从博弈论角度看古诺模型
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用【摘要】古诺模型是博弈论中的经典模型之一,通过分析双方角色和策略的选择,可以得出纳什均衡的解。
纳什均衡是指在博弈中每个参与者采取最佳应对策略的状态,使得没有一个参与者可以通过改变自身策略来获得更高的收益。
通过计算纳什均衡,可以确定在古诺模型中各方的最优策略选择。
古诺模型在博弈论中有着广泛的应用,能够描述各种决策情形,并帮助分析各方的利益冲突。
古诺模型也存在局限性,例如假设信息完全对称等问题。
纳什均衡的意义和应用前景则在于帮助理解博弈中的策略选择规律,为实际决策提供理论指导。
通过深入研究古诺模型和纳什均衡的概念与应用,可以更好地理解博弈论在现实中的应用。
【关键词】关键词:古诺模型、纳什均衡、博弈论、角色与策略、计算方法、局限性、意义和应用前景。
1. 引言1.1 古诺模型的基本概念古诺模型的基本概念是现代博弈论的基础之一。
古诺模型是由约翰·冯·诺依曼和奥斯卡·摩根斯特恩在20世纪40年代提出的博弈论模型,被广泛应用于经济学、政治学、生物学等领域。
古诺模型主要研究多方参与的博弈中的决策问题,其基本假设是参与者都具有理性并追求最大化自身利益。
在古诺模型中,参与者被称为玩家,每个玩家有自己的策略空间和支付函数。
策略空间是玩家可以选择的所有可能行动,支付函数则是描述了每个玩家在不同策略组合下所获得的收益。
古诺模型中的策略可以是纯策略,即玩家直接选择一个确定的行动,也可以是混合策略,即以一定概率选择不同的纯策略。
通过分析古诺模型中各个玩家的策略选择和收益情况,可以得到博弈的纳什均衡。
纳什均衡即在一个博弈中,每个玩家选择的策略都是最优的,给定其他玩家的策略时,自己没有动机单方面改变策略。
纳什均衡是古诺模型中的一个重要概念,也是博弈论中的核心内容之一。
1.2 纳什均衡的概念纳什均衡是博弈论中一个重要的概念,它由约翰·纳什于1950年提出。
在一个博弈中,如果每个参与者都选择了最优的策略,且已知其他人的选择情况下仍然坚持自己的选择,那么这种情况就被称为纳什均衡。
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用古诺模型是博弈论的重要模型之一,主要用于研究多人博弈中的策略选择和均衡点。
该模型是由约翰·冯·诺依曼和奥斯卡·摩根斯坦于1944年提出的,对于博弈论的发展起到了重要的推动作用。
在古诺模型中,有限个玩家通过选择各自的策略来参与博弈,每个玩家的收益取决于自己和其他玩家的策略组合。
在古诺博弈中,玩家的策略选择是同时进行的,他们互相了解彼此且无法更改自己的策略。
每个玩家的目标是最大化自己的收益。
古诺模型的纳什均衡是指如果每个玩家的策略选择已经确定,其他玩家不会再改变自己的策略,即达到了一种稳定状态。
在纳什均衡中,每个玩家的策略是对其他玩家策略的最佳响应。
古诺模型的纳什均衡可以通过解游戏的最优化问题来求解。
具体来说,可以使用线性规划、动态规划等方法求解博弈的纳什均衡。
求解纳什均衡的方法有很多种,其中包括支持性极值法、最优化法、最小最大法等。
古诺模型的纳什均衡在实际应用中有很多重要的应用。
在经济领域,古诺模型可以用于研究市场竞争和价格政策。
通过分析不同市场参与者的策略选择,可以预测市场的均衡状态,并为政府和企业制定合适的政策和策略提供参考。
古诺模型还可以应用于研究环境资源管理和国际贸易问题。
在环境资源管理领域,通过分析不同国家或地区的资源利用策略,可以评估资源的可持续利用性并提出管理建议。
在国际贸易领域,可以通过分析不同国家的贸易政策和消费者偏好,预测国际贸易模式的变化,并为政策制定者提供指导。
古诺模型还可以应用于社会科学、政治科学等领域的研究。
在这些领域中,古诺模型可以用来分析不同行为者之间的互动关系,预测社会行为的变化,并为决策者提供合理的决策依据。
古诺模型是研究多人博弈中策略选择和均衡点的重要工具。
通过分析不同玩家之间的互动关系,可以预测博弈的结果,并为政策制定者提供指导。
