第六章 实数单元 易错题综合模拟测评检测试卷

合集下载

人教版第六章 实数单元 易错题综合模拟测评学能测试试题

人教版第六章 实数单元 易错题综合模拟测评学能测试试题

人教版第六章 实数单元 易错题综合模拟测评学能测试试题一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)2.下列结论正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .带根号的数都是无理数D .实数包括正实数、负实数3.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧 4.下列说法正确的是 ( ) A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等5.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 6.下列实数中是无理数的是( )A .B .C .0.38D .7.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 42=±D .()515-=- 8.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个9.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个 B .2个 C .3个D .4个 10.已知实数x ,y 241x y -+y 2﹣9|=06x y + ) A .±3 B .3 C .﹣33 D .33二、填空题11.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.12.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________. 13.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.14.116的算术平方根为_______. 15.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.16.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______. 17.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.18.若实数x ,y (2230x y ++=,则22x y --的值______.19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(I )解方程:log x 4=2;(Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案)22.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________. 23.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++ 24.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ ,将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = . (2)直接写出下列各式的计算结果:①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 25.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x 的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O ,对于两个不同的点A 和B ,若点A 、 B 到点O 的距离相等,则称点A 与点B 互为基准等距变换点.例如图2,点A 表示数-1,点B 表示数5,它们与基准点O 的距离都是3个单位长度,我们称点A 与点B 互为基准等距变换点.①记已知点M 表示数m ,点N 表示数n ,点M 与点N 互为基准等距变换点.I .若m=3,则n= ;II .用含m 的代数式表示n= ;②对点M 进行如下操作:先把点M 表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N ,若点M 与点N 互为基准等距变换点,求点M 表示的数; ③点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度,对Q 点做如下操作: Q 1为Q 的基准等距变换点,将数轴沿原点对折后Q 1的落点为Q 2这样为一次变换: Q 3为Q 2的基准等距变换点,将数轴沿原点对折后Q 3的落点为Q 4这样为二次变换: Q 5为Q 4的基准等距变换点......,依此顺序不断地重复变换,得到Q 5,Q 6,Q 7....Q n ,若P 与Q n .两点间的距离是4,直接写出n 的值.26.请回答下列问题:(117介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ; (2)x 172的小数部分,y 171的整数部分,求x = ,y = ; (3)求)17yx -的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:用定义的规则分别计算出P1,P2,P3,P4,P5,P6,观察所得的结果,总结出规律求解.详解:因为P1(1,-1)=(0,2);P2(1,-1)=P1(P1(1,-1))=P1(0,2)=(2,-2);P3(1,-1)=P1(P2(2,-2))=(0,4);P4(1,-1)=P1(P3(0,4))=(4,-4);P5(1,-1)=P1(P4(4,-4))=(0,8);P6(1,-1)=P1(P5(0,8))=(8,-8);……P2n-1(1,-1)=……=(0,2n);P2n(1,-1)=……=(2n,-2n).因为2017=2×1009-1,所以P2017=P2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.2.B解析:B【分析】利用无理数,实数的性质判断即可.【详解】A、无限小数不一定是无理数,错误;B、无理数都是无限小数,正确;C、带根号的数不一定是无理数,错误;D、实数包括正实数,0,负实数,错误,故选:B.【点睛】考核知识点:实数.理解实数的分类是关键.3.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.4.D解析:D【分析】当m是负数时,-m表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A选项错误;B. 平方根等于它本身的数为0,故B选项错误;C. 倒数是本身的数为1和﹣1,故C选项错误;D. 互为相反数的绝对值相等,故D选项正确;故选D【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键.5.