SPSS探索性因子分析报告地过程

合集下载

用SPSS做探索性因子分析

用SPSS做探索性因子分析

DRAFT ONLY附:在SPSS 中做探索性因子分析110.12操作步骤23 第一步:载入数据并启动因子分析。

4567 第二步:选择因子所对应的测度项。

在这个研究中,我们选择对应于七个变量(包括8 自变量、因变量、与控制变量) 的测度项。

910告读者丗本书的正式版丆《社会调查设计与数据分析:从立题到发表》丆 终于作为国内最好的研究方法丛书-重庆大学万卷方法丛书的一员出版了乮六2011年6月乯。

有兴趣购买的读者现在可以从卓越购买。

相比于意见稿丆正式版丗- 增加了第13章丆构成性测度与PLS•C - 增加了第14章丆潜变量的调节作用 - 大量充实第15章丆论文写作与发表- 第12章中数据分析的结果做了大量更新丆原内容介绍的方法与数据分析的结论虽然正确丆数据计算结果有错误。

其它各章也做了相当多的修改丆不再赘述。

正式版比意见版的内容增加了大概三分之一。

这些新增的内容对于科研人员和方法论老师来讲是十分重要。

本附录是书稿的一部分。

DRAFT ONLY12第三步:设定因子求解办法为主成分分析法。

使用相关系数矩阵,并设定主要因子的34特征根大于1。

5678第四步:设计因子旋转方法为“Varimax”。

然后在“Factor Analysis”窗口中按“ok”开始计算。

910DRAFT ONLY1210.13主成分分析的结果34 对应于27个测度项,主成分分析法一共产生了27个因子。

这是可以产生的因子个数5 的上限。

“Total ”列报告了每一个因子所对应的特征值。

“% of Variance ”表示这个特征6 值在所有特征值和中的比例。

“Extraction Sums of Squared Loadings ”这一列反映了特征根7 大于1的因子。

在这个例子中,我们顺利地得到了7个因子。

相应地,在用碎石坡法对因8 子进行目测时,我们得到的结果是一致的。

请读者参看本章中的相应图例。

值得一提的9 是,第八个因子的特征根为0.967,十分接近1。

SPSS探索性因子分析报告地过程

SPSS探索性因子分析报告地过程

SPSS探索性因⼦分析报告地过程现要对远程学习者对教育技术资源和使⽤情况进⾏了解,设计⼀个李克特量表,如下图所⽰:问题题项从未使⽤很少使⽤有时使⽤经常使⽤总是使⽤ 1 2 3 4 5 a1 电脑 a2 录⾳磁带 a3 录像带 a4 ⽹上资料 a5 校园⽹或因特⽹a6 电⼦邮件 a7 电⼦讨论⽹ a8 CAI 课件 a9 视频会议 a10视听会议⼀.因⼦分析的定义在现实研究过程中,往往需要对所反映事物、现象从多个⾓度进⾏观测。

因此研究者往往设计出多个观测变量,从多个变量收集⼤量数据以便进⾏分析寻找规律。

多变量⼤样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据采集和处理的难度。

更重要的是许多变量之间存在⼀定的相关关系,导致了信息的重叠现象,从⽽增加了问题分析的复杂性。

因⼦分析是将现实⽣活中众多相关、重叠的信息进⾏合并和综合,将原始的多个变量和指标变成较少的⼏个综合变量和综合指标,以利于分析判定。

⽤较少的综合指标分析存在于各变量中的各类信息,⽽各综合指标之间彼此是不相关的,代表各类信息的综合指标成为因⼦。

因⼦分析就是⽤少数⼏个因⼦来描述许多指标之间的联系,以较少⼏个因⼦反应原资料的⼤部分信息的统计⽅法。

⼆.数学模型im im i i i i U F F F F Z +++++=αααα · · · 332211i Z 为第i 个变量的标准化分数;(标准分是⼀种由原始分推导出来的相对地位量数,它是⽤来说明原始分在所属的那批分数中的相对位置的。

)m F 为共同因⼦;m 为所有变量共同因⼦的数⽬;i U 为变量i Z 的唯⼀因素;im α为因⼦负荷。

(也叫因⼦载荷,统计意义就是第i 个变量与第m 个公共因⼦的相关系数,它反映了第i 个变量在第m 个公共因⼦上的相对重要性也就是第m 个共同因⼦对第i 个变量的解释程度。

