贵州省威宁县威宁民族中学2018-2019学年第一学期期末模拟卷(高二实验班)(无答案)

合集下载

威宁彝族回族苗族自治县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

威宁彝族回族苗族自治县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

威宁彝族回族苗族自治县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.2. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 3. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( ) A .(﹣∞,﹣2) B . D .上是减函数,那么b+c ( )A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣4. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错5.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?6. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数7. 函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}8. 已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣49. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.10.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )A .2︰3B .4︰3C .3︰1D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力. 11.设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .412.已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65BC .5D 二、填空题13.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 14.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.15.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .16.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点.③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.17.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________.18.i 是虚数单位,化简:= .三、解答题19.已知椭圆E : +=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为,点(,)在椭圆E 上.(1)求椭圆E 的方程;(2)设过点P (2,1)的直线l 与椭圆相交于A 、B 两点,若AB 的中点恰好为点P ,求直线l 的方程.20.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.22.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A+C ),求f (B )的值.23.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==.(1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.24.某市出租车的计价标准是4km 以内10元(含4km ),超过4km 且不超过18km 的部分1.5元/km ,超出18km 的部分2元/km .(1)如果不计等待时间的费用,建立车费y 元与行车里程x km 的函数关系式; (2)如果某人乘车行驶了30km ,他要付多少车费?威宁彝族回族苗族自治县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.2. 【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB BA -=,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点),另外,要选好基底向量,如本题就要灵活使用向量,AB AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等. 3. 【答案】B【解析】解:由f (x )在上是减函数,知 f ′(x )=3x 2+2bx+c ≤0,x ∈,则⇒15+2b+2c ≤0⇒b+c ≤﹣.故选B .4. 【答案】C【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.5.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.7.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B8.【答案】A【解析】解:∵点P (1,3)在α终边上, ∴tan α=3,∴====﹣.故选:A .9. 【答案】A 【解析】()12(i)122(i)i i z i i i +-+===--,所以虚部为-1,故选A. 10.【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .11.【答案】A【解析】解:方程|x 2+3x ﹣3|=a 的解的个数可化为函数y=|x 2+3x ﹣3|与y=a 的图象的交点的个数,作函数y=|x 2+3x ﹣3|与y=a 的图象如下,,结合图象可知, m 的可能值有2,3,4; 故选A .12.【答案】B考点:双曲线的性质.二、填空题13.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 14.【答案】[2e,)-+∞【解析】由题意,知当0,1x ∈()时,不等式2e 1xx ax -≥-,即21e x x a x +-≥恒成立.令()21e xx h x x+-=,()()()211e 'x x x h x x-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,xk x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()211e '0x x x h x x-+-=>,∴()h x 在()0,1x ∈为递增,∴()()12e h x h <=-,则2e a ≥-.15.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x ﹣1)2++y 2=1 故圆的圆心为(1,0),半径为1 直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1816.【答案】 ②④【解析】解: ①当k=0时,,当x ≤0时,f (x )=1,则f (f (x ))=f (1)==0,此时有无穷多个零点,故①错误;②当k <0时,(Ⅰ)当x ≤0时,f (x )=kx+1≥1, 此时f (f (x ))=f (kx+1)=,令f (f (x ))=0,可得:x=0; (Ⅱ)当0<x ≤1时,,此时f (f (x ))=f ()=,令f (f (x ))=0,可得:x=,满足;(Ⅲ)当x >1时,,此时f (f (x ))=f ()=k+1>0,此时无零点.综上可得,当k <0时,函数有两零点,故②正确; ③当k >0时,(Ⅰ)当x ≤时,kx+1≤0,此时f (f (x ))=f (kx+1)=k (kx+1)+1,令f (f (x ))=0,可得:,满足;(Ⅱ)当时,kx+1>0,此时f (f (x ))=f (kx+1)=,令f (f (x ))=0,可得:x=0,满足; (Ⅲ)当0<x ≤1时,,此时f (f (x ))=f ()=,令f (f (x ))=0,可得:x=,满足;(Ⅳ)当x >1时,,此时f (f (x ))=f ()=k +1,令f (f (x ))=0得:x=>1,满足;综上可得:当k >0时,函数有4个零点.故③错误,④正确. 故答案为:②④.【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.17.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 18.【答案】 ﹣1+2i .【解析】解: =故答案为:﹣1+2i .三、解答题19.【答案】【解析】解:(1)由题得=,=1,又a 2=b 2+c 2,解得a 2=8,b 2=4.∴椭圆方程为:.(2)设直线的斜率为k ,A (x 1,y 1),B (x 2,y 2),∴,=1,两式相减得=0,∵P 是AB 中点,∴x 1+x 2=4,y 1+y 2=2,=k ,代入上式得:4+4k=0,解得k=﹣1,∴直线l :x+y ﹣3=0. 【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】(1)证明:由函数f (x )的图象关于直线x=1对称, 有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.21.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,12)上无零点,只需要对x ∈(0,12)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①此时,当x 变化时,f ′(x ),f (x )的变化情况如下:又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:.④综合①④可知,当a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立. 22.【答案】【解析】解:(Ⅰ)f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3=2sin2x ﹣+3=2sin2x+2cos2x=4sin (2x+).∵x ∈[0,],∴2x+∈[,],∴f (x )∈[﹣2,4].(Ⅱ)由条件得 sin (2A+C )=2sinA+2sinAcos (A+C ), ∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ), 化简得 sinC=2sinA , 由正弦定理得:c=2a , 又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=,故解得:A=,B=,C=,∴f (B )=f()=4sin =2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.23.【答案】(1)131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)证明见解析.【解析】试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)由于{}n b 为递增数列,所以取1162n n a -⎛⎫=⋅- ⎪⎝⎭,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭,其前项和为()1114414n -<+.考点:数列与裂项求和法.124.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.。

