太阳能光伏电池实验
太阳能光伏电池实验报告肖克莱公式

太阳能光伏电池实验报告肖克莱公式实验目的:通过实验了解太阳能光伏电池的工作原理,探究太阳能光伏电池的发电效率和光强之间的关系。
实验材料:1. 太阳能光伏电池板2. 光强计3. 变压器4. 直流电压表5. 直流电流表6. 实验电路板7. 示波器8. 太阳光灯实验原理:太阳能光伏电池是一种将太阳辐射能转化为电能的装置,其工作原理是根据光电效应。
当太阳辐射能照射到光伏电池上时,光子会激发电池内的电子,使其脱离原子,形成电荷对,并通过电池中的导线产生电流。
肖克莱公式是描述光伏效应的方程,其表示为:I = I光 - I0 × (exp(qV/(kT)) - 1)其中,I为光伏电池输出电流,I光为光照射到光伏电池上的光强,I0为反向饱和电流,q为电荷量,V为光伏电池的输出电压,k为玻尔兹曼常数,T为温度。
实验步骤:1. 将太阳能光伏电池板与实验电路板连接,并将光强计插入电路中。
2. 通过直流电压表和直流电流表分别测量光伏电池的输出电压、输出电流,并记录下来。
3. 调节太阳光灯的距离,改变光照强度,并记录不同光强下的输出电流和输出电压。
4. 根据测量结果,计算光伏电池的发电效率,并绘制光强和发电效率的关系曲线。
5. 使用示波器测量光伏电池的输出电压和输出电流的波形,并分析波形特点。
实验结果:根据测量的数据,计算出光伏电池在不同光强下的发电效率,并绘制出光强和发电效率的关系曲线。
实验结论:通过实验,我们可以了解到光伏电池的工作原理和发电效率与光强之间的关系。
在一定范围内,光伏电池的发电效率随着光强的增加而增加,但当光强达到一定值后,发电效率趋于稳定。
同时,通过示波器观察光伏电池输出波形特点,可以进一步了解光伏电池的性能和工作状态。
太阳能光伏电池的性能测试与分析

太阳能光伏电池的性能测试与分析太阳能光伏电池是利用太阳能将光转化为电能的一种设备。
为了确保电池能够正常工作,必须进行性能测试和分析。
本文将探讨太阳能光伏电池的性能测试和分析方法,以及最近光伏电池技术的发展。
一、太阳能光伏电池的性能测试太阳能光伏电池的性能测试主要包括以下几个方面:电池有效面积、开路电压、短路电流、填充因子、光强度及电池效率等。
其中,电池有效面积是指电池实际接收光照的面积,可以通过手工或者机器进行测量。
开路电压是指在没有负载的情况下电池输出的电压。
短路电流是指在电池短路的情况下,电池输出的最大电流。
填充因子是功率输出最大时电池电压和电流之比。
光强度测试是指在不同强度的光照下,电池的输出电流和电压值。
电池效率是指光伏电池对光能的转化效率,通常使用标准测试条件下的电池效率进行比较分析。
二、太阳能光伏电池的性能分析在太阳能光伏电池的性能分析中,需要分别从开路电压、短路电流、填充因子和效率等角度进行分析。
首先,分析开路电压。
太阳能光伏电池的开路电压与光照强度有关,正比于光照强度的自然对数。
因此,当光照强度增加时,电池的开路电压也会相应增加。
其次,分析短路电流。
电池的短路电流是受到介质、电池尺寸、灯光强度、材料种类以及工艺等多种因素的影响。
较大的污染物和障碍会显著降低电池的短路电流,从而影响电池的工作效率。
再次,分析填充因子。
填充因子是太阳能光伏电池性能的重要指标,它直接反应了电池的转换效率和性能。
因此,通过降低电池的填充因子可以有效提高电池的效率。
最后,分析电池效率。
电池效率是评估太阳能光伏电池性能的重要参数。
目前比较常用的测量电池效率方法是使用标准测试条件下的效率指标进行比较。
该方法中,标准测试条件是指电池工作条件基本相同且固定不变的试验条件。
三、太阳能光伏电池技术的发展太阳能光伏电池的技术发展目前趋向于提高光电转换效率、提高光衰减以及降低制造成本等方面。
目前,太阳能光伏电池的主要技术包括单晶硅、多晶硅、非晶硅、有机太阳能电池以及钙钛矿太阳能电池等。
太阳能光伏电池检验测试结果与分析