)因⼦分析的理想情况,在于个别因⼦负荷im α不是很⼤就是很⼩,这样每个变量才能与较少的共同因⼦产⽣密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则i U 彼此间不能有关联存在。

SPSS探索性因子分析报告地过程

SPSS探索性因子分析报告地过程

现要对远程学习者对教育技术资源和使用情况进行了解,设计一个李克特量表,如下图所示:问题题项从未使用很少使用有时使用经常使用总是使用1 2 3 4 5a1 电脑a2 录音磁带a3 录像带a4 网上资料a5 校园网或因特网a6 电子邮件a7 电子讨论网a8 CAI课件a9 视频会议a10 视听会议一.因子分析的定义在现实研究过程中,往往需要对所反映事物、现象从多个角度进行观测。

因此研究者往往设计出多个观测变量,从多个变量收集大量数据以便进行分析寻找规律。

多变量大样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据采集和处理的难度。

更重要的是许多变量之间存在一定的相关关系,导致了信息的重叠现象,从而增加了问题分析的复杂性。

因子分析是将现实生活中众多相关、重叠的信息进行合并和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标,以利于分析判定。

用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标成为因子。

因子分析就是用少数几个因子来描述许多指标之间的联系,以较少几个因子反应原资料的大部分信息的统计方法。

二.数学模型im im i i i i U F F F F Z +++++=αααα · · · 332211i Z 为第i 个变量的标准化分数;(标准分是一种由原始分推导出来的相对地位量数,它是用来说明原始分在所属的那批分数中的相对位置的。

)m F 为共同因子;m 为所有变量共同因子的数目;i U 为变量i Z 的唯一因素;im α为因子负荷。

(也叫因子载荷,统计意义就是第i 个变量与第m 个公共因子的相关系数,它反映了第i 个变量在第m 个公共因子上的相对重要性也就是第m 个共同因子对第i 个变量的解释程度。

)因子分析的理想情况,在于个别因子负荷im α不是很大就是很小,这样每个变量才能与较少的共同因子产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则i U 彼此间不能有关联存在。

