初一奥数经典题

合集下载

初一奥数竞赛题

初一奥数竞赛题

初一奥数竞赛题一、小李和小王一起参加数学竞赛,小李的得分是小王的两倍。

如果小李少得3分,而小王多得3分,则小李的得分就是小王的3倍。

那么小李原来得了多少分?A. 12分B. 15分C. 18分D. 21分(答案:C)二、一个两位数,十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数。

试求原两位数是多少?A. 16B. 25C. 34D. 43(答案:B)三、甲、乙两数的和是185,已知甲数的1/4与乙数的1/5的和是42,求两数相差多少?A. 20B. 25C. 30D. 35(答案:B)四、三个连续奇数的和是159,那么其中最大的一个奇数是多少?A. 49B. 51C. 53D. 55(答案:C)五、甲、乙、丙三人进行象棋比赛,每两人赛一盘。

规定:赢一盘得2分,输得0分,打平各得1分,全部比赛的三盘棋下完后,甲得3分,乙得1分,那么丙得多少分?A. 1分B. 2分C. 3分D. 4分(答案:D)六、甲、乙、丙、丁四人进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分。

结果甲第一,乙、丙并列第二,丁最后一名,那么乙得几分?A. 3分B. 4分C. 5分D. 6分(答案:B)七、甲用40秒可绕一环形跑道跑一圈,乙反向跑,每隔15秒与甲相遇1次,乙跑一圈所用的时间是多少秒?A. 20秒B. 25秒C. 30秒D. 35秒(答案:C)八、小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行。

结果去学校的时间比回家的时间多10分钟。

已知小明从家到学校的全程是多少千米?A. 5千米B. 10千米C. 15千米D. 20千米(答案:B)九、小明和小亮想买同一本书,小明缺1元5角,小亮缺1元3角。

如果用他们的钱合买这本书,钱正好。

这本书的价钱是多少?A. 2元8角B. 3元C. 3元8角D. 4元(答案:A)十、有甲、乙、丙三人所处位置不同,甲说:“以我为坐标原点,乙的位置是(2,3)。

经典的七年级奥数题三篇

经典的七年级奥数题三篇

【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。

奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。

下⾯是为⼤家带来的“经典的七年级奥数题三篇”,欢迎⼤家阅读。

经典的七年级奥数题篇⼀ 1.加⼯⼀批零件,原计划每天加⼯80个,正好按期完成任务。

由于改进了⽣产技术,实际每天加⼯100个,这样,不仅提前4天完成加⼯任务,⽽且还多加⼯了100个。

他们实际加⼯零件多少个? 2.甲、⼄⼆⼈加⼯⼀批帽⼦,甲每天⽐⼄多加⼯10个。

途中⼄因事休息了5天,20天后,甲加⼯的帽⼦正好是⼄加⼯的2倍,这时两⼈各加⼯帽⼦多少个? 3.甲、⼄两车同时从A、B两地相对开出,甲车每⼩时⽐⼄车多⾏20千⽶。

途中⼄因修车⽤了2⼩时,6⼩时后甲车到达两地中点,⽽⼄车才⾏了甲车所⾏路程的⼀半。

A、B两地相距多少千⽶? 4.甲、⼄两⼈承包⼀项⼯程,共得⼯资1120元。

已知甲⼯作了10天,⼄⼯作了12天,且甲5天的⼯资和⼄4天的⼯资同样多。

求甲、⼄每天各分得⼯资多少元? 5.⽤汽车运⼀堆煤,原计划8⼩时运完。

实际每⼩时⽐原计划多运1.5吨,这样运了6⼩时就⽐原计划多运了3吨。

原计划8⼩时运多少吨煤?经典的七年级奥数题篇⼆ 1、⼩明步⾏上学,每分钟⾏70⽶,离家12分钟后,爸爸发现⼩明的⽂具盒忘在家中,爸爸带着⽂具盒⽴即骑⾃⾏车以每分钟280⽶的速度去追⼩明。