威宁彝族回族苗族自治县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

威宁彝族回族苗族自治县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

威宁彝族回族苗族自治县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .16163π-32163π-1683π-3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.2. 双曲线的焦点与椭圆的焦点重合,则m 的值等于()A .12B .20C .D .3. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)4. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .365. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( )A .一定相离B .一定相切C .相交且一定不过圆心D .相交且可能过圆心6. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .97. 已知在平面直角坐标系中,点,().命题:若存在点在圆xOy ),0(n A -),0(n B 0>n p P 上,使得,则;命题:函数在区间1)1(3(22=-++y x 2π=∠APB 31≤≤n x xx f 3log 4)(-=内没有零点.下列命题为真命题的是( ))4,3(A . B .C .D .)(q p ⌝∧q p ∧q p ∧⌝)(qp ∨⌝)(8. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()A .i >4?B .i >5?C .i >6?D .i >7?9. 已知平面向量与的夹角为,且,,则()3π32|2|=+1||==||A .B .C .D .310.设f (x )=(e -x -e x )(-),则不等式f (x )<f (1+x )的解集为( )12x +112A .(0,+∞)B .(-∞,-)12C .(-,+∞)D .(-,0)121211.如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111]P ABC -A .2对B .3对C .4对D .6对12.在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3 )D .(3,4)二、填空题13.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .14.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两()2,0,{,0x x x f x x lnx x a+≤=->个零点,则正实数的值为______.a 15.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-16.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.在空间直角坐标系中,设,,且,则 .)1,3(,m A )1,1,1(-B 22||=AB =m 18.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .三、解答题19.如图,四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.求证:PC ⊥BC ;(Ⅱ)求三棱锥C ﹣DEG 的体积;(Ⅲ)AD 边上是否存在一点M ,使得PA ∥平面MEG .若存在,求AM 的长;否则,说明理由.20.如图所示,在正方体中.1111ABCD A B C D -(1)求与所成角的大小;11A C 1B C (2)若、分别为、的中点,求与所成角的大小.E F AB AD 11A C EF21.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.22.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .23.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值.(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.24.(本小题满分12分)某市拟定2016年城市建设三项重点工程,该市一大型城建公司准备参加这,,A B C 三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对三项重点工程竞标成功的概率分,,A B C 别为,,,已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为.a b 14()a b 12434(1)求与的值;a b (2)公司准备对该公司参加三个项目的竞标团队进行奖励,项目竞标成功奖励2万元,项目竞,,A B C A B 标成功奖励4万元,项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.C 【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.威宁彝族回族苗族自治县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为,故选D .21132244428233V =π⨯⨯-⨯⨯⨯=π-2. 【答案】A 【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A . 3. 【答案】C【解析】解:令f (x )=x 2﹣mx+3,若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0,解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档. 4. 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。

