实验二 模拟音频信号采集电路
声音信号的采集和分析实验

声音信号的采集和分析实验一. 实验目的将声卡作为双通道A/D卡和D/A卡,通过虚拟示波器和频谱分析仪实现声音信号的采集和分析。
掌握声音信号的采集与分析技术。
二. 实验原理1、声卡简介声卡是多媒体电脑的主要部件之一,它包含记录和播放声音所需的硬件。
声卡的种类很多,功能也不完全相同,但它们有一些共同的基本功能:能选择以单声道或双声道录音,并且能控制采样速率。
声卡上有数模转换芯片(DAC,用来把数字化的声音信号转换成模拟信号,同时还有模数转换芯片(ADC,用来把模拟声音信号转换成数字信号。
图1 声卡结构示意图利用声卡的A/D、D/A功能,再配上虚拟仪器软件界面,就可以构成示波器、信号发生器和频谱分析仪等常用仪器。
图2是Virtins公司开发的声卡测量仪器,其主要功能包括示波器、信号发生器、万用表和频谱分析仪等。
图2 Virtins公司开发的声卡测量仪器的功能2、声卡的信号输入接口(A/D声卡信号输入接口包括MIC和Line in两种。
MIC插口的输入阻抗为范围是1500 Ω ~ 20 kΩ(与声卡品牌有关,最小输入电压10mV,单通道输入。
Line In插口的输入阻抗为10 kΩ~ 47 kΩ(与声卡品牌有关, 信号输入电平范围是500 mV ~ 2 V(与声卡品牌有关,双通道输入。
Line In插口的输入信噪比和带宽均高于MIC插口。
通常情况下,传感器信号可以直接用插头连接在Line in或MIC口上,如图3所示。
这时需保证输入信号电压许可范围内,否则可能会损坏声卡甚至计算机。
图3 传感器信号与声卡的直接连接为防止测量信号超声卡量程造成的损坏,可以采用下面的电路对声卡输入端进行保护,如图4所示。
用两个二极管将输入电压钳位在2 ⨯ 0.65 = 1.3 (V,可以承受最大± 50 V的电压(取决于电阻和二极管的最大允许电流。
图4声卡输入端保护连接3、声卡的输出接口(D/A声卡信号输出接口包括Speaker和Line out两种。
实验二声音信号的获取与处理

实验⼆声⾳信号的获取与处理计算机应⽤综合设计实验报告声⾳信号的获取与处理学院电⼦与信息学院专业电⼦信息科学类姓名学号提交⽇期2012年8 ⽉30⽇⾃评成绩良好⼀、实验⽬的本实验通过麦克风录制⼀段语⾳信号作为解说词并保存,通过线性输⼊录制⼀段⾳乐信号作为背景⾳乐并保存。
为录制的解说词配背景⾳乐并做相应处理,制作⼀段完整的带背景⾳乐的解说词。
⼆、实验内容及数据记录①⽤Windows录⾳机录制解说词◎执⾏【开始】|【所有程序】|【附件】|【娱乐】|【录⾳机】。
打开【录⾳机】,单击录⾳按钮开始录⾳。
当录制时间⼤于60秒时,继续点击按钮继续录制。
当朗读材料结束后单击停⽌按钮结束录制。
◎执⾏菜单栏【⽂件】|【另存为】命令,在出现的【另存为】对话框中的【格式】中单击【更改】按钮。
在弹出的【选择声⾳】对话框中修改【属性】项为【22.05kHz 16位86KB/s】,单击【确定】按钮,返回【另存为】对话框,选好保存的路径,⽂件名为【example_1】,类型保存为WA V。
②使⽤Cool Edit录制背景⾳乐◎打开Cool Edit Pro,单击⼯具栏的File按钮,在弹出的New Waveform对话框中,分别选择Sample Rate为44100,Channels为Stereo,Resolution为【16-bit】,单击OK按钮开始录⾳。
在录⾳结束后,单击⼯具栏的Stop按钮,完成录⾳。
◎单击⼯具栏的File|Save As,打开保存对话框,选择好保存路径,⽂件名为【example_2】,保存类型为Windows PCM(*.Wav),单击【保存】按钮,完成对背景⾳乐⽂件的录制。
③使⽤Cool Edit Pro进⾏混⾳处理Ⅰ⽤Cool Edit Pro打开【example_1】,执⾏Edit|Mix Paste命令,打开Mix Paste 对话框;设置L、R为90,选中Overlap,设置Crossfade值为50,选中From File,单击Select按钮选择作为背景⾳乐的⽂件【example_2】,设置Looppast为1,单击OK 按钮完成设置。
音频模拟原理实验报告

实验名称:音频模拟原理实验实验目的:1. 理解音频模拟信号的基本概念和特性。
2. 掌握音频模拟信号的产生、调制和解调的基本原理。
3. 通过实验加深对音频模拟电路的理解和应用。