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A中,当a=0,则a=0;选项B中,当a=0,则a²=0;选项C中,当a=100,则(a-100)²=0;选项D中,无论a取何值,a²+0.01始终大于0.故选:D.【点睛】此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质.6.A解析:A【解析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【详解】解: A 、π是无限不循环小数,是无理数;B 、=2是整数,为有理数;C 、0.38为分数,属于有理数; D. 为分数,属于有理数.故选:A.【点睛】本题考查的是无理数,熟知初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解答此题的关键.7.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意; 42=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 8.B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误; ③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.9.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 10.D解析:D【分析】由非负数的性质可得y 2=9,4x-y 2+1=0,分别求出x 与y 的值,代入所求式子即可.【详解】2﹣9|=0,∴y 2=9,4x ﹣y 2+1=0,∴y =±3,x =2,∴y+6=9或y+6=3,3=故选:D .【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11.-5【解析】∵32<10<42,∴的整数部分a=3,∵b 的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b 的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.12.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.13.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!14.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可.. 【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.15.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.16.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.17.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.18.【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】解:∵∴∴∴故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进解析:1-【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】(20y +=∴x 20y 0+=⎧⎪⎨+=⎪⎩∴x -2=⎧⎪⎨⎪⎩∴(2222-=-=2-3=-1y故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进行化简求值.19.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(I ) x=2;(Ⅱ) 3; (Ⅲ) -2017.【分析】(I )根据对数的定义,得出x 2=4,求解即可;(Ⅱ)根据对数的定义求解即;;(Ⅲ)根据log a (M •N )=log a M +log a N 求解即可.【详解】(I )解:∵log x 4=2,∴x 2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴log 28=3,故答案为3;(Ⅲ)解:(lg 2)2+lg 2•1g 5+1g 5﹣2018= lg 2•( lg 2+1g 5) +1g 5﹣2018= lg 2 +1g 5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义.22.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.23.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭111111111++++3447710111290133018=-⎛⎫⨯-+--- ⎪⎝⎭ 1330111⎛=⨯-⎫ ⎪⎝⎭ 30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.24.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008=10074032. 【点睛】本题考查了有理数的运算,根据题意找出规律是解决问题的关键.25.(1)见解析;(2)①I ,1;II 4-m ②112;③2或6. 【分析】(1)在数轴上描点;(2)由基准点的定义可知,22m n +=; (3)(3)设P 点表示的数是m ,则Q 点表示的数是m+8,由题可知Q 1与Q 是基准点,Q 2与Q 1关于原点对称,Q 3与Q 2是基准点,Q 4与Q 3关于原点对称,…由此规律可得到当n 为偶数,Q n 表示的数是m+8-2n ,P 与Q n 两点间的距离是4,则有|m-m-8+2n|=4即可求n ;【详解】解:(1)如图所示,(2)①Ⅰ.∵2是基准点,m=3,3到2的距离是1,所以到2的距离是1的另外一个点是1,∴n=1;故答案为1;Ⅱ.有定义可知:m+n=4,∴n=4-m ;故答案为:4-m②设点M 表示的数是m ,先乘以23,得到23m ,再沿着数轴向右移动2个单位长度得到点N 为23m+2,∵点M 与点N 互为基准等距变换点,∴23m+2+m=4,∴m=112; ③设P 点表示的数是m ,则Q 点表示的数是m+8,如图,由题可知Q 1表示的数是4-(m+8),Q 2表示的数是-4+(m+8),Q 3表示的数是8-(m+8),Q 4表示的数是-8+(m+8),Q 5表示的数是12-(m+8),Q 6表示的数是-12+(m+8)…∴当n 为偶数,Q n 表示的数是-2n+(m+8),∵若P 与Q n 两点间的距离是4,∴|m-[-2n+(m+8)]|=4,∴n=2或n=6.【点睛】本题考查新定义,数轴上数的特点;能够理解基准点的定义是解决问题的基础,从定义中探究出基准点的两个点是关于2对称的;(3)中找到Q 的变换规律是解题的关键.26.(1)4;b =(2−4;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x −4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.。