由此可见随着温度升高,反向饱和电流随着指数因子 迅速增大。且带隙越宽的半导体材料,这种变化越剧烈。
半导体材料禁带宽度是温度的函数 ,其中 为绝对零度时候的带隙宽度。设有 ,Vg0是绝对零度时导带底和价带顶的电势差。由此可以得到含有温度参数的正向电流电压关系为:
显然正向电流在确定外加电压下也是随着温度升高而增大的。
1、光源与太阳能电池部分
采用高压氙灯光源,高压氙灯具有与太阳光相近的光谱分布特征。光源标称功率750W。
2、光路部分
本设备光路简洁,有光源、滤色片、光强探测器构成。滤色片用于研究近似单色光作用下太阳能的光谱响应特性。光强探测器标定入射光强度。
3、外电路
外电路包括光源驱动电路、温度控制电路和测试分析电路三部分。光源驱动电路用于氙灯的点燃和轴流风冷。温控电路用于太阳能电池片的温度控制,加热采用电阻丝加热,冷却采用两级半导体冷堆方式。可在60℃~150℃范围内对样品进行特性测量。测试分析电路提供测试分析仪表的工作电压。
2、太阳能电池无光照情况下的电流电压关系-(暗特性)
太阳能电池是依据光生伏特效应把太阳能或者光能转化为电能的半导体器件。如果没有光照,太阳能电池等价于一个pn结。通常把无光照情况下太阳能电池的电流电压特性叫做暗特性。简单的处理方式是把无光照情况下的太阳能电池等价于一个理想pn结。其电流电压关系为肖克莱方程:
太阳能光伏电池测试及分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y近代光学创新实验实验名称:太阳能光伏电池测试与分析院系:专业:姓名:学号:指导教师:实验时间:哈尔滨工业大学一、实验目的1、了解pn结基本结构和工作原理;2、了解太阳能电池的基本结构,理解工作原理;3、掌握pn结的IV特性及IV特性对温度的依赖关系;4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能电池特性的影响;5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分析实验数据与理论结果间存在差异的原因。
二、实验原理1、光生伏特效应半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。
半导体材料具有负的带电阻温度系数。
从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。
通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。
基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。
常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。
光生伏特效应是半导体材料的一种通性。
当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。
如果构成适当的回路就会产生电流。
这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。
非均匀半导体就是指材料内部杂质分布不均匀的半导体。
pn结是典型的一个例子。
N型半导体材料和p型半导体材料接触形成pn结。
pn结根据制备方法、杂质在体内分布特征等有不同的分类。
太阳能光伏电池的光照辐射与发电量测试

太阳能光伏电池的光照辐射与发电量测试太阳能光伏电池是一种能够将太阳光转化为电能的设备,随着环保意识的提升和清洁能源的需求不断增加,太阳能光伏发电技术也得到了广泛的关注和应用。
其中,光照辐射是太阳能光伏发电系统中至关重要的一环,它直接影响着电池组件的发电效率和总体发电量。
因此,对太阳能光伏电池的光照辐射与发电量进行测试和研究具有重要意义。
一、太阳能光伏电池的工作原理太阳能光伏电池是利用半导体材料的光伏效应将阳光直接转化为电能的装置。
当阳光照射到太阳能光伏电池上时,光子激发了半导体材料中的电子,使其脱离原子成为自由电子,并在电场的作用下形成电流。
这样就实现了太阳能的直接转换为电能,从而驱动电器设备工作。
二、太阳能光伏电池的光照辐射测试方法1.光照强度测试光照强度是指单位面积上单位时间内所接收到的太阳辐射能量,通常用瓦特每平方米(W/m²)来表示。
通过在太阳能光伏电池组件表面安装光照强度传感器,可以实时监测所接收到的太阳光照强度,并进行记录和分析。
2.光谱分析太阳光是由不同波长的光子组成的,而太阳能光伏电池只能吸收特定波长范围内的光子来进行能量转换。
因此,光谱分析可以帮助我们了解太阳光的光谱组成,从而更好地设计和优化太阳能光伏电池组件的结构和材料。
3.日照时间测量日照时间是指太阳光直射地面的时间,它直接影响着太阳能光伏电池的发电效率。
通过记录每天的日照时间,并与实际发电量进行对比分析,可以找出日照时间和发电量之间的相关性,为进一步提高太阳能电池的发电效率提供参考依据。
三、太阳能光伏电池发电量测试与分析1.影响因素分析太阳能光伏电池的发电量受多种因素影响,包括光照强度、光谱组成、温度、阴影遮挡等。
通过对这些影响因素进行综合分析,可以找出对太阳能光伏电池发电效率影响最大的因素,并进行针对性的改进和优化。
2.发电量预测模型建立建立太阳能光伏电池发电量的预测模型是提高发电效率和减少能源浪费的重要手段。
太阳能光伏电池实验