威宁彝族回族苗族自治县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

威宁彝族回族苗族自治县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
B. 1 C.2 ) B. x 0, x
25 3D. )来自31 2D. 2
6. 已知命题 p : x 0, x
1 2 ,则 p 为( x
1 2 x 1 C. x 0, x 2 x
A. x 0, x 7. a 2 3 , b 4 5 , c 25 3 ,则( A. b a c A.{0}∈M B.{0} M ) A.必要不充分条件 B.充分不必要条件
,若用表示不超过实数 m 的最大整数,则函数 的值域为 .
14.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .
15.曲线 y=x2+3x 在点(-1,-2)处的切线与曲线 y=ax+ln x 相切,则 a=________. 16.已知椭圆 ,且 θ∈[ , + =1(a>b>0)上一点 A 关于原点的对称点为 B,F 为其左焦点,若 AF⊥BF,设∠ABF=θ
4. 在三棱柱 ABC A1 B1C1 中,已知 AA1 平面 ABC,AA1 =2,BC 2 3, BAC 柱各个顶点都在一个球面上,则球的体积为( A. ) C.

2
,此三棱
32 3
B. 16
5. 已知函数 f x 1 A.1
2x 1 ,则曲线 y f x 在点 1 ,f 1 处切线的斜率为( x 1
三、解答题
19.已知函数 f(x)是定义在 R 上的奇函数,当 x≥0 时,
.若
,f(x-1)≤f(x),则实数 a 的取值范围为 A[ B[ C[ D[ ] ] ] ]
20.命题 p:关于 x 的不等式 x2+2ax+4>0 对一切 x∈R 恒成立,q:函数 f(x)=(3﹣2a)x 是增函数.若 p∨q 为真,p∧q 为假.求实数 a 的取值范围.