爸爸出发⼏分钟后追上⼩明? 2、甲、⼄、丙三⼈都从A城到B城,甲每⼩时⾏4千⽶,⼄每⼩时⾏5千⽶,丙每⼩时⾏6千⽶,甲出发3⼩时后⼄才出发,恰好三⼈同时到达B城。

⼄出发⼏⼩时后丙才出发? 3、四年级同学从学校步⾏到⼯⼚参观,每分钟⾏75⽶,24分钟以后,因有重要事情,派张兵骑车从学校出发去追。

如果他每分钟⾏225⽶,那么⼏分钟后可以追上同学们? 4、两名运动员在环形跑道上练习长跑。

甲每分钟跑250⽶,⼄每分钟跑200⽶,两⼈同时同地同向出发,经过45分钟甲追上⼄。

环形跑道⼀周长多少⽶?如果两⼈同时同地背向⽽⾏,经过多少分钟两⼈相遇? 5、我骑兵以每⼩时20千⽶的速度追击敌兵,当到达某站时,得知敌⼈已于2⼩时前逃跑。

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。

初一常考的50道奥数题题目

初一常考的50道奥数题题目

初一常考的50道奥数题题目1.水果超市运来苹果2500千克,比运来的梨的2倍少250千克。

这个超市运来梨多少千克?2.A、B两地相距300千米,甲车从A地出发24千米后,乙车才从B地相向而行。

已知甲车每小时行40千米,乙车每小时行52千米,若甲车是上午8时出发,两车相遇时是几时几分?3.家店商场运来一批洗衣机和彩电,彩电的台数是洗衣机的3倍,现在每天平均售出10台洗衣机和15台彩电,洗衣机售完后,彩电还剩下120台没有售出,运来洗衣机、彩电各多少台?4.小民以每小时20千米的速度行使一。

段路程后,立即沿原路以每小时30千的速度返回原出发地,这样往返一次的平均速度是多少?5.粮店运来大米,面粉共3700千克,已知运来的面粉比大米的2倍多100千克,运来大米、面粉各多少千克?6.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?7.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。

蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?8.某校航空模型小组在飞机模型比赛中,第一架模型飞机比第二架模型飞机少飞行480米.已知第一架模型飞机的速度比第二架模型飞机的速度快1米/秒,两架模型飞机在空中飞行的时间分别为12分和16分,这两架模型飞机各飞行了多少距离?9.一条环形跑道长400米,甲每分钟行80米,乙每分钟行120米.甲乙两人同时同地通向出发,多少分钟后他们第一次相遇?若反向出发,多少时间后相遇?10.甲乙两人同时从A,B两地出发,相向而行,3小时后两人在途中相遇已知A,B 两地相距24千米,甲乙两人的行进速度之比是2:3.问甲乙两人每小时各行多少千米.11.已知甲,乙两地相距290千米,现有一汽车以每小时40千米的速度从甲地开往乙地,出发30分钟后,另有一辆摩托车以每小时50千米的速度从乙地开往甲地.问摩托车出发后几小时与汽车相遇?12.小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?13.甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

初一奥数竞赛考试题及答案

初一奥数竞赛考试题及答案

初一奥数竞赛考试题及答案一、选择题1. 一个数列的前三项为 2, 3, 5,每一项都是前两项的和,那么第10项是多少?A. 144B. 145C. 146D. 147答案:D2. 一个正整数,如果加上100后是一个完全平方数,那么这个数最小是多少?A. 49B. 50C. 51D. 52答案:B3. 一个长方体的长、宽、高分别为 a, b, c,且 a < b < c,如果长方体的体积是 216 立方厘米,那么 a 的可能值是?A. 3B. 4C. 6D. 8答案:C二、填空题1. 一个数的平方比它本身大 40,这个数是 _______。

答案:7 或 -72. 一个数列的前三项为 1, 2, 3,每一项都是前一项的两倍加上 1,那么第 5 项是多少?答案:11三、解答题1. 一个水池有一个进水管和一个出水管,单独开进水管 5 小时可以注满水池,单独开出水管 3 小时可以放空水池。

