应用多元统计分析之典型相关分析(doc 6页)

合集下载

应用多元统计分析习题解答典型相关分析Word版

应用多元统计分析习题解答典型相关分析Word版

第九章 典型相关分析9.1 什么是典型相关分析?简述其基本思想。

答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法。

用于揭示两组变量之间的内在联系。

典型相关分析的目的是识别并量化两组变量之间的联系。

将两组变量相关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系。

基本思想:(1)在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

即: 若设(1)(1)(1)(1)12(,,,)p X X X =X、(2)(2)(2)(2)12(,,,)q X X X =X 是两组相互关联的随机变量,分别在两组变量中选取若干有代表性的综合变量Ui 、Vi ,使是原变量的线性组合。

在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大。

(2)选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对。

(3)如此继续下去,直到两组变量之间的相关性被提取完毕为此。

9.2 什么是典型变量?它具有哪些性质?答:在典型相关分析中,在一定条件下选取系列线性组合以反映两组变量之间的线性关系,这被选出的线性组合配对被称为典型变量。

具体来说,()(1)()(1)()(1)()(1)1122i i i i i P PU a X a X a X '=+++a X()(2)()(2)()(2)()(2)1122i i i i i q qV b X b X b X '=+++b X在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大,则称(1)(1)'a X 、(1)(2)'b X 是(1)X 、(2)X 的第一对典型相关变量。

应用多元统计分析

应用多元统计分析

应用多元统计分析多元统计分析是一种应用广泛的统计方法,用于分析多个变量之间的关系和相互影响。

它可以帮助我们揭示数据背后的规律,并为决策提供科学依据。

在本文中,我们将介绍多元统计分析的基本概念、常用方法和实际应用。

多元统计分析的基本概念:多元统计分析是指同时考虑多个变量之间关系的统计方法。

在传统的统计分析中,我们通常只关注一个变量与另一个变量之间的关系,而忽视了其他因素对这种关系的影响。

而多元统计分析则能够考虑多个变量之间的复杂关系,帮助我们全面地理解数据的特征和规律。

常用的多元统计分析方法有:1. 主成分分析(Principal Component Analysis,简称PCA)主成分分析是一种降维技术,用于将高维数据转化为低维表示。

