MATLAB实验报告实验二
MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
自动控制原理 matlab实验报告

自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。
三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。
四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。
会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。
(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。
1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。
幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。
MATLAB信号与系统实验报告19472[五篇范文]
![MATLAB信号与系统实验报告19472[五篇范文]](https://img.taocdn.com/s3/m/a72999dee109581b6bd97f19227916888486b9f2.png)
MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。
由于盘算历程啰嗦,最适适用MATLAB 盘算。
通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。
任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。
-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。
基波频率Ω。
2、确定系统函数 )(Ω jn H。
3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。
用两个子图画出。
2、画出系统函数的幅度频谱|H(jω)|。
3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。
用两个子图画出。
解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。
程序设计实验报告(matlab)

程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。
实验内容:运用Matlab进行简单的程序设计。
实验方法:基于Matlab环境下的简单程序设计。
实验结果:成功掌握简单的程序设计和Matlab基本编程语法。
实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。
实验内容:在Matlab环境下进行多项式拟合和插值的计算。
实验方法:结合Matlab的插值工具箱,进行相关的计算。
实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。
实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。
实验内容:利用Matlab进行最小二乘法计算。
实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。
实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。
实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。
实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。
实验方法:基于Matlab的ODE工具箱,进行ODE求解。
实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。
总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。
通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。
这些知识和技能对我未来的学习和工作都将有着重要的帮助。
matlab实验报告总结精选

matlab实验报告总结电气工程学院自动化102班 2012年12月21日实验一 MATLAB环境的熟悉与基本运算一、实验目的1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识1.熟悉MATLAB环境MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。
2.掌握MATLAB常用命令变量与运算符变量命名规则如下:变量名可以由英语字母、数字和下划线组成变量名应以英文字母开头长度不大于31个区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。
MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2 MATLAB算术运算符表3 MATLAB关系运算符表4 MATLAB逻辑运算符表5 MATLAB特殊运算的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式的基本运算表7 两种运算指令形式和实质内涵的异同表的常用函数表8 标准数组生成函数表9 数组操作函数三、实验内容1、新建一个文件夹2、启动,将该文件夹添加到MATLAB路径管理器中。
3、保存,关闭对话框4、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye5、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
6、初步程序的编写练习,新建M-file,保存,学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。
注意:每一次M-file的修改后,都要存盘。
练习A:help rand,然后随机生成一个2×6的数组,观察command window、command history和workspace等窗口的变化结果。
学习使用clc、clear,了解其功能和作用。
答:clc是清除命令窗体内容 clear是清除工作区间输入C=1:2:20,则C表示什么?其中i=1,2,3,?,10。
MATLAB实验报告

仿真程序:
I. 傅里叶正变换的m函数
II. 傅里叶反变换的m函数
图像:
正变换图像:
反变换图像:
二、能量信号的能量谱密度仿真
【例二】(矩形脉冲的能量谱密度) 宽度为 的矩形脉冲的表达式为
g(t)=
其能量谱密度为
Eg(f)= =
参考仿真程序:
图像:
图像:
三、信号通过线性系统
若线性系统的输入是x(t),输出是y(t),则输出与输入的关系可以用卷积来描述y(t)= (式4),其中h(t)是系统的单位冲激相应。
在离散时间和截短的情况下,式4对应到离散卷积
仿真中更为简便的做法是借助频域关系来实现滤波
Y(y)=H(f)X(f)
【例三】(矩形脉冲通过巴特沃斯低通滤波器) 将一个宽为 =1ms的矩形脉冲通过一个3dB带宽为500Hz的6阶巴特沃思滤波器。矩形脉冲的主瓣带宽为1khz。仿真中设置的时间分辨率为1/32ms,频谱分辨率为1/64khz,抽样率为fs=32khz,总观察时间为T=64ms。参考仿真程序:图像:心得体会:
通过此次仿真实验实验中,我学会了如何使用MATLAB建立脚本文件实现函数之间的调用
也学到了通信原理中周期函数的频谱使用MATLAB仿真实现,收获了傅里叶正变换与傅里叶反变换图像十分清晰可见,有助于我对傅里叶变换更加深入地学习。有信号能量密度的仿真图像可知傅里叶反变换与傅里叶正变换是不同的。信号通过线性系统是傅里叶正变换为不规则的频谱,傅里叶反变换时为规则的矩形谱。不管怎么样自己动手做出来的收获就是不一样。
一、周期信号的频谱仿真
虽然Matlab中有许多现成的频域分析工具,如fft、ifft等,但对通信原理的学习者来说,直接进行傅里叶变换更为直观。为此,我们用Matlab提供的函数为基础,编制了两个m函数t2f.m及f2t.m。t2f是傅里叶正变换,对应
Matlab实验报告