实验时间:2023年10月25日实验地点:电子实验室实验器材:1. 音频信号发生器2. 双踪示波器3. 耳机4. 模拟调制解调器5. 电源实验原理:音频模拟信号是指连续变化的电信号,它能够模拟声音的频率、幅度和相位等特性。
在音频系统中,模拟信号的产生、传输、处理和接收是至关重要的。
本实验旨在通过模拟实验,验证音频模拟信号的基本原理。
实验步骤:一、音频信号的产生1. 打开音频信号发生器,调整频率至1kHz,幅度为1Vpp。
2. 将音频信号发生器的输出端连接到示波器的输入端,观察示波器上的波形。
3. 通过耳机监听音频信号,确认信号的正确性。
二、音频信号的调制1. 将音频信号发生器的输出端连接到模拟调制器的输入端。
2. 调整调制器的频率至10kHz,作为载波频率。
3. 调整调制器的幅度,使调制后的信号幅度适中。
4. 将调制后的信号输入示波器,观察波形变化。
三、音频信号的解调1. 将调制后的信号输入模拟解调器。
2. 调整解调器的频率,使其与调制频率一致。
3. 将解调后的信号输入示波器,观察波形变化。
4. 通过耳机监听解调后的信号,确认音频信号的正确性。
实验结果与分析:一、音频信号的产生实验结果显示,音频信号发生器能够产生稳定的1kHz正弦波信号。
通过示波器和耳机观察,信号波形和声音均符合预期。
二、音频信号的调制实验结果显示,调制后的信号波形发生明显变化,频率和幅度均有所调整。
通过示波器观察,调制后的信号已经成功将音频信号加载到10kHz的载波上。
三、音频信号的解调实验结果显示,解调后的信号波形与调制前的音频信号基本一致。
通过耳机监听,解调后的音频信号清晰可辨,验证了调制和解调过程的正确性。
实验结论:通过本次实验,我们成功地验证了音频模拟信号的产生、调制和解调的基本原理。
模拟语音信号处理电路设计

模拟语音信号处理电路设计湖北民族学院信息工程学院电子线路课程设计实验报告实验名称:模拟语音信号处理电路设计姓名:霍敏学号:K030841410专业:电气工程及其自动化指导教师:易金桥实验时间:2010年10月一、设计任务与要求功能要求:设计一个模拟语音信号产生电路,信号频率可调,经滤波和功率放大处理后,最后采用扬声器输出,并设计一个直流稳压电源给整个电路供电。
系统框图如下。
技术指标:1.模拟语音信号发生器输出正弦信号,其频率调节范围为50Hz-15kHz,供电电压为5V,输出信号Vp-p=5V;2.滤波器的截止频率f H=3000Hz,f L=300Hz,阻带衰减速率为-40dB/10倍频程,供电电压±12V;3.功率放大器Vi=0.2V,RL=8Ω(即扬声器),Po≥2W,γ<3%,供电电压±12V,采用集成功放LM386设计。
4.直流稳压电源采用集成三端稳压器,输出电压为±12V,+5V,的Iomax=0.2A,,+5V的Iomax=0.5A;纹波电压△Vop-p≤5mV,稳压系数Sv≤5X10-3。
二、实验原理此电路由模拟语音信号产生电路、滤波器、功率放大电路、直流稳压电源组成。
在试验中由模拟语音信号产生电路产生频率为50HZ~15KHZ的正弦波,然后经过低通滤波器和高通滤波器、最后产生300Hz ~3000Hz的波形,由于要求带宽范围很广,采用一级二阶高通滤波器和一级低通滤波器相极级联的方法,获得所要的波段,滤波器的带宽有两个滤波器的截止频率锁决定。
最后经过功率放大器进行放大。
原理图三、设计方法与过程A、带通滤波器的设计由于要求带宽范围很广,采用一级二阶高通滤波器和一级低通滤波器相极级联的方法,获得所要的波段,这时滤波器的阻带衰减为-40dB/10,速率滤波器的带宽有两个滤波器的截止频率锁决定。
A(1)低通滤波器由图5.6.4(b)得f0=300hz时,C=0.068uF.对应参数K=5查设计表5.6.4得Av=1时,电容=0.00C,R1=4.422,R2=5.399,将上述电阻值乘于参数K=5,得R1=8.5K,R2=32.4K,C=2.5nfA(2)高通滤波器同理,由计算得高通滤波器的R1=5.62K,R2=11.3K,C=68nFB 、模拟语音信号产生电路此电路由555定时器产生方波信号,在经过积分电路变为正弦波。
信号采集电路pcb设计实验报告

信号采集电路pcb设计实验报告
实验目的:掌握信号采集电路PCB设计的基本原理和方法。
实验内容:
1. 确定信号源和采样要求:确定需要采集的信号类型、频率范围和幅度。
2. 器件选型:选择适合信号采集的放大器、滤波器和模数转换器等电路器件。
3. PCB布局设计:根据选用的电路器件,进行合理的PCB布局设计,确保信号的稳定性和噪声的控制。