威宁彝族回族苗族自治县高级中学20182019学年上学期高二数学月考试题含解析

威宁彝族回族苗族自治县高级中学20182019学年上学期高二数学月考试题含解析

威宁彝族回族苗族自治县高级中学2018-2019学年上学期高二数学12月月考试题含分析班级__________座号_____姓名__________分数__________一、选择题1.已知在数轴上0和3之间任取一实数,则使“log2x1”的概率为()A.11C.21 4B.3D.8122.把“二进制”数101101(2)化为“八进制”数是()A.40(8)B.45(8)(8)D.55(8)C.503.已知函数f(x)=m(x﹣)﹣2lnx(m∈R),g(x)=﹣,若起码存在一个0[1e],使得f(x0x∈,)<g(x0)成立,则实数m的范围是()A.(﹣∞,]B.(﹣∞,)C.(﹣∞,0]D.(﹣∞,0)4.在复平面内,复数(﹣4+5i)i(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.已知正项数列{an}的前n项和为Sn,且2Sn=an+,则S2015的值是()A.B.C.2015D.6.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为()A.B.C.2D.7.已知x,y,z均为正实数,且2x log2x,2y log2y,2z log2z,则()A.xyz B.zxy C.zyz D.yxz 8.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0B.2x+y﹣1=0C.x﹣2y﹣5=0D.2x+y﹣5=09“ab,c是不全相等的正数”.对,,给出两个判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a不可以同时成立,以下说法正确的选项是()A.①对②错B.①错②对C.①对②对D.①错②错第1页,共17页1010.在1x1的睁开式中,含x2项的系数为()x2015(A)10(B)30(C)45(D)120 11.以下关系式中,正确的选项是()A.?∈{0}B0{0}C0{0}D.?={0}.?.∈12.假如会合A,B,同时知足A B1,2,3,4,A B=1,A1,B1,就称有序集对A,B为“好集对”.这里有序集对A,B是指当A B时,A,B和B,A是不一样的集对,那么“好集对”一共有()个A.个B.个C.个D.个二、填空题13.图中的三个直角三角形是一个体积为20的几何体的三视图,则h__________. 14.设全集U={0,1,2,3,4},会合A={0,1,2},会合B={2,3},则(?U A)∪B=.15.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy中,P是曲线C:y=e x上一点,直线l:x+2y+c=0经过点P,且与曲线C在P点处的切线垂直,则实数c的值为________.16.命题“x (0, ),sinx 1”的否认是▲.217.如图是依据部分城市某年6月份的均匀气温(单位:℃)数据获得的样本频次散布直方图,此中均匀气温的范围是.已知样本中均匀气温不大于22.5℃的城市个数为11,则样本中均匀气温不低于25.5℃的城市个数为.第2页,共17页18.从等边三角形纸片ABC上,剪下如下图的两个正方形,此中BC=3+,则这两个正方形的面积之和的最小值为.三、解答题19.(此题满分14分)已知函数f(x)x2alnx.(1)若f(x)在[3,5]上是单一递减函数,务实数a的取值范围;(2)记g(x)f(x)(2a)lnx2(b1)x,并设x1,x2(x1x2)是函数g(x)的两个极值点,若b 7,2求g(x1)g(x2)的最小值.20.(本小题满分10分)直线l的极坐标方程为θ=α(ρ∈R,ρ≠0),此中α∈[0,π),曲线C1的参数方x=cost(t为参数),圆C2的一般方程为x2+y2+23x=0.程为y=1+sint1)求C1,C2的极坐标方程;2)若l与C1交于点A,l与C2交于点B,当|AB|=2时,求△ABC2的面积.21.如图,在四边形ABCD中,AD DC,AD BC,AD 3,CD 2,AB 22, DAB 45,四第3页,共17页边形绕着直线AD旋转一周.1)求所成的关闭几何体的表面积;2)求所成的关闭几何体的体积.22.(本小题满分12分)如图,多面体ABCDEF中,四边形ABCD为菱形,且DAB60,EF//AC,AD2,EAED EF3.(1)求证:AD BE;(2)若BE5,求三棱锥F-BCD的体积.第4页,共17页23.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.(1)求双曲线的标准方程;(2)设F1和F为该双曲线的左、右焦点,点P在此双曲线上,且|PF||PF|=41,求∠FPF的余弦值.2121224.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1D.C订交于点(1)求证:BD⊥平面AA1C1C;(2)求二面角C1﹣AB﹣C的余弦值.第5页,共17页威宁彝族回族苗族自治县高级中学2018-2019学年上学期高二数学12月月考试题含分析(参照答案)一、选择题1.【答案】C【分析】试题剖析:由log2x1得0x2,202. C.由几何概型可得所求概率为故此题答案选303考点:几何概型.2.【答案】D5320【分析】解:∵101101(2)=1×2+0+1×2+1×2+0+1×2=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.3.【答案】B【分析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).应选:B.【评论】此题主要观察极值的观点、利用导数研究函数的单一性等基础知识,解题时要仔细审题,注意导数性质的合理运用.4.【答案】B第6页,共17页【分析】解:∵(﹣4+5i)i=﹣5﹣4i,∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.应选:B.5.【答案】D【分析】解:∵2S n n,∴1 =a+,解得a=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.考证:2S n=+=,==,所以知足2S n=a n+,∴.∴S n=.∴S2015=.应选:D.【评论】此题观察了猜想剖析概括得出数列的通项公式的方法、递推式的应用,观察了由特别到一般的思想方法,观察了推理能力与计算能力,属于难题.∴6.【答案】D∴【分析】解:设F1(﹣c,0),F2(c,0),则l的方程为x=﹣c,∴双曲线的渐近线方程为y=±x,所以A(﹣c,c)B(﹣c,﹣c)∴∵AB为直径的圆恰过点F2∴F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a∴离心率为==应选D.第7页,共17页【评论】此题观察了双曲线的性质,如焦点坐标、离心率公式.7.【答案】A【分析】考点:对数函数,指数函数性质.8.【答案】A【分析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0则c=7x﹣2y+7=0应选A.【评论】此题主要观察了直线方程的求解,解决此题的重点依据直线平行的条件设出所求的直线方程x﹣2y+c=0.9.【答案】A【分析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中起码有一个不为0,其余两个式子大于0,故①正确;可是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.应选A.【评论】本小题主要观察不等关系与不等式等基础知识,观察运算求解能力,观察逻辑思想能力.属于基础题.10.【答案】C第8页,共17页110110C101(1x)91,所以x2【分析】由于1x(1x)(1x)10项只好在x2015x2015x2015(1x)10睁开式中,即为C102x2,系数为C10245.应选C.11.【答案】C【分析】解:关于A??{0}“”,用∈不对,关于B和C,元素0与会合{0}用“∈”连结,故C正确;关于D,空集没有任何元素,{0}有一个元素,故不正确.12.【答案】B【分析】试题剖析:由于 A B 1,2,3,4,A B=1,A 1,B 1,所以当 A {1,2}时,B {1,2,4};当A {1,3}时,B {1,2,4};当B {1,3};当A {1,3,4}时,A {1,4}时,B {1,2,3};当A {1,2,3}时,B{1,4};当A {1,2,4}时,B {1,2};所以知足条件的“好集对”一共有个,应选 B.考点:元素与会合的关系的判断.【方法点晴】此题主要观察了元素与会合关系的判断与应用,此中解答中波及到会合的交集和会合的并集运算与应用、元素与会合的关系等知识点的综合观察,侧重观察了分类议论思想的应用,以及学生剖析问题和解答问题的能力,试题有必定的难度,属于中档试题,此题的解答中正确的理解题意是解答的重点.1111]二、填空题13.【答案】【分析】试题剖析:由三视图可知该几何体为三棱锥,此中侧棱VA底面ABC,且ABC为直角三角形,且AB5,VAh,AC6,所以三棱锥的体积为V1156h5h20,解得h4.32第9页,共17页考点:几何体的三视图与体积.14.【答案】{2,3,4}.【分析】解:∵全集U={0,1,2,3,4},会合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}15.【答案】-4-ln2【分析】点睛:曲线的切线问题就是观察导数应用,导数的含义就是该点切线的斜率,利用这个我们能够求出点的坐标,再依据点在线上(或点在曲线上),就能够求出对应的参数值。