它通过线性变换将原始变量转换为一组互不相关的主成分,从而简化了数据的复杂性。

主成分分析可以帮助我们发现数据中的主要模式,降低变量之间的相关性,提高数据的解释能力。

2. 因子分析(Factor Analysis)因子分析是一种探索性的数据降维方法,用于发现数据隐藏的潜在因子。

它假设观测变量由少数几个潜在因子决定,并通过线性组合表示。

因子分析可以帮助我们理解多个变量之间的共同性,找到隐藏在数据背后的结构。

3. 聚类分析(Cluster Analysis)聚类分析是一种无监督学习方法,用于将观测对象划分为不同的类别。

它通过计算不同对象之间的相似度或距离,将它们分配到同一类别中。

聚类分析可以帮助我们发现数据中的自然分组结构,从而更好地理解和解释数据。

4. 判别分析(Discriminant Analysis)判别分析是一种有监督学习方法,用于确定一组变量的线性组合,可以最好地将不同类别的观测对象区分开来。

它可以帮助我们理解不同类别之间的差异,并通过构建分类模型进行预测。

多元统计分析的实际应用:多元统计分析在各个领域都有着广泛的应用。

以下是其中一些典型的应用场景:1. 社会科学研究:多元统计分析可以用于分析调查数据、人口统计数据等,揭示社会现象的规律和影响因素。

SPSS典型相关分析

SPSS典型相关分析
还可以得到每个典型变量V和第一组变量的相关系数 见表6以及每个典型变量W和第二组变量的相关系数 见表7.
表6
第18页/共23页
表7
从这两个表中可以看出,V1主要和变量hed相关 (0.99329),而V2主要和led(0.92484)及net (0.75305)相关;W1主要和变量arti(0.99696)及 man(0.92221)相关,而W2主要和com(0.81123) 相关;这和它们的典型系数是一致的。
表1 相关性的若干检验
第12页/共23页
表2给出了特征根(Eigenvalue),特征根所占的百分比 (Pct)和累积百分比(Cum. Pct)和典型相关系数(Canon Cor)及其平方(Sq. Cor)。看来,头两对典型变量(V, W) 的累积特征根已经占了总量的99.427%。它们的典型相 关系数也都在0.95之上。
第14页/共23页
表3 未标准化系数 表4 标准化系数
第15页/共23页
可以看出,头一个典型变量V1相应于前面第一个(也是最 重要的)特征值,主要代表高学历变量hed;而相应于前面 第二个(次要的)特征值的第二个典型变量V2主要代表低 学历变量led和部分的网民变量net,但高学历变量在这里起 负面作用。 从表4中可以得到第一变量的头三个典型变量V1、 V2、V3中的V1 和V2的表达式:
12.3 典型相关分析的实例分析
例12.1为研究业内人士和观众对于一些电视节目的观点 的关系,对某地方30个电视节目做了问卷调查并给出 了平均评分。观众评分来自低学历(led)、高学历(hed) 和网络(net)调查三种,它们形成第一组变量;而业内人 士分评分来自包括演员和导演在内的艺术家(arti)、发 行(com)与业内各部门主管(man)三种,形成第二组变 量。参加图12.1,数据间TV.Sav。

对应分析、典型相关分析、定性数据分析

对应分析、典型相关分析、定性数据分析

应用领域的拓展
对应分析的应用领域 拓展
随着数据科学和商业智能的不断 发展,对应分析的应用领域将不 断拓展,如市场细分、消费者行 为分析、社交网络分析等,对应 分析将为这些领域提供更有效的 分析和预测工具。
典型相关分析的应用 领域拓展
典型相关分析作为一种重要的多 元统计分析方法,其应用领域也 将不断拓展,如生物信息学、环 境科学、金融风险管理等,典型 相关分析将为这些领域提供更准 确的数据分析和预测工具。
典型相关分析
能够揭示两组变量之间的关联,但需要较大的样本量, 且对异常值敏感。
定性数据分析
能够挖掘数据中的模式和规律,但主观性强,需要经 验丰富的分析师进行操作。
05
对应分析、典型相关分析、定性数据分析的 未来发展
CHAPTER
新方法的出现
对应分析的新方法
随着数据科学和统计学的不断发展,对应分析的新方法将不断涌现,如基于机器学习的对应分析方法、网络分析方法 等,这些新方法将为对应分析提供更强大的工具和更广泛的应用领域。
心理学研究
在心理学研究中,对应分析可用于揭示人类行为和心理状态之间的关系。
例如,它可以用于研究不同性格类型或心理状态的人在不同情境下的行
为反应。
02 典型相关分析
CHAPTER
典型相关分析的定义
典型相关分析是一种多元统计分析方 法,用于研究两组变量之间的相关关 系。
它通过寻找两组变量之间的典型相关 变量,来解释两组变量之间的相互关 系。
市场调研
在市场调研中,定性数据分析可用于深入了解消费者需求、 态度和行为,为产品定位和市场策略提供依据。
01
社会学研究
在社会学研究中,定性数据分析常用于 探究社会现象、文化差异和群体行为等, 以揭示社会结构和动态。