4. 线路连线:根据电路原理图进行线路连线,包括确定电源接入、地线连接和信号传输线路。
5. PCB制作和组装:将设计好的PCB板打样制作,并进行元器件组装。
6. 测试和优化:通过实际测试采集到的信号,根据测试结果进行电路优化和调整。
实验结果:
1. PCB设计合理、布局合理,各信号线路传输稳定,满足信号采集要求。
2. 实际采集到的信号与预期一致,信号质量良好。
3. 电路噪声控制效果良好,无明显杂音和干扰。
结论:
通过本次实验,我们成功掌握了信号采集电路PCB设计的基本原理和方法,实现了信号的稳定采集和控制噪声的要求。
实验2、PCM实验

实验 2 PCM 编译码实验一、实验目的1.理解 PCM 编译码原理及 PCM 编译码性能;2.熟悉 PCM 编译码专用集成芯片的功能和使用方法及各种时钟间的关系;3.熟悉语音数字化技术的主要指标及测量方法。
二、实验原理1.抽样信号的量化原理模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。
模拟信号的量化分为均匀量化和非均匀量化两种。
把输入模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所示。
图 2-1 均匀量化过程示意图均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号m(t ) 较小时,则信号量化噪声功率比也很小。
这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中往往采用非均匀量化的方法。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔D v 也小;反之,量化间隔就大。
非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。
非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。
现在广泛采用两种对数压缩,美国采用μ压缩律,我国和欧洲各国均采用 A 压缩律。
本实验中 PCM 编码方式也是采用 A 压缩律。
A 律压扩特性是连续曲线,实际中往往都采用近似于 A 律函数规律的 13 折线(A=87.6)的压扩特性。
这样,它基本保持连续压扩特性曲线的优点,又便于用数字电路来实现,如下图所示。
图2-2 13 折线特性表 2-1 列出了 13 折线时的x 值与计算得的x 值的比较。
实验报告二.数字音频资源的获取、处理及应用

专业年级学号姓名实验时间实验地点实验二数字音频资源的获取、处理及应用一、实验类型基础性实验二、实验目的1.了解数字音频资源的常用格式2.学会数字音频资源的获取方法3.能够对数字音频资源进行简单的加工处理4.学会在多媒体课件、主题学习网站中使用数字音频资源的方法三、实验环境.能够连接的多媒体计算机;.耳麦;.、录音机、等软件。
四、实验内容. 比较文件和文件存储尺寸:将一个格式的声音文件,转换为文件,记录其前后存储尺寸,并说明其变化情况。
.声音片段截取:从网络上下截一个音频文件,运用声音处理软件截取一段音频,保存为。
.声音录制与处理:使用声音软件录制自己的一段声音,要求采样率,声道立体声,采样精度位,然后进行如下操作:1)加上回音;2)选择一首背景音乐,给自己的声音加上伴奏;3)将录音头尾空白部分删除;4)做淡入与淡出处理;结果保存为。
.声音文件的使用:从网上下载或自己制作声音文件,经过处理后,运用到中。
五、实验步骤一、常用数字音频文件的格式.文件格式() 文件格式,扩展名为,是公司开发的一种音频文件格式。
音频文件是对声音模拟波形的采样而形成的文件格式,即将声音源发出的模拟音频信号通过采样、量化转换成数字信号,再进行编码,以波形文件()的格式保存起来,记录的是数字化波形数据。
其中声音信息采样频率和量化的精度直接影响声音的质量和数据量。
常用的采样频率有三种:(音质);(广播音质);(电话音质)。
量化的精度即采样位数可分为位(低品质)、位(高品质)。
频率越高,量化精度越大,声音质量越好,但是存储量也越大。
由于格式的数字音频未经过压缩,文件的体积很大,不方便通过网络和其他媒介来传递和保存,所以在教学中,它多用于表示短时间的效果声,不适于用作长时间的背景音乐或解说。
.文件格式( )文件格式,扩展名为,是一种基于Ⅲ压缩的数字音频文件格式。
