气:关闭2个平衡阀,重复(2)步骤。
3. 检验排气是否彻底是将控制阀开至最大,再关至为零,看压差变送器计读数,若前后读数相等,则判断系统排气彻底;若前后读数不等,则重复上述23步骤。
泵出口压力表最大,真空表最小。
4. 由于系统的流量计量采用涡轮流量计,其小流量受到结构的限制,因此,从大流量做起,实验数据比较准确。
5. 实验布点 先将控制阀开至最大,读取流量显示仪读数qv 大,在qv 大和流量为0.2之间布15个点,考虑实验的合理布点,遵从大流量时少布点,小流量时多布点的原则。
6. 光滑管阻力和弯头局部阻力的实验结束后,打开平衡阀,关闭阻力控制阀;7. 切换流体至粗糙管和阀门,关闭其它所有阀;8. 重复步骤5,得到粗糙管阻力和弯头局部阻力的实验数据。
9. 实验结束后,打开平衡阀,关闭阻力控制阀,打开离心泵控制阀,进行离心泵特性曲线测定。
实验内容:测定一定转速下的离心泵特性曲线泵的特性是指泵在一定转速下,其扬程、功率、效率与流量关系。
要求熟悉离心泵的结构并掌握其操作方法;液体注满泵壳,叶轮高速旋转,液体在离心力作用下产生高速度,告诉液体经过逐渐扩大的泵壳通道,动压头转变为静压头。
1、离心泵启动前为什么要先灌水排气?答:为了防止打不上水、即气缚现象发生。
2、启动泵前为什么要先关闭出口阀,待启动后,再逐渐开大?而停泵时,也要先关闭出口阀?答:防止电机过载。
因为电动机的输出功率等于泵的轴功率N。
根据离心泵特性曲线,当Q=0时N最小,电动机输出功率也最小,不易被烧坏。
而停泵时,使泵体中的水不被抽空,另外也起到保护底阀的作用。
3、启动离心泵时,为什么先要按下功率表分流开关绿色按钮?答:为了保护功率表。
4、离心泵特性曲线测定过程中Q=0点不可丢,为什么?答:Q=0点是始点,它反映了初始状态。
5、离心泵流量增大时,压力表与真空表的数值如何变化?为什么?答:流量越大,入口处真空表的读数越大,而出口处压强表的读数越小。
流量越大,需要推动力即水池面上的大气压强与泵入口处真空度之间的压强差就越大。
大气压不变,入口处压强就应该越小,而真空度越大,出口处压强表的读数变小。
6、为什么调节离心泵的出口阀门可调节其流量?这种方法有什么优缺点?是否还有其它方法调节泵的流量?答:调节出口阀门开度,实际上是改变管路特性曲线,改变泵的工作点,可以调节其流量。
这种方法优点是方便、快捷、流量可以连续变化,缺点是阀门关小时,增大流动阻力,多消耗一部分能量、不很经济。
也可以改变泵的转速、减少叶轮直径,生产上很少采用。
7、什么情况下会出现“汽蚀”现象?答:当泵的高度过高,使泵内压力低于输送液体温度下的饱和蒸汽压时,液体气化,气泡形成,破裂等过程中引起的剥蚀现象。
8、离心泵应选择在高效率区操作,你对此如何理解?答:离心泵在一定转速下有一最高效率点,通常称为设计点。
离心泵在设计点时工作最经济,由于种种因素,离心泵往往不可能正好在最佳工况下运转,因此,一般只能规定一个工作范围,称为泵的高效率区。
9、离心泵在其进口管上安装调节阀门是否合理?为什么?答:不合理,因为水从水池或水箱输送到水泵靠的是液面上的大气压与泵入口处真空度产生的压强差,将水从水箱压入泵体,在进口管安装阀门,无疑增大这一段管路的阻力,而使流体无足够的压强差实现这一流动过程。
10、为什么在离心泵进口管下安装底阀?从节能观点看,底阀的装设是否有利?你认为应如何改进?答:底阀是单向止逆阀,水只能从水箱或水池抽到泵体,而绝不能从泵流回水箱,目的是保持泵内始终充满水,防止气缚现象发生。
从节能观点看,底阀的装设肯定产生阻力而耗能。
既不耗能,又能防止水倒流,这是最好不过的了。