使用SPSS进行探索式因素分析的教程

使用SPSS进行探索式因素分析的教程

使用SPSS进行探索式因素分析的教程探索性因素分析是一种统计方法,用于确定一组变量之间的潜在结构。

SPSS是一种常用于数据分析的软件工具,它提供了强大的因素分析功能。

以下是一个使用SPSS进行探索性因素分析的简单教程,该教程可以帮助您了解如何使用SPSS来执行因素分析并对结果进行解释。

步骤1:导入数据步骤2:准备数据确保您的数据符合因素分析的前提条件。

确定您要进行因素分析的变量是否具有线性关系,并进行必要的数据转换(例如,对数转换)以满足这个条件。

步骤3:执行因素分析在SPSS的“分析”菜单下,选择“数据准备”和“因子”。

在弹出的对话框中,选择您要进行因素分析的变量并将其移动到“因子”框中。

选择“萃取方法”(如主成分分析或最大似然估计)并指定要提取的因素的数量。

您还可以选择执行因子旋转以获得更简单和解释性更强的因子结构。

步骤4:解读结果SPSS将生成一个因素分析的输出报告,其中包含多个表格和图形。

以下是一些常见的解读步骤:-总体解释:观察“总体解释”表,了解因子数量和提取方法的解释力度。

查看“因素”的特征值,了解提取的因子解释的总方差比例。

-因子负荷:查看“因子负荷”表,该表显示了原始变量与提取的因子之间的相关性。

较高的因子负荷表示原始变量与特定因子之间的较强关联。

-因子旋转:如果您选择了因子旋转,则查看“旋转因子载荷矩阵”表,该表显示了旋转后的因子负荷。

查看这些旋转后的因子负荷以确定是否存在更简单的因子结构。

-因子得分:根据选定的因子分析方法,可以生成每个观测值的因子得分。

这些得分表示了每个观测值在每个因子上的得分情况,可以用于后续的分析和解释。

步骤5:解释因子根据因子负荷和因子名称,解释每个因子代表的潜在结构。

结合领域知识和因子负荷,您可以确定每个因子是否与特定概念或潜在维度相关联。

步骤6:结果报告根据您的研究目的和需要,将因子分析的结果写入报告中。

确保清楚地描述因子数量、命名以及每个因子代表的结构或概念。

如何利用SPSS做因子分析等分析

如何利用SPSS做因子分析等分析

如何利用SPSS做因子分析等分析SPSS是一款强大的统计分析软件,可以用于各种数据分析任务,包括因子分析。

因子分析是一种用于探究观测变量之间关系的统计方法,它可以帮助我们理解数据集中不同变量之间的相关性和结构。

下面是一个简要的关于如何利用SPSS进行因子分析的步骤:1.准备数据首先,需要确保将数据整理成适合因子分析的格式。

确保数据集中的变量是连续型变量,并且不存在缺失值。

如果存在缺失值,需要进行数据处理或进行数据填充。

2.导入数据打开SPSS软件,然后依次选择“File”、“Open”来导入数据文件。

选择正确的文件路径和文件名,然后点击“打开”按钮。

3.创建因子分析模型选择“Analyze”菜单下的“Dimension Reduction”子菜单,然后选择“Factor”。

将需要进行因子分析的变量移至右侧的“Variables”框中,然后点击“OK”按钮。

4.选择因子提取方法5.设置因子提取参数出现因子提取对话框后,可以选择提取的因子数目和提取标准。

默认情况下,SPSS会提取所有可能的因子。

也可以根据实际需要进行调整。

完成设置后,点击“Continue”按钮。

6.选择因子旋转方法因子旋转可帮助我们更好地理解因子结构。

在因子分析向导的旋转选项中,可以选择旋转方法,如正交旋转和斜交旋转等。

选择一个适合你的需求的旋转方法,然后点击“Rotation”按钮。

7.设置旋转参数出现旋转参数对话框后,可以选择旋转的方法和旋转的标准。

默认情况下,SPSS会选择最大方差法和标准负荷量,但你可以根据需要进行调整。

完成设置后,点击“Continue”按钮。

8.检查结果在因子分析向导的“Descriptives”选项中,可以查看因子提取和旋转后的结果。

这些结果包括因子载荷矩阵、公因子方差和解释方差等信息。

仔细检查结果,确保它们符合你的预期。

9.解释结果在进行因子分析后,需要解释因子载荷矩阵以及其他统计结果。

因子载荷矩阵可以告诉你每个变量与每个因子之间的关系。

SPSS因子分析报告实例操作步骤

SPSS因子分析报告实例操作步骤

SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。

实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。

实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——Descriptive Statistics——OK (变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——Dimension Reduction——Factor ,变量选择标准化后的数据.3.点击右侧Descriptive,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlett’s text of sphericity,点击Continue.4.点击右侧Extraction,勾选Scree Plot和fixed number with factors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的Loding Plot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Display factor score coefficient matrix;点击Continue.7.点击右侧Options,勾选Coefficient Display Format选项组中所有选项,将Absolute value blow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive StatisticsN Minimum Maximum Mean Std. Deviation农、林、牧、渔业11 3.27 9.73 7.6645 1.97515采矿业11 .6 9.5 5.008 2.7092制造业11 .44 7.07 2.6900 2.22405电力、热力、燃气及水生产和11 3.36 15.05 10.3545 3.22751供应业建筑业11 1.79 23.51 7.8955 6.18302批发和零售业11 2.10 18.52 9.1018 5.50553交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903Valid N (listwise) 11该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。

SPSS探索性因子分析的过程

SPSS探索性因子分析的过程

SPSS探索性因子分析的过程探索性因子分析(Exploratory Factor Analysis,EFA)是一种统计方法,旨在帮助研究者理解和解释大量变量之间的关系。