它能够在影响音质很小的前提下根据人的听觉特性,将音频文件按照某种算法压缩为原来存储量的。
DSP实验二 语音信号分析与处理,南京理工大学紫金学院实验报告,信号与系统

实验二语音信号分析与处理学号姓名注:1)此次实验作为《数字信号处理》课程实验成绩的重要依据,请同学们认真、独立完成,不得抄袭。
2)请在授课教师规定的时间内完成;3)完成作业后,请以word格式保存,文件名为:学号+姓名4)请通读全文,依据第2及第3 两部分内容,认真填写第4部分所需的实验数据,并给出程序内容。
1. 实验目的(1) 学会MATLAB的使用,掌握MATLAB的程序设计方法(2) 掌握在windows环境下语音信号采集的方法(3) 掌握MATLAB设计FIR和IIR滤波器的方法及应用(4) 学会用MATLAB对语音信号的分析与处理方法2. 实验内容录制一段自己的语音信号,对录制的语音信号进行采样,画出采样后语音信号的时域波形和频谱图,确定语音信号的频带范围;使用MATLAB产生白噪声信号模拟语音信号在处理过程中的加性噪声并与语音信号进行叠加,画出受污染语音信号的时域波形和频谱图;采用双线性法设计出IIR滤波器和窗函数法设计出FIR滤波器,画出滤波器的频响特性图;用自己设计的这两种滤波器分别对受污染的语音信号进行滤波,画出滤波后语音信号的时域波形和频谱图;对滤波前后的语音信号进行时域波形和频谱图的对比,分析信号的变化;回放语音信号,感觉与原始语音的不同。
3. 实验步骤1)语音信号的采集与回放利用windous下的录音机或其他软件录制一段自己的语音(规定:语音内容为自己的名字,以wav格式保存,如wql.wav),时间控制再2秒之内,利用MATLAB提供的函数wavread 对语音信号进行采样,提供sound函数对语音信号进行回放。
[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率nbits表示采样位数。
Wavread的更多用法请使用help命令自行查询。
2)语音信号的频谱分析利用fft函数对信号进行频谱分析3)受白噪声干扰的语音信号的产生与频谱分析4)据语音信号的频带情况,设计FIR和IIR两种滤波器5)用滤波器对受污染语音信号进行滤波FIR滤波器fftfilt函数对信号进行滤波,IIR滤波器用filter函数对信号进行滤波6)比较滤波前后信号的波形与频谱7)回放滤波后的语音信号4. 实验数据及实验程序实验数据1)原始语音信号的时域波形和频谱图00.51 1.52 2.53 3.54 4.5x 104-0.2-0.15-0.1-0.0500.050.10.150.20.25声音波形图00.51 1.52 2.53 3.54 4.5x 104100200300400500600声音频谱图2)带限白噪声信号的时域波形和幅频特性00.51 1.52-1-0.500.511.5窄带噪声波形图00.51 1.52-1-0.50.511.5窄带噪声频谱图3)受污染语音信号的时域波形和频谱图0246x 104-0.2-0.15-0.1-0.0500.050.10.150.20.25混合信号波形图0246x 1040100200300400500600混合信号频谱图4)滤波器的频响特性图 FIR 滤波器的频响特性图00.10.20.30.40.50.60.70.80.91-8000-6000-4000-2000Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.10.20.30.40.50.60.70.80.91-300-200-1000100Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )246x 104-0.3-0.2-0.100.10.20.30.40.50.60.70246x 1040.20.40.60.811.21.4IIR 滤波器的频响特性图0100200300400500600-300-250-200-150-100-5050低通滤波器幅度谱图5)滤波后语音信号的时域波形和频谱图00.51 1.52 2.53 3.54 4.5x 1041002003004005006000246x 104-0.1-0.050.050.10.15恢复信号波形图0246x 104100200300400500600恢复信号频谱图6)滤波前后的语音信号时域波形对比图和频谱对比图0246x 