现在同时打开进水管和出水管,需要多少时间才能注满水池?解答:设水池的容量为 V 升。

进水管的流量为 V/5 升/小时,出水管的流量为 V/3 升/小时。

设同时打开两个水管需要 t 小时注满水池,则有:(V/5 - V/3) * t = V解得 t = 15/2 = 7.5 小时。

2. 一个班级有 40 名学生,其中 1/4 喜欢数学,1/3 喜欢英语,1/6 喜欢历史,剩下的学生喜欢科学。

问喜欢科学的有几人?解答:喜欢数学的学生有 40 * 1/4 = 10 人,喜欢英语的学生有40 * 1/3 ≈ 13.33,取整数为 13 人,喜欢历史的学生有 40 * 1/6 ≈ 6.67,取整数为 7 人。

喜欢科学的人数为:40 - 10 - 13 - 7 = 10 人。

结束语:以上是初一奥数竞赛考试题及答案,希望同学们能够通过这些题目,锻炼自己的逻辑思维能力和数学解题技巧,为未来的学习打下坚实的基础。

精选初一奥数题五篇

精选初一奥数题五篇

精选初一奥数题五篇1.精选初一奥数题篇一1.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.2.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?3.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).4.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?5.求不定方程49x-56y+14z=35的整数解.6.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?2.精选初一奥数题篇二1.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?2.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.3.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?4.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.5.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?3.精选初一奥数题篇三1.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?2.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。