多元统计分析——典型相关分析

多元统计分析——典型相关分析

多元统计分析——典型相关分析典型相关分析(Canonical correlation analysis)是一种多元统计分析方法,用于研究两组变量之间的关联性。

与传统的相关分析不同,典型相关分析可以同时考虑多组变量,找出最佳的线性组合,使得两组变量之间的相关性最大化。

它主要用于探索一组自变量与另一组因变量之间的线性关系,并且可以提供详细的相关性系数、特征向量和特征值等信息。

典型相关分析的基本原理是将两组变量分别投影到最佳的线性组合上,使得投影后的变量之间的相关性最大。

这种投影是通过求解特征值问题来实现的,其中特征值表示相关系数的大小,特征向量表示两组变量的线性组合。

通常情况下,我们希望保留具有最大特征值的特征向量,因为它们对应着最强的相关性。

典型相关分析的应用广泛,可以用于众多领域,如心理学、社会科学、经济学等。

例如,在心理学研究中,我们可能对人们的人格特征和行为方式进行测量,然后使用典型相关分析来探索它们之间的关系。

在经济学研究中,我们可以将宏观经济指标与企业盈利能力进行比较,以评估它们之间的相关性。

典型相关分析的步骤如下:1.收集数据:首先,我们需要收集两组变量的数据。

这些数据可以是定量数据(如收入、年龄)或定性数据(如性别、职业)。

2.建立模型:然后,我们需要建立一个数学模型,用于描述两组变量之间的关系。

这可以通过线性回归、主成分分析等方法来实现。

3.求解特征值问题:接下来,我们需要求解特征值问题,以获得相关系数和特征向量。

在实际计算中,我们可以使用统计软件来完成这一步骤。

4.解释结果:最后,我们需要解释典型相关分析的结果。

通常情况下,我们会关注最大的特征值和对应的特征向量,因为它们表示着最强的相关性。

典型相关分析的结果提供了一组线性组合,这些组合可以最大化两组变量之间的相关性。

通过分析这些组合,我们可以洞察两组变量之间的潜在关系,并提供有关如何解释和预测这种关系的指导。

总结而言,典型相关分析是一种强大的多元统计分析方法,可以用于研究两组变量之间的关联性。

多元统计分析数据处理中常见的方法与原理

多元统计分析数据处理中常见的方法与原理

多元统计分析数据处理中常见的方法与原理多元统计分析是一种从多个变量间关系来进行数据分析的方法。

它可以帮助我们发现变量间的关联,并揭示隐藏在数据背后的模式和规律。

在实际应用中,我们常常需要采用一些常见的方法来处理多元统计分析数据。

本文将介绍几种常见的方法及其原理,包括因子分析、聚类分析、判别分析和回归分析。

一、因子分析因子分析是一种用于降低变量维度的方法。

它基于一个假设,即多个观测变量可以由少数几个因子来解释。

因子分析的目标是找出这些因子,并确定它们与观测变量之间的关系。

因子分析的原理是通过对变量之间的协方差矩阵进行特征分解来获得因子载荷矩阵。

在这个矩阵中,每个变量与每个因子之间都有一个因子载荷系数。

这些系数表示了变量与因子之间的相关程度,值越大表示相关性越高。

通过分析因子载荷矩阵,我们可以确定哪些变量与哪些因子相关性最强,从而得出变量的潜在因子。

二、聚类分析聚类分析是一种用于将观测对象或变量进行分类的方法。

它基于一个假设,即属于同一类别的对象或变量在某些方面上相似,而不同类别之间的对象或变量则在某些方面上不同。

聚类分析可以帮助我们发现数据集中的群组,并研究不同群组之间的差异。

聚类分析的原理是通过测量对象或变量之间的相异性来确定分类。

最常用的相异性度量是欧氏距离和相关系数。

通过计算每个对象或变量之间的相异性,并基于相异性矩阵进行聚类,我们可以将数据划分为不同的类别。

三、判别分析判别分析是一种用于预测或解释分类变量的方法。

它基于一个假设,即存在一些预测变量对于解释或预测分类变量的发生概率有重要影响。

判别分析可以帮助我们确定哪些预测变量对于分类变量的发生概率有重要影响,并建立分类模型。

判别分析的原理是通过计算不同分类组之间的差异来确定预测变量的重要性。

最常用的差异度量是F统计量和卡方统计量。

通过计算这些统计量,并建立判别方程,我们可以将预测变量与分类变量之间的关系进行建模。

进而,我们可以使用该模型来对新的预测变量进行分类。

多元统计分析实验报告)