威宁彝族回族苗族自治县实验中学2018-2019学年上学期高二数学12月月考试题含解析

威宁彝族回族苗族自治县实验中学2018-2019学年上学期高二数学12月月考试题含解析

威宁彝族回族苗族自治县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等()A .B .C .D .2. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=()A .kB .﹣kC .1﹣kD .2﹣k3. 若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5 B .C .D .21-7-4. 下列正方体或四面体中,、、、分别是所在棱的中点,这四个点不共面的一个图形是P Q R S ()5. 已知直线的参数方程为(为参数,为直线的倾斜角),以原点O 为极点,轴l 1cos sin x t y t αα=+⎧⎪⎨=+⎪⎩t αl x 正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当C 4sin(3πρθ=+l C ,A B 最小时,的值为( )||AB αA .B .C .D .4πα=3πα=34πα=23πα=6. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .7.函数f(x﹣)=x2+,则f(3)=()A.8B.9C.11D.108.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD9. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A .20种B .22种C .24种D .36种10.执行如图所示的程序,若输入的,则输出的所有的值的和为()3x xA.243 B.363 C.729 D.1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.11.如图,四面体D﹣ABC的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D﹣ABC中最长棱的长度为()A .B .2C .D .312.执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .36二、填空题13.已知向量若,则( )(1,),(1,1),a x b x ==- (2)a b a -⊥ |2|a b -=A .B .C .2D 23【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.14.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 . 15.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .16.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 . 17.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 . 18.等差数列的前项和为,若,则等于_________.{}n a n S 37116a a a ++=13S 三、解答题19.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2:=1.(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.20.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.21.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利总额y 元.(1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.22.(本小题满分14分)设函数,(其中,).2()1cos f x ax bx x =++-0,2x π⎡⎤∈⎢⎥⎣⎦a b R ∈(1)若,,求的单调区间;0a =12b =-()f x (2)若,讨论函数在上零点的个数.0b =()f x 0,2π⎡⎤⎢⎥⎣⎦【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.23.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围. 24.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点. 威宁彝族回族苗族自治县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵M 、G 分别是BC 、CD 的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键. 2. 【答案】D【解析】解:∵f (x )=ax 3+bx+1(ab ≠0),f (2016)=k ,∴f (2016)=20163a+2016b+1=k ,∴20163a+2016b=k ﹣1,∴f (﹣2016)=﹣20163a ﹣2016b+1=﹣(k ﹣1)+1=2﹣k .故选:D .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用. 3. 【答案】D111]【解析】试题分析:.()()()311112f f f -=-==+=考点:分段函数求值.4. 【答案】D 【解析】考点:平面的基本公理与推论.5. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为,直线的普通方程为,直线过定点,∵22((1)4x y +-=l tan (1)y x α-=-l M ,∴点在圆的内部.当最小时,直线直线,,∴直线的斜率为,∴||2MC <M C ||AB l ⊥MC 1MC k =-l 1,选A .4πα=6. 【答案】A【解析】解:因为两条直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8,l 1与l 2平行.所以,解得m=﹣7.故选:A .【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力. 7. 【答案】C 【解析】解:∵函数=,∴f (3)=32+2=11.故选C . 8. 【答案】C 【解析】根据题意有:A 的坐标为:(0,0,0),B 的坐标为(11,0,0),C 的坐标为(11,7,0),D 的坐标为(0,7,0);A 1的坐标为:(0,0,12),B 1的坐标为(11,0,12),C 1的坐标为(11,7,12),D 1的坐标为(0,7,12);E 的坐标为(4,3,12)(1)l 1长度计算所以:l 1=|AE|==13。