它可以用于数据降维、信度分析和测量模型构建等多种研究目的。

以下是SPSS中进行探索性因子分析的详细步骤:1.数据准备:-打开SPSS软件,并导入数据文件。

-确保数据变量符合连续性或有序性测量标准。

如果存在分类变量,需要进行变量转换,如使用哑变量编码。

2.确定分析目的和因变量:-确定研究目的,明确是否要进行因子分析以及预期得到的结果。

-选择用于分析的变量,这些变量应当在理论上与研究目的相关,并且在实践中已经得到应用。

3.进行初始的探索性因子分析:-在「分析」菜单中选择「数据降维」,然后选择「因子」。

-从左侧的变量列表中选择需要进行因子分析的变量,将其添加到右侧的「因子分析」框中。

-在「提取」选项卡中,选择提取的因子数量。

通常,可以通过解释方差方法选择大于1的特征根值,或者根据理论确定因子数量。

-点击「列表」按钮,查看提取出的因子信息,包括特征根值、解释方差和因子载荷。

根据因子载荷大小判断变量与因子之间的关系。

4.进行旋转:-在「提取」选项卡中,点击「旋转」按钮。

- 在旋转选项卡中,选择旋转方法。

常用的旋转方法包括方差最大化(Varimax)、直角旋转(Orthogonal rotation)和斜交旋转(Oblique rotation)。

-点击「列表」按钮,查看旋转后的因子载荷。

选择合适的旋转结果,以使因子载荷更加清晰和解释性更好。

5.进行因子得分估计:-在主对话框中,点击「因子得分」选项卡。

-选择要估计的因子得分的方法。

可选择「最大似然估计」或「预测指标法」。

-点击「存储因子得分」复选框,以将因子得分保存到数据文件中。

-点击「OK」按钮进行分析。

6.结果解读:-分析结果包括提取的因子信息、旋转后的因子载荷、因子得分和信度分析等。

-根据因子载荷和理论知识,解释每个因子代表的潜在构念。

SPSS探索性因子分析的过程

SPSS探索性因子分析的过程

一.因子分析的定义在现实研究过程中,往往需要对所反映事物、现象从多个角度进行观测。

因此研究者往往设计出多个观测变量,从多个变量收集大量数据以便进行分析寻找规律。

多变量大样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据采集和处理的难度。

更重要的是许多变量之间存在一定的相关关系,导致了信息的重叠现象,从而增加了问题分析的复杂性。

因子分析是将现实生活中众多相关、重叠的信息进行合并和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标,以利于分析判定。

用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标成为因子。

因子分析就是用少数几个因子来描述许多指标之间的联系,以较少几个因子反应原资料的大部分信息的统计方法。

二.数学模型im im i i i i U F F F F Z +++++=αααα · · · 332211i Z 为第i 个变量的标准化分数;(标准分是一种由原始分推导出来的相对地位量数,它是用来说明原始分在所属的那批分数中的相对位置的。

)m F 为共同因子;m 为所有变量共同因子的数目;i U 为变量i Z 的唯一因素;im α为因子负荷。

(也叫因子载荷,统计意义就是第i 个变量与第m 个公共因子的相关系数,它反映了第i 个变量在第m 个公共因子上的相对重要性也就是第m 个共同因子对第i 个变量的解释程度。

)因子分析的理想情况,在于个别因子负荷im α不是很大就是很小,这样每个变量才能与较少的共同因子产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则i U 彼此间不能有关联存在。

所谓的因子负荷就是因子结构中原始变量与因子分析时抽取出共同因子的相关,即在各个因子变量不相关的情况下,因子负荷im α就是第i 个原有变量和第m 个因子变量间的相关系数,也就是i Z 在第m 个共同因子变量上的相对重要性,因此,im α绝对值越大则公共因子和原有变量关系越强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现要对远程学习者对教育技术资源和使用情况进行了解,设计一个李克特量表,如下图所示:问题 题项 从未使用 很少使用 有时使用 经常使用 总是使用 1 2 3 4 5 a1 电脑 a2 录音磁带 a3 录像带 a4 网上资料 a5 校园网或因特网a6 电子邮件 a7 电子讨论网 a8 CAI 课件 a9 视频会议 a10视听会议一.因子分析的定义在现实研究过程中,往往需要对所反映事物、现象从多个角度进行观测。

因此研究者往往设计出多个观测变量,从多个变量收集大量数据以便进行分析寻找规律。

多变量大样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据采集和处理的难度。

更重要的是许多变量之间存在一定的相关关系,导致了信息的重叠现象,从而增加了问题分析的复杂性。

因子分析是将现实生活中众多相关、重叠的信息进行合并和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标,以利于分析判定。

用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标成为因子。

因子分析就是用少数几个因子来描述许多指标之间的联系,以较少几个因子反应原资料的大部分信息的统计方法。

二.数学模型im im i i i i U F F F F Z +++++=αααα · · · 332211i Z 为第i 个变量的标准化分数;(标准分是一种由原始分推导出来的相对地位量数,它是用来说明原始分在所属的那批分数中的相对位置的。

)m F 为共同因子;m 为所有变量共同因子的数目;i U 为变量i Z 的唯一因素;im α为因子负荷。

(也叫因子载荷,统计意义就是第i 个变量与第m 个公共因子的相关系数,它反映了第i 个变量在第m 个公共因子上的相对重要性也就是第m 个共同因子对第i 个变量的解释程度。