多元统计分析实验报告)

. . .数学与计算科学学院实验报告实验项目名称相应与典型相关分析所属课程名称多元统计分析实验实验类型验证型实验日期2016年6月13日星期一班级学号姓名成绩因素B 具有对等性。

通过变换。

得c '=ΣZ Z ,r '=ΣZZ 。

(3)对因素B 进行因子分析。

计算出c '=ΣZ Z 的特征向量 及其相应的特征向量计算出因素B 的因子)(4)对因素A 进行因子分析。

计算出r '=ΣZZ 的特征向量 及其相应的特征向量计算出因素A 的因子(5)选取因素B 的第一、第二公因子 选取因素A 的第一、第二公因子将B 因素的c 个水平,,A 因素的r 个水平同时反应到相同坐标轴的因子平面上上(6)根据因素A 和因素B 各个水平在平面图上的分布,描述两因素及各个水平之间的相关关系。

1.3 在进行相应分析时,应注意的问题要注意通过独立性检验判定是否有必要进行相应分析。

因此在进行相应分析前应做独立性检验。

独立性检验中,0H :因素A 和因素B 是独立的;1H :因素A 和因素B 不独立 由上面的假设所构造的统计量为2211ˆ[()]ˆ()rcij ij i j ijk E k E k χ==-=∑∑211()r c ij i j k z ===∑∑ 其中....(/)/ij ij i j i j z k k k k k k =-,拒绝区域为221[(1)(1)]r c αχχ->--()(1)()(1)i i P Pa X '++a X ()(2)()(2)i i q qb X '++b X(2))1=X 的条件下,使得()(2)()(2)i i q qb X '+b X(2))1=X 的条件下,使得(1)、(2)X 的第一对典型相关变量。

1,2,,)r()p⎦()p ⎥⎦pU⎥⎥⎦p V⎥⎥⎦*(1)*== A X V Bˆˆr() ++b bz【实验过程】(实验步骤、记录、数据、分析)一.问题1的求解步骤:1. 将数据输入在SPSS后,在窗口中选择数据→加权个案,调出加权个案主界面,并将变量人数移入加权个案中的频率变量框中。

典型相关分析

典型相关分析

典型相关分析研究的问题是,如何选取典型变量的最优线性组合。选取原则是:在所有 线性组合 U 和 V 中, 选取典型相关系数为最大的 U 和 V , 即选取 a
(1) (1)
和b
(1)
使得 U 1 = a ′ X
(1) ( 2)
与 V1 = b ′ Y 之间的相关系数达到最大(在所有的 U 和 V 中) ,然后选取 a
说明, λ 既是矩阵 A ,同时也是矩阵 B 的特征值,同时也表明,相应的 a 与 b 分别是
2
特征值 λ 的特征向量。
2
而且,根据证明,矩阵 A 和 B 的特征值还具有以下的性质: (1)矩阵 A 和 B 有相同的非零特征值,且相等的非零特征值的数目就等于 p 。 (2)矩阵 A 和 B 的特征值非负。 (3)矩阵 A 和 B 的全部特征值均在 0 和 1 之间。 根据前边,我们知道,λ = ν = a ′
(
X 1 , X 2 ,…, X p
)′
和Y =
(
Y1 , Y2 ,…, Yq
)′ ,
E ( X ) = µ1
E (Y ) = µ 2 Cov ( X , Y ) = ∑ 12 =
于是,对于矩阵
Cov ( X ) = ∑ 11 Cov (Y ) = ∑ 22
第二组变量的均值和协方差为矩阵为
第一组与第二组变量的协方差为矩阵为

12
b = ρ ,所以 λ 为其典型变量 U 和 V 之间的简单
相关系数。 又由于要求其相关系数达到最大(按习惯考虑为正相关),所以取矩阵 A 或 B 的最大特 征值 λ1 的平方根 λ1 ,作为相关系致,同时由特征值 λ1 所对应的两个特征向量 a
2 2 (1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用多元统计分析之典型相关分析(doc 6页)
联系与区别。