11、为什么停泵时,要先关闭出口阀,再关闭进口阀?答:使泵体中的水不被抽空,另外也起到保护底阀的作用学会用直接实验法规划实验并测定离心泵的特性曲线;g P ρ1+h 1+g u 221+H e =g P ρ2+h 2+g 2u 22 (1)∴ H e = gu g u h h g P g P 2221221212-+-+-ρρ (2) 从方程式(2)可见,实验规划方法是:P 1-――实验装置中在泵的进口管上装有真空表; P 2―――实验装置中在泵的出口管上装有压力表; ρ―――和温度有关,由温度计测量流体温度; η―――由功率表计量电机输入功率P a ;u ―――管路中需安装流量计,确定流体的流速u ,欲改变u 需阀门控制;除以上仪表外,配上泵、变频器、管件、阀门、水槽等部件组合成循环管路。
实验操作原理是:按照管路特性曲线和泵特性曲线的交点作为泵的工作点这原理,改变管路阻力可以通过调节阀门开度加以实现,使管路特性曲线上的工作点发生移动,再将一系列移动的工作点的轨迹连接起来,就是泵的扬程曲线。
计算: H e =g u u g P P 2-2122空真++ρPe=H e Q ρg η=P e /P 轴熟悉功率表的正确使用方法;选择-连接-读数掌握通过实验误差分析确定直角坐标分度比例的方法。
为了得到理想的图形,在已知量和的误差与的情况下,比例尺的取法应使实验“点”的边长为,,并且使,则X 轴的比例尺M x 为:1/ΔX mm ,实验内容:在恒压操作条件下测定过滤常数K 和 qe 。
要求掌握用数学模型法处理过滤问题的实验研究方法, 过滤问题的处理方法(1) 过滤操作是非定态操作,但由于滤饼厚度变化缓慢,可视为拟定态过程。
(2) 过滤操作阻力大,流体通过颗粒床层是一种极慢流动,视为爬流,阻力损失取决于颗粒表面积。
数学模型的步骤Ⅰ 将复杂的真实过程简化成易于用数学方程式表达的物理模型; Ⅱ 对所得的物理模型进行数学描述,即建立数学模型; Ⅲ 通过实验对数学模型的合理性进行检验并测定模型参数。
过滤问题的数学模型方法将流体通过真实的滤饼床层的复杂过程简化为流体通过一组平行管束的简单过程,后者一组平行管束即为简化了的物理模型,并假设前后二者:比表面积a 相等;空隙率ε相等。
Kq q q K q q e 2)(1111++=--ττ并规划组织实验测定过滤常数 K 和 qe ;t :计算机采集 q :清液体积数 K :需要恒定压力步骤:1、安装过滤器(底座,支撑板(孔面朝下),滤布(先润湿)滤框,分布板,盖板,螺母) 2、先把压力调到最大,开物料泵,均匀后测波美度(1.02%-1.04%),检查滤液放尽阀是否关闭。
3、打开软件,输入。
一个同学操作计算机(一有滤液就按),一个同学放气3次,然后一个同学调节压力,恒压后再按一下鼠标。
1、过滤刚开始时,为什么滤液经常是浑浊的?答:因为刚开始的时候滤布没有固体附着,所以空隙较大,浑浊液会通过滤布,从而滤液是浑浊的。
当一段时间后,待过滤液体中的固体会填满滤布上的空隙从而使固体颗粒不能通过滤布,此时的液体就会变得清澈。
2、在恒定过滤中,初始阶段为什么不采取恒定操作?答:因为刚开始时要生成滤饼,等滤饼有一定厚度之后才能开始等压过滤。
3、恒压过滤时,随着过滤时间的增加,过滤速率如何变化?答:因为随着时间的推移,滤饼不断变厚致使阻力逐渐增加,因而过滤速率逐渐变小。
4、如果滤液的粘度比较大,你考虑用什么方法改善过滤速率?答:(1)使用助滤剂,改善滤饼特性;(2)加热滤浆,降低滤液粘度;(3)使用絮凝剂,改变颗粒聚集状态;(4)限制滤饼厚度,降低过滤阻力、5、恒压过滤时,欲增加过滤速率,可行的措施有哪些?A.添加助滤剂B.控制过滤温度C.选择合适的过滤介质D.控制滤饼厚度6、当操作压强增大一倍时,其K值是否也增大一倍,是得到同样的过滤量时,其过滤时间是否缩短一半?答:不是的,dv/dθ=A2ΔP/μrv(v+ve), dv/dθ是代表过滤速率,它随着过滤的进行,它是一个逐渐减少的过程,虽然ΔP增大一倍,表面上是时间减少一倍,但过滤速率减少,所以过滤得到相同的滤液,所需的时间不是原来的一半,比一半要多。