)因子分析的理想情况,在于个别因子负荷im α不是很大就是很小,这样每个变量才能与较少的共同因子产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则i U 彼此间不能有关联存在。

所谓的因子负荷就是因子结构中原始变量与因子分析时抽取出共同因子的相关,即在各个因子变量不相关的情况下,因子负荷im α就是第i 个原有变量和第m 个因子变量间的相关系数,也就是i Z 在第m 个共同因子变量上的相绝对值越大则公共因子和原有变量关系越强。

在因子分析中有两个重要指针:一为“共同性”,对重要性,因此,im二为“特征值”。

所为共同性,也称变量共同度或者公共方差,就是每个变量在每个共同因子的负荷量的平方总和(一横列中所有因子负荷的的平方和),也就是个别变量可以被共同因子解释的变异量百分比,这个值是个别变量与共同因子间多元相关的平方。

从共同性的大小可以判断这个原始变量与共同因子间的关系程度。

如果大部分变量的共同度都高于0.8,则说明提取出的共同因子已经基本反映了各原始变量80%以上的信息,仅有较少的信息丢失,因子分析效果较好。

而各变量的唯一因素就是1减掉该变量共同性的值,就是原有变量不能被因子变量所能解释的部分。

所谓特征值,是每个变量在某一共同因子的因子负荷的平方总和(一直行所有因子负荷的平方和),在因子分析的的共同因子抽取中,特征值最大的共同因子会最先被抽取,其次是次大者,最后抽取的共同因子的特征值会最小,通常会接近于0。

将每个共同因子的特征值除以总题数,为此共同因子可以解释的变异量,因子分析的目的之一,即在因素结构的简单化,希望以最少的共同因子能对总变异量做最大的解释,因而抽取的因素越少越好,但抽取的因子的累积变异量越大越好。

三.SPSS中实现过程(一)录入数据(二)因子分析1.在菜单栏中依次单击“分析”|“降维”|“因子分析”选项卡,打开如图所示“因子分析”对话框。

从原变量量表中选择需要进行因子分析的变量,然后单击箭头按钮将选中的变量选入“变量”列表中。

“变量列表”的变量为要进行因子分析的的目标变量,变量在区间或比率级别应该是定量变量。

分类数据(如:性别等)不适合因子分析。

2.“描述按钮”:主要设定对原始变量的基本描述并对原始变量进行相关性分析。

选中“原始分析结果”复选框,表示因子分析未转轴前之共同性、特征值、变异数百分比及累积百分比,这是一个中间结果,对主成分分析来说,这些值是要进行分析变量的相关或协方差矩阵的对角元素。

KMO与Bartlett球形度检验用来检验适不适合用来做因子分析。

KMO检验,检验变量间的偏相关是否很小;巴特利特球形检验,检验相关阵是否是单位阵。

KMO值越接近1越适合做因子分析,巴特利特检验的原假设设为相关矩阵为单位阵,如果Sig值拒绝原假设表示变量间存在相关关系,因此适合做因子分析。

3.单击“抽取”按钮:主要设定提取公共因子的方法和公共因子的个数。

方法:主成分分析法。

SPSS默认方法。

该方法假定原变量是因子变量的线性组合,第一主成分有最大的方差,后续成分可解释的方差越来越少。

这是使用最多的因子提取方法。

分析:相关性矩阵。

表示以相关性矩阵作为提取公共因子的依据,当分析中使用不同的尺度测量变量时比较适合。

输出:未旋转的因子解。

显示未旋转时因子负荷量、特征值及共同性。

碎石图。

表示输出与每个因子相关联的特征值的图,该图用于确定应保持的因子个数,通常该图显示大因子的陡峭斜率和剩余因子平缓的尾部之间明显的中断。

按特征值大小排列,有助于确定保留多少个因子。

抽取:基于特征值。

表示抽取特征值超过指定值的所有因子,在“特征值大于”输入框中指定值,一般为1。

4.旋转:用于设定因子旋转的方法。

旋转的目的是为了简化结构,以帮助解释因子SPSS默认不旋转。

方法:最大方差法:是一种正交旋转方法,他使得对每个因子有高负载的变量的数目达到最小,并简化了因子的解释。

输出:旋转解。

该复选框只有在选择里旋转方法之后才能选择,对于正交旋转会显示已旋转的模式矩阵和因子变换矩阵。

5.得分:用于对因子得分进行设置,即计算因子得分。

取默认值,单击继续按钮。

6.选项:用于设定对变量缺失值的处理和系数显示的格式。

缺失值:按列表排除个案。

去除所有含缺失值的个案后再进行分析。

系数显示格式:按大小排列。

载荷系数按照数值的大小排列,并构成矩阵,使得在同一因子上具有较高载荷的变量的排列在一起,便于得到结论。

(三)结果分析1.KMO及Bartlett’检验当KMO值愈大时,表示变量间的共同因子愈多,愈适合进行因子分析,根据专家观点,如果KMO的值小于0.5时,较不宜进行因子分析,此处的KMO值为0.695,表示适合因子分析。