威宁县2018-2019学年度第一学期高中素质 教育期末测试试卷

威宁县2018-2019学年度第一学期高中素质 教育期末测试试卷

秘密★启用前威宁县2018-2019学年度第一学期高中素质教育期末测试试卷高一政治本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷第1页至第6页,第Ⅱ卷第7页至第8页。

考试結束后,请将本试卷和答题卡一并交回。

满分100分,考试用时90分钟。

第I卷(选择题,共50分)注意事项1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

选择题(本大题共25小题,每小题2分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 2018年11月1日,是2022年北京冬奥会和冬残奥会吉祥物面向全球征集的最后一天。

大兴区正式向冬奥组委会申报了麋鹿作为吉祥物的设计方案。

作为国家级保护动物的麋鹿,跑得快,游得快,善于爬冰卧雪,是名副其实的“运动健将”。

作为商标的奥运会吉祥物标识A.是商品,因为它是人类劳动的产物B.不是商品,因为它只有使用价值C.是商品,因为它是使用价值和价值的统体D.不是商品,因为它虽是劳动产品但不用于交换【分析】:本题考查:商品的基本属性,商品是用于交换的劳动产品.商品是使用价值和价值的统一体,二者缺一不可,其中商品的使用价值是指商品能够满足人们某种需要的属性,商品的价值是凝固在商品中无差别的人类劳动.使用价值是价值的物质承担者.A说法因果关系不成立,BD说法错误,故选:C.2.货币的职能是指货币在经济生活中所起的作用,是货币本质的体现,下列活动中货币执行其基本职能的是①超市中篮球标价120元/个②小张花5999元购买了一台笔记本电脑③李某收到银行利息700元④中国向南非提供1000万美元的国际救灾援助A.①②B.③④C.①③D.②④【解析】本题考查货币的基本职能。

货币的基本职能是价值尺度和流通手段,超市中篮球标价120元,货币执行的是价值尺度职能,小张购买一台笔记本电脑当场花5999元,货币执行的是流通手段职能,①②正确且符合题意;③中的货币执行是支付手段的职能,④中的货币执行的是世界货币的职能,故选A。

威宁彝族回族苗族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析

威宁彝族回族苗族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析

威宁彝族回族苗族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.2. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .3. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥14. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .5. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =6. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16B .6C .4D .87. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)8. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .69. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定10.已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 11.已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5C .7D .812.在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8C .6D .4二、填空题13.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.14.已知i是虚数单位,且满足i2=﹣1,a∈R,复数z=(a﹣2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)15.在(2x+)6的二项式中,常数项等于(结果用数值表示).16.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.17.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B方格的数字,则不同的填法共有种(用数字作答).A BC D18.已知函数为定义在区间[﹣2a,3a﹣1]上的奇函数,则a+b=.三、解答题19.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成22 列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留幸福感强幸福感弱总计留守儿童非留守儿童(2)从5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++附表:20.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?21.某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t 0 3 6 9 12 15 18 21 24y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行(1)现有三条y 对x 的回归直线方程: =﹣10x+170; =﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)23.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nna b 的前项和n S .24.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC 为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.威宁彝族回族苗族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D2.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S=…+=,n==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.3.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.4.【答案】B【解析】解:在等差数列{a n}中,由a4+a8=22,得2a6=22,a6=11.又a3=5,得d=,∴a1=a3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B.5.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