0
图1.单晶硅太阳能电池板(25℃)实际测量得到的暗特性I-V曲线
图2.不同温度时单晶硅太阳能电池片的输出伏安特性
亮特性
光电流IL在负载上产生电压降,这个电压降可以使pn 结正偏。如图3所示,正偏电压产生正偏电流IF。在 反偏情况下,pn结电流为:
从亮特性伏安曲线可直接读出
图5.实测单晶硅太阳能电池板输出伏安特性曲线
太阳能电池的效率图6.最大源自率矩形太阳能电池的光谱响应
【1】近代物理实验,西北大学物理学系 【2】安毓英,刘继芳光电子技术(第三版),电子 工 业出版设,北京:117-119,136-141 【3】茅倾青,潘立栋,陈骏逸等,太阳能电池基本特性测 定实验,物理实验[J],2004,24(11):6-9 【4】周孑民,太阳能光伏电池特性实验研究,能源与 环境[J],2011,4:72-73
1.光生伏特效应 2.无光情况下的电流电压关系 (暗特性) 3.光照情况下的电流电压关系 (亮特性) 4.太阳能电池的效率 5.太阳能电池的光谱响应 6.参考文献
光生福特效应
暗特性
无光照情况下的太阳能电池等价于一个理想pn结, 其电流电压关系为肖克莱方程:
pn结的单向导通性 (整流特性): 暗条件下太阳能 电池IV曲线不对称
太阳能电池样板-实验报告

一、测量光照状态下太阳能电池的短路电流Isc,开路电压Uoc、最大输出功率Pmax,最佳
根据图示曲线,找出Pmax=6.664mW,由公式Ff=Pmax/(IscUoc)可得:Ff=0.58
二、测量太阳能电池无光照的伏安特性
图二正向偏压与电流关系图
根据实验数据处理要求,作出I-U关系曲线,经过拟合,得出相应的指数函数如图所示。
取拟合曲线上两点,根据公式(1)计算I0,取点(0.41,194.04)和(0.57,735)
最终解得I0=1.13uA
三、测量太阳能电池短路电流、开路电压与光强关系
图三不同光强下U-I关系曲线
由图三可知,随光强增大,开路电压和短路电流也不断增大,但趋于平缓,光强很大时,开路电压与光强几乎无关。
四、不同光照角度下的开路电压与短路电流
由图可知随角度增大,太阳能电池功率逐渐减小,角度增大越多,功率较小速度越快。
由表格可知,串联电压为两电池板电压之和,适合较高电压场合。
并联时短路电流为两板之和,适用于较高电流的场合。
太阳能电池的暗伏安特性与光谱特性实验

四、太阳能光伏电池暗伏安特性与光谱特性实验1.实验目的1.了解太阳能光伏电池暗伏安特性2.了解太阳能光伏电池光谱特性3.掌握太阳能光伏电池的暗伏安特性曲线绘制2.实验原理(1)光伏电池暗伏安特性光伏电池暗伏安特性是指无光照射时,流经太阳能电池的电流与外加电压之间的关系。
太阳能电池的基本结构是一个大面积平面P-N结,单个太阳能电池单元的P-N结面积已远大于普通的二极管。
在实际应用中,为得到所需的输出电流,通常将若干电池单元并联。
为得到所需输出电压,通常将若干已并联的电池组串连。
因此,它的伏安特性虽类似于普通二极管,但取决于太阳能电池的材料,结构及组成组件时的串并连关系。
(2)光伏电池光谱特性太阳能电池的光谱特性是指太阳能电池随能量相同但波长不同的入射光而变化的关系。
在太阳能电池中只有那些能量大于其材料禁带宽度的光子才能在被吸收时在光伏材料中产生电子空穴对,而那些能量小于禁带宽度的光子即使被吸收也不能产生电子空穴对(它们只能是使光伏材料变热)。
光伏材料对光的吸收存在一个截止波长。
理论分析表明,对太阳光而言,能得到最佳工作性能的光伏材料应有1.5电子伏的禁带宽度,当禁带宽度增加时,被光伏材料吸收的总太阳能就会越来越少。
每种太阳能电池对太阳光都有自己的光谱响应曲线,它表明太阳能电池对不同波长光的灵敏度(光电转换能力)。
当日光照到太阳能电池上时,某一种波长的光和该波长的太阳能电池光谱灵敏度,决定该波长的光电流值,而总的光电流值是各个波长光电流值的总和。
3.实验内容与步骤(1)光伏电池暗伏安特性曲线绘制1)关闭模拟光源,将挡光板遮住电池组件A,调节直流恒压源电压到零点,用实验导线连结如图2-1所示电路,调节电阻箱的电阻至50欧姆(限流),旋转恒压源电压旋钮,间隔0.5V左右,记录一次电压、电流值。
图2-1光伏电池暗伏安特性正向测量电路2)将直流恒压源电压调到零,调换电池组件A的正负极,再间隔0.5V左右,记录电压、电流值。