其应用广泛,并在经济学、环境资源管理、国际贸易等领域发挥重要作用。
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用古诺模型是经济学上的一个重要模型,主要用于研究博弈理论中的合作与竞争关系。
它是由约翰·古诺在20世纪50年代提出的,被广泛应用于市场竞争、产业结构、国际贸易和战略决策等领域。
在古诺模型中,参与者做出决策时考虑其他参与者的行为,从而达到最优化的结果。
在这篇文章中,我们将对古诺模型的纳什均衡及其应用进行浅析。
我们需要了解一下古诺模型中的一些基本概念。
在古诺模型中,存在若干个互相竞争的参与者,他们在做出决策时考虑的是整体的最优化结果。
每个参与者都有自己的收益函数,它描述了参与者的决策与最终的收益之间的关系。
参与者的决策是基于其他人的行为来做出的,这就引出了博弈论中的概念——纳什均衡。
纳什均衡是指博弈论中一种非合作博弈的解,它是在每个参与者都了解其他参与者的策略后,做出的最优决策组合。
在古诺模型中,纳什均衡被用来分析参与者之间的策略选择,从而找到一种稳定的状态,使得参与者之间都没有动机采取其他的策略。
在纳什均衡下,每个参与者都采取了最优的策略,不会改变自己的决策,因为改变策略会使得自己的收益变得更差。
古诺模型的纳什均衡可以通过数学的方法来求解。
一般来说,可以使用微积分和最优化理论来求解收益函数的最大值或最小值,从而得到纳什均衡点。
在求解过程中,需要考虑到参与者之间的互动关系,因为每个参与者的决策都会影响其他参与者的决策,从而影响整体的结果。
古诺模型的纳什均衡在实际应用中有很多场景。
在市场竞争中,不同企业之间存在竞争与合作的关系,它们在制定价格与生产数量时都会考虑到其他企业的行为。
通过古诺模型的纳什均衡分析,可以找到一种稳定的市场状态,使得各个企业都能够获得最大的利润。
古诺模型的纳什均衡也被应用于国际贸易和产业结构的研究中。
在国际贸易中,不同国家之间存在着资源配置与市场竞争的关系,通过纳什均衡分析可以找到最优的贸易政策,实现国际贸易的平衡和稳定。
在产业结构研究中,古诺模型的纳什均衡可以帮助我们分析不同产业之间的竞争关系,找到达到最优产业结构的方式。
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用古诺模型是经济学中一个重要的模型,用来描述竞争中的企业行为和市场结果。
纳什均衡则是博弈论中的一个概念,用来描述博弈中的均衡状态。
本文将从古诺模型的基本理论入手,浅析古诺模型的纳什均衡及其在实际应用中的意义和影响。
古诺模型是以意大利经济学家安托尼奥·多梅尼科·古诺(Antonio Domenico Guglielmo)的名字命名的,他于1950年提出了这一模型。
这一模型是用来描述寡头垄断市场的情况,假设市场上只有少数几家企业,它们在定价上有一定的影响力,但并不足以操纵整个市场。
每个企业的目标是最大化利润,但它们需要考虑到其他企业的行为对自己的影响,因此在定价策略上需要谨慎权衡。
在古诺模型中,每家企业都面临着一个类似于囚徒困境的局面:如果它们选择降低价格以获得更多市场份额,其他企业可能也会跟随降价,最终导致市场价格下跌,利润减少;但如果它们选择提高价格以获得更多利润,其他企业也可能会跟随提价,最终导致市场需求下降,利润减少。
这种情况下,每家企业需要深思熟虑自己的定价策略,以达到一个最优的利润水平。
古诺模型的核心是纳什均衡的概念,这是博弈论中的基本概念。
在一个博弈中,如果每个参与者都能对其他参与者的策略作出最佳反应,且没有参与者有动机改变自己的策略,那么这种状态就是一个纳什均衡。
在古诺模型中,就存在这样一种纳什均衡状态,即每家企业都选择了最优的定价策略,使得任何一家企业改变策略都无法获得更多的利润。
在古诺模型中,纳什均衡的存在性得到了充分的证明,并且在实际市场中得到了验证。
很多实际的市场情况都可以用古诺模型进行描述,比如航空、银行、石油等行业。
在这些行业中,通常只有几家公司竞争,它们之间存在一种类似于古诺模型的竞争关系。