从第四个数字开始,每个数字都是前三个数字的和。

请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。

然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。

答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。

将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。

所以,斜边的长度是5厘米。

试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。

问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。

我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。

这相当于在4个球之间插入2个隔板来形成3个部分。

我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。

但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。

因此,最终的放球方法有\[ 6 - 3 = 3 \]种。

试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。

求这个数列的第10项。

答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。

初一奥数题(附答案

初一奥数题(附答案

初一奥数题(附答案)【1 】1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值规模.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均长短负实数,且知足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才干使旅程最短?13.如图1-89所示.AOB是一条直线,OC,OE分离是∠AOD和∠DOB的等分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE等分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延伸订交于K及L,对角线AC‖KL,BD延伸线交KL于F.求证:KF=FL.19.随意率性转变某三位数数码次序所得之数与原数之和可否为999?解释来由.20.设有一张8行.8列的方格纸,随意把个中32个方格涂上黑色,剩下的32个方格涂上白色.下面临涂了色的方格纸施行“操纵”,每次操纵是把随意率性横行或者竖列上的各个方格同时转变色彩.问可否最终得到恰有一个黑色方格的方格纸?21.假如正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是知足下列前提的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包含每小我的两条腿),问房间里有几小我?24.求不定方程49x-56y+14z=35的整数解.25.男.女各8人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不斟酌先后次序,只斟酌男女若何结成舞伴.问各有若干种不合情形?26.由1,2,3,4,5这5个数字构成的没有反复数字的五位数中,有若干个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经由1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两临盆小队配合种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全体义务快3天.求甲乙单独完成各用若干天?29.一船向相距240海里的某港动身,到达目标地前48海里处,速度每小时削减10海里,到达后所用的全体时光与原速度每小时削减4海里航行全程所用的时光相等,求本来的速度.30.某工场甲乙两个车间,客岁筹划完成税利750万元,成果甲车间超额15%完成筹划,乙车间超额10%完成筹划,两车间配合完成税利845万元,求客岁这两个车间分离完成税利若干万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变更,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和下降了1%,求甲乙两种商品原单价各是若干?甲:105 乙:4532.小红客岁暑假在市肆买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,本年暑假她又带同样的钱去该市肆买同样的牙刷和牙膏,因为本年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,成果找回4角钱.试问客岁暑假每把牙刷若干钱?每支牙膏若干钱?33.某商场假如将进货单价为8元的商品,按每件12元卖出,天天可售出400件,据经验,若每件少卖1元,则天天可多卖出200件,问每件应减价若干元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇动身驶向B镇,25分钟今后,乙骑自行车,用0.6千米/分钟的速度追甲,试问若干分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜2 0%,含锰50%,含镍30%.现各取恰当重量的这三种合金,构成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量暗示第二种合金的重量;0.9+0.25x(2)求新合金中含第二种合金的重量规模;最大:1.035 最小:0.905(3)求新合金中含锰的重量规模.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变成m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分离令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段构成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡算作一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,衔接甲′乙′,设甲′乙′所连得的线段分离与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度正好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,应用上面的对称办法,都可以化成一条衔接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的旅程最短.13.如图1-98所示.因为OC,OE分离是∠AOD,∠DOB的角等分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.是以,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE等分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CF B.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE等分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,衔接GE.在△ADC中,G,E分离是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.贯穿连接FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEF DG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b +c+a1+b1+c1=9+9+9,即2(a十b+c)=27,抵触!20.答案是否认的.设横行或竖列上包含k个黑色方格及8-k个白色方格,个中0≤k≤8.当转变方格的色彩时,得到8-k个黑色方格及k个白色方格.是以,操纵一次后,黑色方格的数量“增长了”(8-k)-k=8-2k个,即增长了一个偶数.