自动控制技术与其应用实验报告系别:班级:XX:学号:实验二典型环节与其阶跃响应(▲)一、实验目的1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
3. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验设备和仪器1.计算机;2. MA TLAB软件三、实验结果分析与结论1.比例环节 G1(S)=1和G2(S)=2(二选一)比例环节仿真仿真结构图单位阶跃响应波形图比例环节特点:成比例,无失真和延迟2.惯性环节 G1(S)=1/(S+1)和G2(S)=1/(0.5S+1) (二选一)绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)惯性环节仿真仿真结构图单位阶跃响应波形图惯性环节特点:输出量不能立即随输入量的变化而变化,存在时间上延迟,输出无振荡3.积分环节G1(S)=(1/S)和G2(S)=(1/(0.5S))绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)积分环节仿真仿真结构图单位阶跃响应波形图积分环节仿真仿真结构图单位阶跃响应波形图积分环节特点:输出量反应输入量的时间积累4.微分环节G1(S)=0.5S和G2(S)=2S绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)微分环节仿真仿真结构图单位阶跃响应波形图微分环节仿真仿真结构图单位阶跃响应波形图微分环节特点:输出能够预示输入信号的变化趋势5.比例微分环节G1(S)=(2+S)和G2(S)=(1+2S)绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)比例微分环节仿真仿真结构图单位阶跃响应波形图比例微分环节仿真仿真结构图单位阶跃响应波形图比例微分环节特点:调节与时,偏差小,当输出稳定时的幅值与比例环节的比例系数成正比6.比例积分环节G1(S)=(1+1/S)和G2(S)=2(1+1/2S)绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)比例积分环节仿真仿真结构图单位阶跃响应波形图比例积分环节仿真仿真结构图单位阶跃响应波形图比例积分环节特点:应速度变快,其输出与积分时间常数有关四、实验心得与体会通过实验可以更加形象生动、清晰、一目了然,让我们更容易掌握各个环节的特点,同时掌握了MATLAB 的一些基本绘图仿真知识。
信号系统MATLAB实验报告