通过对这些市场的研究,我们可以发现,市场上的企业通常会处于一种稳定的纳什均衡状态,它们的定价策略在一定程度上形成了一种均衡状态,不愿意轻易改变。
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用古诺模型是博弈论中的经典模型之一,它由著名的博弈论学者约翰·福纳·冯·诺依曼和奥斯卡·摩根斯特恩于1944年提出。
古诺模型以两个博弈者的博弈为研究对象,通过博弈者的行为、利益和策略选择来分析博弈的结果。
在古诺模型中,博弈的结果不仅取决于自身的行为,还取决于对手的行为,因此需要通过纳什均衡来确定理性博弈者的最佳策略选择。
本文将对古诺模型的纳什均衡及其应用进行浅析,以便更好地理解和应用古诺模型于实际问题中。
一、古诺模型的基本假设古诺模型是以两个博弈者之间的非零和博弈为研究对象,基本假设包括:1. 双方博弈者可以选择多种策略,并且博弈者对自己的利益有明确的认知。
2. 双方博弈者的策略选择是独立的,即双方博弈者的策略选择不受他人的影响。
3. 双方博弈者的利益是一致的,即博弈者在博弈过程中都是理性的,追求自己的最大利益。
4. 古诺模型是动态博弈,双方博弈者在博弈的每一步都可以观察到对方的选择,并根据对方的选择做出自己的决策。
二、古诺模型的纳什均衡古诺模型的核心概念是纳什均衡,它指的是在博弈的过程中,博弈者都做出了最优的决策,对于任意一名博弈者而言,如果对方已经做出了最优的决策,那么自己再次修改策略是没有意义的。
具体来说,古诺模型的纳什均衡有以下几种情形:1. 博弈者的选择均在对方已知的条件下,对方已能最大化其利益;2. 博弈者的选择是最佳响应,即在对方的最优选择下,能使自己达到最大化利益的选择;3. 博弈者的选择是稳定的,在对方的最佳选择下,自己不愿改变选择。
对于古诺模型而言,纳什均衡是一种理性选择的结果,是博弈者在充分考虑对方可能的策略选择后做出的最优决策。
纳什均衡的重要性在于它能够帮助博弈者找到最佳的策略选择,使博弈者能够根据对方的行为来优化自己的利益。
三、古诺模型在实际中的应用古诺模型在实际中的应用非常广泛,涉及到经济、政治、军事、科技等各个领域。
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用古诺模型是由著名经济学家John Nash在20世纪50年代提出的,被广泛应用于博弈论和经济学领域。
它是一种简化的博弈理论模型,用来描述多个决策者在特定情况下做出决策的过程。
纳什均衡是古诺模型中的重要概念,指的是在一种特定策略下,每个决策者都采取最优的决策,并且在其他决策者的策略给定的情况下,他们的策略不会改变。
古诺模型主要包括两个核心元素:参与者和策略。
参与者是指在博弈中的个体或者团体,策略是指参与者在特定情况下可能采取的行动。
在古诺模型中,参与者往往是理性的,他们会根据自己的利益来选择策略。
而纳什均衡则是在这种理性的前提下,每个参与者都选择出自己的最佳策略,且在其他参与者给定的策略下,他们的策略不会改变。
这种状态下,任何一方的单方面改变策略都不会让他获得更好的结果,因此这种状态被称为纳什均衡。
古诺模型的纳什均衡可以应用于许多实际情境中,比如拍卖市场、价格竞争、资源分配等。
在拍卖市场中,卖家和买家之间的竞争和博弈过程可以用古诺模型进行描述,通过分析纳什均衡,可以得出每个参与者最优的策略选择,从而推断出可能的拍卖结果。
在价格竞争中,企业之间为了争夺市场份额会进行价格战,古诺模型可以用来分析在不同策略下各企业的收益和利润情况,从而指导它们进行最优的决策。
在资源分配中,不同部门或者利益相关方之间往往存在竞争和合作的情况,古诺模型可以帮助分析各方之间的策略选择和可能的结果,从而指导资源的合理分配和利益的最大化。
古诺模型虽然在理论上提出了一种理性决策的博弈模型,但在实际应用中也存在一些局限性。
它假设所有的参与者都是理性的,即他们都会做出最优的策略选择。
在实际情况中,有些参与者可能受到其他因素的影响,比如情绪、认知偏差等,导致他们的决策不一定符合理性。