于是无论若何操纵,方格纸上黑色方格数量标奇偶性不变.所以,从原有的32个黑色方格(偶数个),经由操纵,最后老是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的情势.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6 k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设前提知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4, 4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是独一的非负整数解.从而房间里有8小我.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全体整数解是而t= 1,z=2是t+2z=5的一组整数解.它的全体整数解是把t的表达式代到x,y的表达式中,得到原方程的全体整数解是25.(1)第一个地位有8种选择办法,第二个地位只有7种选择办法,…,由乘法道理,男.女各有8×7×6×5×4×3×2×1=40320种不合分列.又两列间有一相对地位关系,所以共有2×403202种不合情形.(2)逐个斟酌结对问题.与男甲结对有8种可能情形,与男乙结对有7种不合情形,…,且两列可对调,所以共有2×8×7×6×5×4×3×2×1=80640 种不合情形.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y 米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3= 12(天).解之得x=16(海里/小时).经磨练,x=16海里/小时为所求之原速.30.设甲乙两车间客岁筹划完成税利分离为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分离为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设客岁每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4 (元).若y为客岁每支牙膏价钱,则y=1.4+1=2.4(元).33.本来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,个中0<x<4.因为减价后,天天可卖出(400+200x)件,若设天天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比本来多卖出200件,是以多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的旅程分离是0.4(25+ x)千米和0.6x千米.因为两人走的旅程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才干追上甲.但A,B两镇之间只有28千米.是以,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的规模是:最小250克,最而0≤x≤500,所以新合金中锰的重量规模是:最小250克,最大400克.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一奥数题(附答案)2.设a, b, c 为实数,且 | a | +a=0, | ab | =ab, | c | -c=0 ,求代数式 | b | - | a+b - c-b +a-c 的值.3.若mK0, n>0, | m|| v | n |,且 | x+ m | + | x-n | =rn^ n,求x 的取值范围.4.设(3x-1)7=a7x7 + a6x6+…+a1x+ a0,试求a0+a2+ a4 + a6 的值.6.解方程2 x+1 + x-3 =6.8.解不等式x+ 3 - x-1 > 2.10.x, y, z 均是非负实数,且满足:x + 3y+ 2z=3, 3x+ 3y+z=4, 求u=3x-2y +4z 的最大值与最小值.11.求x4-2x3+ x2+2x-1 除以x2+x+ 1 的商式和余式.12.如图1 -88 所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶, 先在北山坡打一捆草, 又在南山坡砍一捆柴给奶奶送去. 请问:小柱应该选择怎样的路线才能使路程最短?13.如图1 —89所示.AOB是一条直线,OC OE分别是/ AOD和/ DOB勺平分线, / COD=55 .求/ DOE勺补角.14.如图1—90 所示.BE平分/ ABC / CBF2 CFB=55,/ EDF=70 .求证:BCll AE15.如图1—91 所示.在△ ABC中, EF丄AB CDL AB / CDG/ BEF 求证:/ AGDH ACB16.如图1—92 所示.在△ ABC中, Z B=Z C, BDLAC于D.求17.如图1 —93所示.在厶ABC中, E为AC的中点,D在BC上,且BD: DC=:2, AD与BE交于卩.求厶BDF与四边形FDCE勺面积之比.18.如图1 —94所示.四边形ABCD两组对边延长相交于K及L,对角线ACll KL, BD延长线交KL于F .求证:KF=FL19任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由20设有一张8 行、8 列的方格纸,随便把其中32个方格涂上黑色,剩下的32 个方格涂上白色下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21 •如果正整数p和p+2都是大于3的素数,求证:6 | (p + 1).22.设n 是满足下列条件的最小正整数,它们是75 的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43 条腿(包括每个人的两条腿) ,问房间里有几个人?24.求不定方程49x-56y+14z=35 的整数解.25.男、女各8 人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5 这5 个数字组成的没有重复数字的五位数中,有多少个大于34152?27 •甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6 秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4 天后,由甲队单独完成剩下的,又用2 天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10 海里,到达后所用的全部时间与原速度每小时减少4 海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?31.已知甲乙两种商品的原价之和为1 50元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?32.小红去年暑假在商店买了2 把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1 元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68 元,牙膏每支涨价30%,小红只好买2 把牙刷和2 支牙膏,结果找回4 角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8 元的商品,按每件12 元卖出,每天可售出400 件,据经验,若每件少卖1 元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0. 4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0. 6千米/分钟的速度追甲,试问多少分钟后追上甲?35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1 千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;(3)求新合金中含锰的重量范围.参考答案2•因为| a | =-a,所以a<0,又因为| ab | =ab,所以b<0,因为| c | =c,所以c>0.所以a+ b< 0,c-b >0,a-c <0.所以原式=-b + (a + b)-(c-b)-(a-c)=b .3.因为mK0,n>0,所以| mi| =-m,| n | =n.