威宁彝族回族苗族自治县实验中学2018-2019学年高二上学期第二次月考试卷数学

威宁彝族回族苗族自治县实验中学2018-2019学年高二上学期第二次月考试卷数学

威宁彝族回族苗族自治县实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣32. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()3. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥ 4. 若某算法框图如图所示,则输出的结果为( )A .7B .15C .31D .635. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处6. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .7. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15C .10,10,30D .10,20,208. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .9. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q10.复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( )A .{2}B .{0,2}C .{﹣1,2}D .{﹣1,0,2}12.有以下四个命题:①若=,则x=y . ②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④二、填空题13.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.14.在(2x+)6的二项式中,常数项等于 (结果用数值表示).15.已知函数f (x )=,若f (f (0))=4a ,则实数a= .16.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.17.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.18.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________. 三、解答题19.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.20.如图,已知边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中点(Ⅰ)试在棱AD 上找一点N ,使得CN ∥平面AMP ,并证明你的结论. (Ⅱ)证明:AM ⊥PM .21.已知函数xx x f ---=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+(1)求A B ,B A C R ⋂)(;(2)若B C B =,求实数a 的取值范围.22.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r (],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t aa ì=+ïí=+ïî(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C的参数方程;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.23.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]24.已知函数f(x)=lnx的反函数为g(x).(Ⅰ)若直线l:y=k1x是函数y=f(﹣x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.威宁彝族回族苗族自治县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.2.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.3.【答案】C【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 4. 【答案】 D【解析】解:模拟执行算法框图,可得 A=1,B=1满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.5. 【答案】A【解析】解:如图,E 为底面ABCD 上的动点,连接BE ,CE ,D 1E , 对三棱锥B ﹣D 1EC ,无论E 在底面ABCD 上的何位置, 面BCD 1 的面积为定值,要使三棱锥B ﹣D 1EC 的表面积最大,则侧面BCE 、CAD 1、BAD 1 的面积和最大, 而当E 与A 重合时,三侧面的面积均最大,∴E 点位于点A 处时,三棱锥B ﹣D 1EC 的表面积最大. 故选:A .【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.6.【答案】B【解析】解:若,则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,化为a2+c2﹣b2=﹣ac,∴cosB==﹣,∵B∈(0,π),∴B=,故选:B.【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.7.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.8.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF|+|AF2|=2|F1F2|.∴a=2,1∴椭圆的离心率e===.故选:B.9.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.10.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.11.【答案】A【解析】解:∵x 2<2∴﹣<x<∴P={x ∈Z|x 2<2}={x|﹣<x<,x ∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2}, ∴∁U P={2} 故选:A .12.【答案】A【解析】解:①若=,则,则x=y ,即①对;②若lgx 有意义,则x >0,即②对; ③若x=y >0,则=,若x=y <0,则不成立,即③错;④若x >y >0,则 x 2>y 2,即④错. 故真命题的序号为①② 故选:A .二、填空题13.【答案】6【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446y x x ππππωωω=-+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1c o s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡⎤++-+=⎢⎥⎣⎦对一切x R ∈恒成立,∴1cos()06sin()06πωπω⎧+=⎪⎪⎨⎪=⎪⎩∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6.14.【答案】 240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.15.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.16.【答案】①②⑤【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.17.【答案】6【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6 【点评】本题考查集合的子集问题,属基础知识的考查.18.【答案】5627【解析】三、解答题19.【答案】(1)3π;(2) 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 20.【答案】【解析】(Ⅰ)解:在棱AD 上找中点N ,连接CN ,则CN ∥平面AMP ; 证明:因为M 为BC 的中点,四边形ABCD 是矩形, 所以CM 平行且相等于DN , 所以四边形MCNA 为矩形,所以CN ∥AM ,又CN ⊄平面AMP ,AM ⊂平面AMP , 所以CN ∥平面AMP .(Ⅱ)证明:过P 作PE ⊥CD ,连接AE ,ME ,因为边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中点所以PE ⊥平面ABCD ,CM=,所以PE ⊥AM ,在△AME 中,AE==3,ME==,AM==,所以AE 2=AM 2+ME 2,所以AM ⊥ME , 所以AM ⊥平面PME 所以AM ⊥PM .【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.21.【答案】(1){}210A B x =<<U ,(){}2310R C A B x x x =<<≤<I 或7;(2)1a ≤-或922a ≤≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年高二上学期期末模拟测试试卷
学校:贵州省威宁民族中学 姓名: 学号: 。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,选项填在答题卷上。