古诺模型只能描述静态的博弈过程,在动态博弈中往往需要考虑时间因素和信息的不完全性,这就需要借助其他更复杂的博弈模型来进行描述。
古诺模型在应用过程中需要准确地描述参与者的利益结构和策略空间,这在一些情况下可能非常困难,比如在复杂的经济系统中,参与者之间的关系可能非常复杂,很难准确地描述出他们的利益结构和策略选择。
博弈论古诺模型心得

博弈论古诺模型心得
古诺模型是一种用于分析寡头市场的博弈理论模型。
通过对古诺模型的学习,我得到了一些心得:
首先,古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去,这意味着在寡头市场中,厂商的策略选择会对市场均衡结果产生重要影响。
其次,古诺模型反映了市场中企业之间的竞争关系。
在模型中,总需求是固定的,但厂商供应的总量低于总需求,因为每个厂商都试图最大化自己的利润。
这种竞争关系导致了市场上的供需不平衡,从而影响了市场价格和企业利润。
最后,古诺模型也提醒我们要重视市场中的竞争关系。
企业应该积极应对市场竞争,通过优化产品质量、降低生产成本、创新商业模式等方式,提高自身的竞争力。
总的来说,古诺模型是一个非常有用的理论工具,它帮助我们更好地理解寡头市场中的竞争和策略选择问题。
在实际应用中,我们可以根据具体情况,对古诺模型进行适当的调整和扩展,以更好地分析和解决现实问题。
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用古诺模型是博弈论中的一种经典均衡概念,由经济学家John F. Nash在1950年提出。
该模型主要用于研究多人博弈中的策略选择及结果分配问题。
古诺模型的纳什均衡是指,在一个博弈中,每个参与者根据其他参与者的策略选择,都无法通过单方面改变策略来获得更好的收益。
以下将对古诺模型的纳什均衡原理进行简要分析,并探讨纳什均衡在实际应用中的意义。
在古诺模型中,有若干参与者,每个参与者都可以选择不同的策略。
对于每一个可能的策略组合,都存在一个对应的收益向量,表示每个参与者的收益情况。
纳什均衡是指在这个策略组合中,每个参与者都选择了最优策略,使得任何一个参与者都没有动力去改变自己的策略选择,以此获得更好的收益。
根据纳什均衡的定义,可以通过解方程组的方式来求解纳什均衡。
具体来说,对于每个参与者,他的策略选择应该使得其他参与者的选择对自己的收益没有影响,即在其他参与者选择不变的前提下,自己的收益最大化。
纳什均衡在实际应用中有着广泛的意义。
纳什均衡可以用于分析市场竞争中的策略选择。
在竞争激烈的市场中,各个参与者可以通过选择合适的策略来获得较大的市场份额和利润。
通过研究纳什均衡,可以找到市场竞争中各个参与者的最佳策略选择,为企业制定市场营销策略提供参考。
纳什均衡还可以应用于国际政治和军事领域的分析。
在多国间的冲突和合作中,各个国家的战略选择直接影响到自己的利益。
纳什均衡可以用于研究多国间的策略博弈,分析各个国家在不同的策略选择下可能获得的收益,以及各个国家是否有动力去改变自己的策略。
纳什均衡还可应用于生态学领域的研究。
在物种的生存与繁衍过程中,不同物种之间存在竞争和合作关系。
通过研究纳什均衡,可以分析物种之间的竞争和合作策略选择,为保护生物多样性和维持生态平衡提供理论指导。
古诺模型的纳什均衡是博弈论中的一个重要概念,有着广泛的应用价值。
通过研究纳什均衡,可以帮助我们理解和分析各种博弈场景中的策略选择和结果分配问题,为决策者提供合理的参考和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从博弈论角度看古诺模
型
WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】
博弈论的观点看古诺模型
罗思蕴
(华中师范大学数学与应用数学系,武汉430079)
摘要:运用博弈论的研究方法,对古诺模型的几种变式进行分析,给出模型解法的代数表达式,并对结果进行适当的对比分析,最后总结出不同模型对结论的改变情况。