所以| mi|<| n | 可变为m+ n >0.当x+mi>0 时,| x+m| =x+ m 当x-n <0 时,| x-n | =n-x .故当-mWx< n 时,| x+ m|+| x-n | =x+ m-x+ n=m+ n.4.分别令x=1,x=-1 ,代入已知等式中,得a0+a2+ a4+ a6=-8128.10.由已知可解出y 和z因为y,z 为非负实数,所以有u=3x-2y+4z11.所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示). 我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲’;乙村关于南山坡的对称点是乙’,连接甲’乙’,设甲’乙’所连得的线段分别与北山坡和南山坡的交点是A, B,则从甲-A-B-乙的路线的选择是最好的选择(即路线最短)显然,路线甲-A-B-乙的长度恰好等于线段甲’乙’的长度. 而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲’与乙’之间的折线•它们的长度都大于线段甲’乙’•所以,从甲- A- B-乙的路程最短.13.如图1 —98所示.因为OC 0E分别是/ AOD / DOB勺角平分线,又 / AOD+ / DOBMAOB=180,所以 / COE=90 .因为 / COD=55,所以/ DOE=90 -55 ° =35°.因此,/ DOE的补角为180 ° -35 °= 145°.14.如图1—99所示.因为BE平分/ ABC所以/ CBF" ABF,又因为 / CBF玄CFB 所以 / ABFW CFB从而AB || CD内错角相等,两直线平行).由/CBF=55 及BE平分/ ABC 所以 / ABC=2< 55° =110°. ①由上证知AB|| CC,所以 / EDF2 A=70°,②由①,②知BC| AE(同侧内角互补,两直线平行).15.如图1-100 所示.EF丄AB CDLAB,所以 / EFB玄CDB=90,所以EF| CD(同位角相等,两直线平行).所以/ BEFW BCD两直线平行,同位角相等).①又由已知 / CDGHBEF ② 由①,② / BCD" CDG所以BC | DG内错角相等,两直线平行).所以/ AGD" ACB两直线平行,同位角相等).16.在△ BCD中,"DBG" C=90° (因为"BDC=90 ),① 又在△ ABC中, " B=" C,所以"A+" B+" C =" A+2" C = 1 8 0° ,所以由①,②17•如图1—101,设DC的中点为G 连接GE在厶ADC中,G E分别是CD CA 的中点.所以,GE|| AD即在△ BEG中, DF|| GE从而F是BE中点•连结FG所以又S △ EFD= SA BFG-SEFDG=4SBFD-SEFD,所以S △ EFGD=3ABFD设SABFD=x贝U SEFDG=3x又在△ BCE中, G是BC边上的三等分点,所以S△CEG=ABCEE从而所以SEFDC=3xb2x = 5x,所以S△ BFD: SEFDC=:5.18.如图1—102所示.由已知ACll KL,所以SAACK=S\ACL,所以即KF=FL. + b1=9,a+a仁9,于是a+b+c+ a1 + b1+c仁9+ 9+9,即2(a 十b+c)=27,矛盾!20•答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0<k<8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k 个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k + 1,6k + 5的形式.若p=6k+ 1(k > 1),则p+2=3(2k + 1)不是质数,所以,p=6k + 5(k >0).于是,p+ 仁6k+ 6,所以,6 | (p + 1).22.由题设条件知n=75k=3X52x k.欲使n尽可能地小,可设n=2a 3B 5丫( B> 1, Y A 2),且有(a +1)( B +1)( 丫 + 1)=75 .于是a + 1, B +1, 丫 + 1都是奇数,a , B,丫均为偶数.故取丫=2.这时(a+1)( B +1)=25.所以故(a , B )=(0 , 24),或(a , B )=(4 , 4),即n=20?324?5223.设凳子有x只,椅子有y只,由题意得3x + 4y+2(x+y) = 43,即5x+6y = 43.所以x=5, y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z = 5.令7x-8y=t , t + 2z=5.易见x=7t, y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1 , z=2是t + 2z=5的一组整数解.它的全部整数解是把t 的表达式代到x,y 的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8 X 7X 6X 5X 4X 3X 2X 1 = 40320种不同排列.又两列间有一相对位置关系,所以共有2X 403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2X8X7X6X5X4X3X2X1=80640 种不同情况.26.万位是5的有4X 3X 2X 1=24(个).万位是4 的有4 X3X 2X 1=24(个).万位是3,千位只能是5或4,千位是5的有3X2X仁6个,千位是4的有如下4 个:34215,34251,34512,34521.所以,总共有24+24+6+4= 58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x 米/秒,乙火车速度为y 米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x + 3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x 万元和y 万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元) ,乙共完成税利350+35=385(万元) .31.设甲乙两种商品的原单价分别为x 元和y 元,依题意可得由②有0.9x+1.2y=148.5 ,③由①得x=150-y ,代入③有0. 9(150-y) + 1.2y = 148. 5 ,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x 元,依题意得2X 1.68 + 2(x+1)(1+30 %)=[2x + 3(x+1)]-0.4 ,即2 X 1.68 + 2X 1.3+2 X 1.3x = 5x+ 2.6 ,即2.4x=2 X 1.68,所以x=1.4( 元).若y为去年每支牙膏价格,则y=1.4 + 1=2.4(元).33.原来可获利润4X 400=1600元.设每件减价x 元,则每件仍可获利(4-x) 元,其中0vxV4•由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y = (4-x)(400+200x)=200(4-x)(2+x)=200(8+ 2x-x2)=-200(x2-2x+1) + 200+1600 =-200(x-1)2+1800 所以当x=1时,y最大=1800(元)•即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x 分钟追上甲,则甲到被追上的地点应走了(25+x) 分钟,所以甲乙两人走的路程分别是0.4(25+x) 千米和0.6x 千米.因为两人走的路程相等,所以0.4(25+x)=0.6x ,解之得x=50 分钟.于是左边=0.4(25 +50)=30(千米) ,右边=0.6 X 50=30(千米),即乙用50分钟走了30千米才能追上甲•但A, B两镇之间只有28千米•因此,到B 镇为止,乙追不上甲.35. (1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z 克,则依题意有(2)当x=0 时,大500 克.(3)新合金中,含锰重量为:x?40%+y?10%+z?50%=400-0.3x ,y=250,此时,y为最小;当z=0时,y=500为最大,即250< y < 500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0Wx< 500,所以新合金中锰的重量范围是:最小250克,最大400応。

相关文档
最新文档