1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球.中的哪几个( ) A .①② B .①③ C .②③ D .①②③
2.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375,以此试验数据为依据可以估计出该不规则图形的面积为( ) A.83m 2 B .2 m 2 C.163
m 2 D .3 m 2
3.已知函数f (x )=sin x +3cos x ,当x ∈[0,π]时,f (x )≥1的概率为( ) A.13 B.14 C.15 D.12
4.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )
A .9
B .18
C .20
D .25
5.运行下面的程序,当输入n=840和m=1 764时,输出的结果是( ) INP A.84
B.12
C.168
D.252
6.已知F 1,F 2分别为双曲线x 2a 2-y 2
b
2=1(a >0,b >0)的左、右焦点,P 为双曲线上一点,PF 2与x 轴垂直,∠PF 1F 2=30°,
且虚轴长为22,则双曲线的标准方程为( )
A.x 24-y 22=1
B.x 23-y 22=1
C.x 24-y 2
8=1 D .x 2
-y 2
2
=1 7.某客运公司有200辆客车,为了解客车的耗油情况,现采用系统抽样的方法按1∶10的比例抽取一个样本进行检测,将客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是( ) A .3,23,63,102 B .31,61,87,127 C .103,133,153,193 D .57,68,98,108
8.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A.110
B.15
C.310
D.25
9在三棱柱ABC-A 1B 1C 1中,AA 1⊥底面ABC ,AB=BC=AA 1,∠ABC=90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1的夹角是( )
A.45°
B.60°
C.90°
D.120°
10.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0),若点M 到该抛物线焦点的距离为3,则|OM |=( )
A .2 2
B .2 3
C .4
D .2 5
11.已知A (1,2,-1)关于平面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则等于( ) A.(0,4,2) B.(0,-4,-2)
C.(0,4,0)
D.(2,0,-2)
12.如图所示,已知椭圆x 2a 2+y 2
b
2=1(a >b >0),以O 为圆心,短半轴长为半径作圆O ,过椭圆长轴的一端点P 作圆O 的两条切
线,切点分别为A ,B ,若四边形PAOB 为正方形,则椭圆的离心率为( ) A.3 B.2 C.5 D.3
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题纸上。

13.已知点M (3,0),椭圆x
2
4+y 2
=1与直线y =k (x +3)交于点A ,B ,则△ABM 的周长为________.
14.已知p :(x -m )2
>3(x -m )是q :x 2
+3x -4<0的必要不充分条件,则实数m 的取值范围为________. 15.抛掷两颗质地均匀的骰子,则向上的点数之积为6的概率等于
16.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为
三、解答题:本大题共6题,共70分。

把答案填在答题纸上。

17.已知抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点. (1)若AB ∥l ,且△ABD 的面积为1,求抛物线的方程;
(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.
18.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的昼夜温差与实验室每天每
100颗种子中的发芽数,得到如下资料: 该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的线性回归方程y ^=b ^
x +a ^

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为
b ^

∑i =1
n
x i y i -n x y
∑i =1
n
x 2i -n x
2
,a ^=y -b ^
x .)
19.在平面直角坐标系xOy 中,直线l 与抛物线24y x =相交于不同的A ,B 两点. (1)如果直线l 过抛物线的焦点,求OA OB ⋅的值;
(2)如果4OA OB ⋅=-,证明:直线l 必过一定点,并求出该定点.
20.“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801­2015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:
为了了解一批空气净化器(n 台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14]均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.1,5.2,5.7和5.9,并绘制了如下频率分布直方图.
(1)求n 的值及频率分布直方图中的x 值;
(2)以样本估计总体,试估计这批空气净化器(共2 000台)中等级为P2的空气净化器有多少台? (3)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P2的概率.
21.如图所示,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =
2.
(1)证明:AB 1⊥平面A 1B 1C 1;
(2)求直线AC 1与平面ABB 1所成的角的正弦值.
22.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝

⎭⎪⎫1,22在椭圆C 上.
(1)求椭圆C 的标准方程;
(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =5
3上找到一点P ,在椭圆C 上找
到一点Q ,满足PM =?若存在,求出直线的方程;若不存在,说明理由.。

相关文档
最新文档