答:一组变量的典型变量和其主成分都是经过线性变换计算矩阵特征值与特征向量得出的。

主成分分析只涉及一组变量的相互依赖关系而典型相关则扩展到两组变量之间的相互依赖关系之中,度量了这两组变量之间联系的强度。

9.4 简述典型相关分析中载荷分析的内容及作用。

答:作用:进行典型载荷分析有助于更好解释分析已提取的p 对典型变量。

分析原始变量与典型变量之间相关性。

内容: 令
(1)(2)*
()p ⎡⎤⎢⎥⎢
⎥=⎢⎥⎢⎥⎣⎦
a a A a (1)(2)*
()p ⎡⎤⎢⎥⎢
⎥=⎢⎥⎢⎥⎣⎦
b b B b 12
p U U U ⎡⎤⎢⎥⎢⎥
=⎢⎥⎢⎥⎢⎥⎣⎦
U 12
p V V V ⎡⎤
⎢⎥⎢⎥
=⎢⎥⎢⎥⎢⎥⎣⎦
V
*(1)
*(2)
==U A X V B X
其中*
A ,*
B 为p 对典型变量系数向量组成的矩
阵,U 和V 为p 对典型变量组成的向量。


(1)
*
(1)
(1)
*
11
(,)(,)Cov Cov ==U X A X X A Σ
(1)(1)(1)(1)1/2
(1)(1)(,)()()(,)
()
i k i k
i k i k
i kk k k Corr U X D U D X Cov U X D X σ-=
=
=
这里()1i
D U =,
(1)1/2
()k kk
D X σ=。

记1/211
V -为对角元素是1/2kk
σ
-的对角阵,所以有
(1)(1)1/2(1)
11,*(1)
1/2
(1)*
1/2111111
(,)(,)
(,)U X Corr Cov Cov ---====R U X U V X A X V
X A ΣV
类似可得: (2)
*
1/222
22
,V X -=R B ΣV (2)
*1/2
1222
,U X
-=R
A ΣV
(1)*1/2
2111
,V X -=R B ΣV
对于经过标准化处理后得到的典型变量有:
(1)*11
,Z U Z =R A R ;
(2)*22
,Z V Z =R B R
(2)*12
,Z U Z =R A R ;(1)
*21
,Z V Z
=R
B R
对于样本典型相关分析,上述结果中的数量关系同样成立。

9.5 简述典型相关分析中冗余分析的内容及作用。

答:典型冗余分析的作用即分析每组变量提取出的典型变量所能解释的该组样本总方差的比例,从而定量测度典型变量所包含的原始信息量。

第一组变量样本的总方差为11
()tr p =R ,第二组变量样本的总方差为22
()tr q =R 。

*
ˆz A
和*ˆz
B 是样本典型相关系数矩阵,典型系数向量是矩阵的行向量,*(1)
ˆˆz
=U
A Z ,*(2)
ˆˆz
=V B Z 。

前r 对典型变量对样本总方差的贡献为
(1)(1)(1)(2)(2)
()()
2
ˆ,11
ˆˆˆˆˆˆ()i
k p
r r r z z z z z z
z U i k tr r =='''+++=∑∑a a a a a a
(2)(1)(1)(2)(2)()()2ˆ,11
ˆˆˆˆˆˆ()i
K
q r
r r z z z z
z z z V
i k tr r =='''+++=∑∑b b b b b b
则第一组样本方差由前r 个典型变量解释的比例为(1)(1)2
ˆ,11
ˆ|i
k p
r z U i k z U
r
d
p
===
∑∑R
第二组样本方差由前r 个典型变量解释的比例为
(2)(2)2ˆ,11
ˆ|i
k q
r
z V i k z V r
d q
===
∑∑R
9.6 设X 和Y 分别是p 维和q 维随机向量,且存在二阶距,设p ≤q 。