关键词:古诺模型纳什均衡完全信息不完全信息静态博弈动态博弈
古诺模型(Cournot model)是博弈论中最具有代表性的模型之一,也是是纳什均衡最早的版本。
它是法国经济学家古诺(Augustin Cournot)在1938年出版的《财富理论的数学原理研究》一书中最先提出的。
而古诺的定义比纳什的定义早了一百多年,足以体现博弈论这样一个学科是深深扎根于经济学的土壤中的。
从经济学的角度,它的研究价值在于古诺模型是介于两种极端状况完全竞争和垄断之间。
在古诺生活的时代,大多数市场都只有少数的厂商经营,所以这个模型在当时是极具现实意义的。
随着时间的推移,古诺模型也演变出了各种不同的版本。
如果从博弈论的角度分析,有四种情况极具代表性:完全信息静态博弈的古诺模型、不完全信息静态博弈的古诺模型、完全且完美信息动态博弈的古诺模型、无限次重复博弈的古诺模型。
1 经典古诺模型
古诺模型最初的形态是来自于经济学的。
在经济学中,寡头的概念是指那种在某一产业只有少数几个卖者的市场组织形式。
古诺模型对寡头具有如下的基本假设。
一,
假定一个产业只有两个寡头,每个寡头生产同质产品,并追求利润最大化。
二,两个寡头之间进行的是产量的竞争而不是价格竞争,且产品的价格依赖于两者生产的产品总量。
三,寡头之间无勾结行为。
四,每个生产者都把对方的产出水平视为定值。
五,边际成本为常数。
在经典的古诺模型中,每个企业具有相同的不变单位成本:
需求函数为:
第i个企业的利润为:
最优化的一阶条件为:
反应函数为:
解得纳什均衡为:
每个公司的利润为:
古诺模型是在假定寡头具有完全信息的基础上导出的。
在这一均衡中,每个寡头都可以准确猜测对手的产量,从而选择自己的最大产出。
最重要的是,古诺均衡解在寡头无勾结的假定下求出的。
如果考虑寡头之间相互勾结而达到均衡的情况,那么经过计算可以得到实际产出水平与实际价格上等于完全垄断条件下达到的产量与价格。
更广泛的,考虑无勾结寡头市场、垄断市场、自由市场,可以得到:无论是产量还是价格,无勾结寡头市场都是处于中间的位置。
也就是说,如果寡头市场不存在勾结的行为,其效率高于完全垄断,低于完全竞争。
2 博弈分类下的两种古诺模型
不完全信息静态博弈的古诺模型
完全信息静态博弈的古诺模型即经济学中最经典的形式,它假设了厂商相互完全
了解对方的产量和成本,而市场价格又是统一的,因此,博弈双方的得益情况是共同知识,没有任何秘密。
然而,在现实经济中无论是相互竞争的厂商亦或是相互信任的厂商之间,为了各自的利益往往都会将自己生产销售的有关情况作为商业秘密加以保密(这样做是否能达到最大利益还有待商榷),其他厂商很难了解真实情况。
因此,完全信息静态博弈的古诺模型的假设可能与现实情况并不完全一致,现实的寡头市场产量博弈模型中各博弈方的得益根本不可能是共同知识。
例如在两厂商模型中,只要一个厂商对另一个厂商的生产成本不清楚,则前一个厂商就不可能完全清楚另一个厂商在各种双方产量组合下的得益,前一个厂商就不可能是完全信息。
所以,有必要讨论不完全信息静态博弈古诺模型。
先假定厂商1的平均成本C1是共同知识,而厂商2的平均成本有两种类型:高成本C2H或低成本C2L;厂商2知道自己是哪种成本,而厂商1不知道,C2= C2H的概率为θ,C2= C2L的概率为(1-θ)。
由已知条件可求得:
μ2= q2(a- q1- q2)-C2H q2
或μ2= q2(a-q1-q2)-C2L q2
为了利润最大化,对上述两式求导且令导数等于0。
得:
q2=(a-C2H-q1)/2
或q2=(a-C2L-q1)/2
也就是说,当C2为高成本时,厂商2的最优产量为
q2= (a-C2H-q1)/2;
当C2为低成本时,厂商2的最优产量为
q2= (a-C2L-q1)/2
即厂商2的产量不仅依赖厂商1的产量,还依赖于自己的成本类型。
由于厂商1不知道厂商2的真实类型,从而不知道厂商2的最优产量,因此,厂商1的期望利润为:
Eμ1= q1(1-q1- q2H)θ+[q1(1- q1- q2L)](1-θ)
令:
(Eμ1)'=0,
得:
q1= [1- q2L(q2L- q2H)θ]/2。
这里值得质疑的是:是不是公司所有的信息都是不公布为好?答案是否定的。
在不完全信息静态博弈下的古诺模型中,就有最好的证明。
经过简单的计算可以发现,如果本公司的成本更低是应该告诉对方的,这样根据两个公司产量的函数表达,对方公司的产量应该下降,而本公司增加产量,这样就可以达到利润最大化。
但是实际生活中还有这样一种情况不能忽视,即一旦低成本的公司公布了自己的成本,那么没有公布成本的公司为自动被认为是高成本的,那么为了避免被误认为是高成本的公司,那么一些高成本的公司也不得不公布自己的成本,这样一来,市面上的公司成本都得到了公布,那么古诺模型又会回到原来最经典的样子。
所以事实证明,缺少信息也是一种信息,当然前提是信息需要被核实。
完全且完美信息动态博弈的古诺模型
经典古诺模型中讨论的寡头还需要有较强的均衡性,也就是说寡头之间有能力相互抗衡。
这样,即使自己公司由于某种原因偏离最佳方向,依然可以承担一切后果。
不过,现实生活中还有这样一种情况,那就是两个寡头之间有一方较强。
那么他们的产量决策是由较强的一方先进行选择,而较弱的一方则根据较强的一方的产量决
定自己的产量。
由于这两个厂商的选择不仅有先后之分,而且后选择的厂商在选择时知道前一个厂商的选择,因而是一个动态博弈的问题。
设模型中的两个寡头,分别为厂商 1 和厂商 2,他们的策略空间都是[0,Q max]中的所有实数,其中 Q max可看作不至于使价格降到亏本的最大限度的产量;厂商 1 是领头厂商,因此他先选择,厂商 2 追随其后;设价格函数为P=P (Q)=a-Q,(其中
Q=q1+q2),两厂商的边际生产成本为c1,c2,且没有固定成本。
由以上假设,得出两厂商的得益函数为:
根据逆推归纳法,先分析第二阶段厂商2的决策。
令:
得:
再令:
厂商1 在第一阶段选择(a-2 c1c2)/2 单位产量,厂商2 在第二阶段选择(a-3c2+2c1)/4 单位产量,这是运用逆推归纳法分析的策略组合,也是这个动态博弈的唯一子博弈纳什均衡。
与经典的古诺模型相比完全且完美信息动态博弈的古诺模型计算出来的产量要大,价格要低,而且总收益也小于经典的古诺模型。
不过值得一提的是,厂商1的收益是大于古诺模型中两个厂商的收益。
3 古诺模型的应用
至于古诺模型的现实意义,对于处于经济高速发展但经济环境并不健康的中国来说,具有很高的借鉴价值。
虽然自改革开放以来,中国的经济注入了很多民间的新鲜血液,但是某些市场依然由国家全面把持,或者市场的准入门槛过高,造成一些国有企业充当寡头,甚至垄断整个市场,这样还是在无形当中降低了市场的效率。
如何在这
种不利的条件下,得到最大的收益,还是需要仔细对古诺模型进行分析。
例如,随着中国电力市场改革的深入发展,电力工业出现了产权多元化的局面,有国家、集资、股份、合资、外资等多种办电方式。
各发电商都希望利用自己拥有的信息,合理安排自己的发电计划,合理申报电力价格,以获得最大的利润。
电力市场不是自由竞争的市场,而是具有寡头垄断性质的市场,竞争主要在于少数寡头之间。
因此利用古诺模型分析发电厂商的定价行为,找出其最优的均衡价格,具有合理性。
4 结语
古诺模型是经济学中一个相当重要的模型,在博弈论中根据博弈情况的不同有也很多变式。
这样一个例子足以体现出博弈论与经济学密不可分的关系。
但是博弈论作为一名独立出来的学科,给笔者一个特别的感觉:思想大于计算。
书本中在介绍博弈问题时,往往花大量的精力计算纳什均衡,却忽略了博弈方的社会性。
这也就导致计算出了的纳什均衡与实际生活中的实验结论向左。
所以,如果想让知识服务于实际生活,就需要与时俱进的改变知识的结构以及侧重点。
参考文献:
[1]谢识予.经济博弈论[M].上海:复旦大学出版社,2009.
[2]朱善利.微观经济学[M].北京:北京大学出版社,2001.
[3]张旭平林永.古诺模型的演化分析[J].北方经济,2010(02).
[4]王礼刚杨红.完全信息与不完全信息下的古诺模型之比较[J].西北民族大学学报(自然科学版),2005(12).。