信号与系统实验报告桂林理工大学信息科学与工程学院 电子信息工程实验二 信号及其表示【实验目的】了解各种常用信号的表达方式掌握部分绘图函数【实验内容】一、绘出连续时间信号x(t)=t e 707.0 sin 32t 关于t 的曲线,t 的范围为 0~30s ,并以递增。
MATLAB 源程序为:t=0::30; %对时间变量赋值x=exp*t).*sin(2/3.*t); %计算变量所对应得函数值 plot(t,x);grid; %绘制函数曲线ylabel('x(t)');xlabel('Time(sec)')二、产生周期为的方波。
MATLAB源程序为:Fs=100000;t=0:1/Fs:1;x1=square(2*pi*50*t,20);x2=square(2*pi*50*t,80);subplot(2,1,1),plot(t,x1),axis([0,,,]); subplot(2,1,2),plot(t,x2),axis([0,,,]);三、产生sinc(x)函数波形。
MATLAB源程序为:x=linspace(-4,4);y=sinc(x);plot(x,y)四、绘制离散时间信号的棒状图。
其中x(-1)=-1,x(0)=1,x(1)=2,x(2)=1,x(3)=0,x(4)=-1,其他时间x(n)=0。
MATLAB源程序为:n=-3:5; %定位时间变量x=[0,0,-1,1,2,1,-1,0,0];stem(n,x);grid; %绘制棒状图line([-3,5],[0,0]); %画X轴线xlabel('n');ylabel('x[n]')五、单位脉冲序列δ(n-0n )={00...1...0n n n n =≠直接实现:x=zeros(1,N);x(1,n0)=1;函数实现:利用单位脉冲序列)(0n n -δ的生成函数impseq,即 function[x,n]=impseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)==0];plot(n,x);stem(n,x);输入参数:impseq(0,0,9)——连续图形012345678900.10.20.30.40.50.60.70.80.91输入参数:impseq(0,0,9)——离散图形六、单位阶跃序列ε(n-0n )={00...1...0n n n n ≥<直接实现:n=[ns:nf];x=[(n-n0)>=0];函数实现:利用单位阶跃序列)(0n n -ε的生成函数stepseq ,即 Function[x,n]=stepseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)>=0];plot(n,x);七、实指数序列=,∀)(x n∈,Ranna直接实现:n=[ns:nf]:x=a.^n;函数实现:利用实指数序列n a(的生成函数rexpseq,即n)x=Function[x,n]=rexpseq(a,ns,nf)n=[ns:nf];x=a,^n:八、复指数序列n e n x n j ∀=+,)()(ωδ直接实现:n=[ns:nf];x=exp((sigema+jw)*n);函数实现:利用复指数序列n j e n x )()(ωδ+=的生成函数cexpseq,即 Function[x,n]=cexpseq(sigema,w,ns,nf)n=[ns:nf];x=exp((sigema+j*w)*n);0123456789-3000-2000-1000100020003000400050006000九、正(余)弦序列n wn n x ∀+=),cos()(θ直接实现:n=[ns:nf];x=cos(w*n+sita);函数实现:利用正(余)弦序列x(n)=cos(wn+θ)的生成函数cosswq,即Function[x,n]=cosseq(w,ns,nf,sita)n=[ns:nf];x=cos(w*n+sita);输入参数:cosseq,0,9,30)——连续信号0123456789-0.2-0.15-0.1-0.0500.050.10.150.2输入参数:cosseq,0,9,30)——离散信号0123456789实验三信号的运算【实验目的】了解信号处理的基本操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 MATLAB矩阵及其运算
学号:3121003104 姓名:刘艳琳专业:电子信息工程1班日期:2014.9.20 一实验目的
1、掌握Matlab数据对象的特点以及数据的运算规则。
2、掌握Matlab中建立矩阵的方法以及矩阵处理的方法。
3、掌握Matlab分析的方法。
二实验环境
PC_Windows 7旗舰版、MATLAB 7.10
三实验内容
4、1. (1)新建一个.m文件,验证书本第15页例2-1;
(2)用命令方式查看和保存代码中的所有变量;
(3)用命令方式删除所有变量;
(4)用命令方式载入变量z。
2. 将x=[4/3 1.2345e-6]在以下格式符下输出:短格式、短格式e方式、长格式、长格式e方式、银行格式、十六进制格式、+格式。
短格式
短格式e
长格式
长格式e方式
银行格式
十六进制格式
3.计算下列表达式的值
(1)w=sqrt(2)*(1+0.34245*10^(-6))
(2)x=(2*pi*a+(b+c)/(pi+a*b*c)-exp(2))/(tan(b+c)+a) a=3.5;b=5;c=-9.8; (3)y=2*pi*a^2*((1-pi/4)*b-(0.8333-pi/4)*a) a=3.32;b=-7.9;
(4)z=0.5*exp(2*t)*log(t+sqrt(1+t*t)) t=[2,1-3i;5,-0.65];
4. 已知A=[1 2 3 4 5 ;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20],对其进行如下操作:(1)输出A在[ 7, 10]范围内的全部元素;
(2)取出A的第2,4行和第1,3,5列;
(3)对矩阵A变换成向量B,B=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];
(4)删除A的第2,3,4行元素;
(1) (2)
(4)
五 实验总结
通过本次试验,我完成了MATLAB 下数据分析与程序设计有关问题的练习。
学习了脚本文件的编写,数值输入,数组计算,程序调试等;练习了利用MATLAB 编程序解决基本数学问题。
学习了全局和局部变量的使用,流程控制结构,函数编写及其调试。
通过本次试验更进一步的了解了MATLAB ,更好的为以后的学习和工作服务.。