它们的第i 对典型变量分别为()
i a
X
'、()
i b Y ',典型相关系数为i
λ,(1,
,)
i p =。


*X CX l
=+,*
Y
DY m
=+,其中C 、D 分别为,p p q q ⨯⨯阶非
奇异阵,l 、m 分别为p 维、q 维随机向量,试证明
⑴ *
*
X Y 、的第i 对典型变量为1
()*
i C
a X -'、1
()*
i D
b Y -'。

⑵ 1
()*
i C
a X -'与1
()*
i D
b Y -'的典型相关系数为i
λ。

9.7 对140名学生进行了阅读速度1
x 、阅读能力2
x 、运算速度1
y 和运算能力2
y 的四种测验,所得成
绩的相关系数阵为
1
0.030.240.590.0310.060.07R 0.240.0610.240.590.070.241⎡⎤⎢⎥⎢
⎥⎢⎥⎢⎥⎣⎦

试对阅读本领与运算本领之间进行典型相关分析。

解:根据已知可得
==
=
=
计算得
的特征值为
提取第一典型变量为
其中,
分别为原始变量
标准化后的结
果。

按照常识,不应该有负数系数啊?不知道怎么回事。

9.8 某年级学生的期末考试中,有的课程闭卷考试,有的课程开卷考试。

44名学生的成绩如下表:
闭卷 开卷 闭卷 开卷 力学 物理 代数
分析
统计
力学 物理 代数
分析
统计
1X 2X
3X
4X
5X
1X 2X
3X
4X
5X
77 82 67 67 81 63 78 80 70 81 75 73 71 66 81 55 72 63 70 68 63 63 65 70 63 53 61 72 64 73 51 67 65 65 68 59 70 68 62 56 62 60 58 62 70 64 72 60 62 45 52 64 60 63 54 55 67 59 62 44 50 50 64 55 63 65 63 58 56 37 31 55 60 57 76 60 64 56 54 40 44 69 53 53 53 42 69 61 55 45 62 46 61 57 45 31 49 62 63 62 44 61 52 62 45 49 41 61 49 64 12 58 61 63 67 49 53 49 62 47 54 49 56 47 53 54 53 46 59 44 44 56 55 61 36 18 44 50 57 81 46
52
65
50
35
32
45
49
57
64
30 69 50 52 45 46 49 53 59 37 40 27 54 61 61 31 42 48 54 68 36 59 51 45 51 56 40 56 54 5 46 56 57 49 32 45 42 55 56 40 42 60 54 49 33 40 63 53 54 25 23 55 59 53 44 48 48 49 51 37 41 63 49
46
34 46 52 53
41
40
试对闭卷(1
X ,2
X )和开卷(3
X ,4
X ,5
X )两组变量进行典型相关分析。

9.9 邓讷姆(Dunham )在研究职业满意度与职业特性的相关程度时,对从一大型零售公司各分公司挑出的784位行政人员测量了5个职业特性变量:用户反馈、任务重要性、任务多样性、任务特性及自主性,7个职业满意度变量:主管满意度、事业前景满意度、财政满意度、工作强度满意度、公司地位满意度、工种满意度及总体满意度。

两组变量的样本相关矩阵为:
11 1.00
0.49 1.00ˆ0.53
0.57 1.00
0.490.460.48 1.000.51
0.530.570.57 1.00R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥
⎢⎥⎢⎥⎣⎦
22 1.000.43 1.000.270.33 1.00ˆ0.240.260.25 1.000.340.540.460.28 1.00
0.370.320.290.300.35 1.000.400.580.45
0.27
0.590.31 1.00R ⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥=⎢
⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎣

12210.330.320.200.190.300.370.210.300.210.160.080.270.350.20ˆˆ0.310.230.140.070.240.370.180.24
0.220.120.190.210.290.160.380.320.170.230.320.360.27R R ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦
试对职业满意度与职业特性进行典型相关分析。

9.10 试对一实际问题进行典型相关分析。

相关文档
最新文档