此外Bartkett’s球形检验的原假设为相关系数矩阵为单位阵,Sig值为0.000小于显著水平0.05,因此拒绝虚无假设,说明变量之间存在相关关系,适合做因为234.438,自由度为45,达到显著,代表母群体的相关矩阵间有共同因子子分析。

(Bartkett’s球形检验的2存在,适合进行因子分析。

)2. 共同性,显示因子间的共同性结果。

在主成分分析中,有多少个原始变量便有多少个成分,所以共同性会等于1,没有唯一因素。

所以本结果中间一栏显示初试共同性都为1,则表示抽取方法为主成分分析法,最右一栏为题项的共同性。

从该表可以得到,因子分析的变量共同度都非常高,表明变量中的大部分信息均能够被因子所提取,说明因子分析的结果是有效的。

3.整体解释的变异数--------旋转之前的数据。

该表给出了因子贡献率的结果,表中左侧部分为初始特征值,中间为提取主因子结果,右侧为旋转后的主因子结果。

“合计”指因子的特征值,“方差的%”表示该因子的特征值占总特征值百分比,“累积%”表示累积的百分比。

左边10个成分因子的特征值总和等于10。

解释变异量为特征值除以题项数,如第一个特征值的解释变异量为6.385÷10=63.579%。

其中自有前三个因子的特征值大于1,并且前三个因子的特征值之和占总特征值的89.366%,因此提取前三个因子作为主因子列于右边,这也是因子分析时所抽出的公共因子数。

由于特征值是由大到小排列,所以第一个公同因子的解释变异量通常是最大者,其次是第二个1.547,再是第三个1.032。

旋转后的特征值为4.389,3.137,1,411,解释变异量为43.885%,31.372%,14.108%,累积的解释变异量为43.885%,75.257%,89.366%。

旋转后的特征值不同于转轴前的特征值。

4.碎石图。

特征值的碎石图。

通常该图显示大因子的陡峭斜率和剩余因子平缓的尾部,之间有明显的中断。

一般取主因子在非常陡峭的斜率上,而处在平缓斜率上的因子对变异的解释非常小。

可以从此碎石图中看出,从第三个因素以后,坡线甚为平坦,因而可以保留3个因素较为适宜。

5.成分矩阵:给出了未旋转的因子载荷。

从该表中可以得到利用主成分分析方法提取的三个因子的载荷量,其中因子负荷量小于0.1的未被显示,因子为了方便解释因子含义,需要进行因子旋转。

6.旋转成份矩阵:给出了旋转后的因子载荷值,其中旋转方法采用的是Kaiser标准化的正交旋转法。

通过因子旋转,各个因子有了比较明确的含义。

从图中可以看出:a1,a8,a6,a5,a4位因子1,a10,a9,a7为因子2,a3,a2为因子3。

题项在其所属的因子层面顺序是按照因子负荷量的高低排列的。

7.成份转换矩阵:六.结果说明根据因子的特征值和旋转后的因子矩阵,采用了主成分分析法抽取出3个因子作为共同因子,并使用因子旋转方法中的最大方差法,按照从大到小的顺序进行排列,使得变量与因子的关系豁然明了,对其做如下表所示的因子分析摘要表。

题项解释变异量累积解释变异量抽取的因子因子1负荷量因子2负荷量因子3负荷量共同性A1电脑A8CAI课件A6电子邮件A5校园网或因特网A4网上资料43.885%43.885%0.9150.9120.8840.8240.7890.9280.9070.8670.9010.872A10视听会议A9视频会议A7电子讨论网31.372%75.257%0.9390.9240.8580.9390.9650.919A录像带14.1089.360.948 0.900A录像磁带8% 6% 0.652 0.738 特征值 4.389 3.137 1.411。

相关文档
最新文档