104-0.2-0.15-0.1-0.0500.050.10.150.20.25信号波形图0246x 104-0.1-0.0500.050.10.15恢复信号波形图0246x 104100200300400500600信号频谱图0246x 104100200300400500600恢复信号频谱图实验程序: 1)实验主程序 clc;clear;close%[x,fs,bits]=wavread('录音的名字'); [x,fs,bits]=wavread('录音的名字.wav'); %x=wavread('录音的名字'); sound(x,fs,bits);plot(x);title('声音波形图') figure(2)%y=fft(x,4096); y=fft(x);plot(abs(y));title('声音频谱图')fh=0.9;fl=0.25;n=1;length(x);y1=fh*sinc(fh*(n-5000))-fl*sinc(fl*(n-5000)); figure(5)subplot(1,2,1);plot(y1);title('窄带噪声波形图') y2=fft(y1);subplot(1,2,2);plot(abs(y2));title('窄带噪声频谱图') y3=y1+x; figure(6)subplot(1,2,1);plot(y1+x);title('混合信号波形图') y4=fft(y3);subplot(1,2,2);plot(abs(y4));title('混合信号频谱图')wp=0.5;ws=0.55; detaw=ws-wp; n=ceil(8*pi/detaw); wc=(wp+ws)/2;b1=fir1(n-1,wc/pi,hanning(n));freqz(b1,1,41856)f1=fftfilt(b1,y3);plot(f1)f2=fft(f1);plot(abs(f2))f11=filter (bz,az, y3);figure(8)subplot(1,2,1);plot(f11);title('恢复信号波形图')f22=fft(f11);subplot(1,2,2);plot(abs(f22));title('恢复信号频谱图') sound(f11,fs,bits);figure(9)subplot(1,2,1);plot(x);title('信号波形图')subplot(1,2,2);plot(f11);title('恢复信号波形图') figure(10)subplot(1,2,1);plot(abs(y));title('信号频谱图') subplot(1,2,2);plot(abs(f22));title('恢复信号频谱图') 2)FIR滤波器子程序fh=0.9;f1=0.25;n=1:length(x);h=fh*sinc(fh*(n-5000))-f1*sinc(f1*(n-5000));figure(4)subplot(1,2,1);plot(h);p=fft(h);subplot(1,2,2);plot(abs(p));3)IIR滤波器子程序fs=44100;rp=3;rs=20;wp1=0.5;wss1=0.55;op1=2*fs*tan(wp1/2);os1=2*fs*tan(wss1/2);[N,wc]=buttord(op1,os1,rp,rs,'s')[z,p,k]=buttap(N);[ba,aa]=zp2tf(z,p,k);[b,a]=lp2lp(ba,aa,wc);[bz,az]=bilinear(b,a,fs);H=freqz(bz,az);ma=20*log10(abs(H));figure(7)plot(ma);title('低通滤波器幅度谱图')。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟音频信号采集电路设计
音频信号采集技术在电路中非常广泛的应用,如在语音录放系统、网络语音通讯、生物医学信号处理等领域都有举足轻重的作用,而音频转换的技术则在电视广播领域有着广泛的运用,是音频数字化的必然要求。
要求:
1、采集频带宽度50Hz--20KHz。
2、采集语音输入电压信号1-5mV。
3、滤波电路采用源滤波器。
4、放大电路采用仪表放大器设计。
5、电压增益10dB左右,增益可调。
6、有电路仿真电路图,实装图,实物。
7、电路设计形式不限,可以用单片机实现,可以用分立三极管放大电路和集成电路实现。