第六章 实数 单元检测卷(解析版)

第六章 实数 单元检测卷(解析版)

第六章《实数》单元检测卷一、单选题1.下列各式中错误的是( )=±0.6B=0.6A.±C.―【答案】D=±0.6,A中式子不符合题意;【解析】【解答】A.±B.=0.6,B中式子不符合题意;C.―D.=1.2,D中式子符合题意.故答案为:D.【分析】利用二次根式的性质求解即可。

2等于( )【答案】A【解析】故答案为:A.【分析】根据算术平方根的定义,即正数正的平方根。

据此求值即可.3.(七下·博白期末)16的平方根是( )A.4B.±4C.-4D.±8【答案】B【解析】【解答】解:16的平方根为±4.故答案为:B【分析】根据正数的平方根有两个,它们互为相反数,就可求出16的平方根。

4.(七下·福建期中)下列式子中,正确的是( )A=―B.――0.6C―3D=±6【答案】A―=−2,A符合题意.【解析】【解答】A.B. 原式=−,B不符合题意.C. 原式=|−3|=3,C不符合题意.D. 原式=6,D不符合题意.故答案为:A.【分析】任何数都有立方根,且都只有一个立方根.正数的立方根是正数,负数的立方根是负数,0的立方根是0.5.(八上·南召期中)下列各式正确的是( )=1B2C―6D=―3A.±【答案】D=±1,故不符合题意;【解析】【解答】A、±B、C、=6,故不符合题意;=-3,故符合题意.D、故答案为:D.【分析】一个正数的平方根有两个,它们互为相反数,一个正数的算数平方根只有一个是一个正数;一个负数的平方的算数平方根等于它的相反数;任何一个数都只有一个立方根,一个负数的立方根是一个负数,根据性质即可一一判断。

6.下列说法正确的是( )A.负数没有立方根B.如果一个数有立方根,那么它一定有平方根C.一个数有两个立方根D.一个数的立方根与被开方数同号【答案】D【解析】【解答】解:A、错误.负数的立方根的负数.B、错误.负数没有平方根.C、错误.一个数只有一个立方根.D、正确.一个数的立方根与被开方数同号.故选D.【分析】根据立方根、平方根的意义以及性质一一判断即可.7.(七下·合肥期中)下列实数中,无理数是( )A .3.1415926BC .―D .―237【答案】B 【解析】【解答】A 、3.1415926是有理数,不符合题意;B 、是无理数,符合题意;C 、 ―=-0.8,是有理数,不符合题意;D 、 ―237是有理数,不符合题意.无理数是:.故答案为:B .【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.由此即可判定选择项.8.(2022七上·萧山期中)在227,3.14,π2,0.43,0.3030030003……(每两个3之间依次多一个零)中,无理数的个数有( )A .2个B .3个C .4个D .5个【答案】A【解析】【解答】解:227是分数,是有理数,不是无理数;3.14是有限小数,是有理数,不是无理数;=―3是整数,是有理数,不是无理数;π2是无限不循环小数,是无理数;0.43是循环小数,是有理数;0.3030030003……(每两个3之间依次多一个零)是无限不循环小数,是无理数;∴无理数一共有2个,故答案为:A.【分析】无理数就是无限不循环的小数,常见的无理数有四类:①开方开不尽的数,②与π有关的数,③规律性的数,如0.101001000100001000001…(每两个1之间依次多一个0)这类有规律的数,④锐角三角函数,如sin60°等,根据定义即可一一判断.9.(八上·遂宁期末)在实数―,3,0,0.5中,最小的数是( )A.―【答案】A<0<0.5<3,【解析】【解答】根据题意可得:―所以最小的数是―故答案为:A.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.10.(九下·云南月考)一个正方形的面积是15,估计它的边长在( ).A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【解析】【解答】∵一个正方形的面积是15,.∴其边长=<<,∴3<故答案为:C.【分析】先求出正方形的边长,再估算出其大小即可.二、填空题11.若|x-3|+ =0,则x2y的平方根是 【答案】±6【解析】【解答】解:由题意得:x-3 =0,x+2y-11=0,解得x=3,y=4,∴x2y=36,∴x2y的平方根是±6.故答案为:±6.【分析】根据非负数之和等于0的条件分别列方程,联立求解,代入原式求值,再根据平方根的定义即可解答.12.(2022七上·滨城期中)若单项式2xy m+1与单项式1x n―2y3是同类项,则m―n= .3【答案】―1【解析】【解答】∵单项式2xy m+1与单项式13x n―2y3是同类项∴n―2=1m+1=3,解得n=3m=2∴m―n=2―3=―1.故答案为:―1.【分析】根据同类项的定义可得n―2=1m+1=3,求出m、n的值,再将m、n的值代入m-n计算即可。

人教版七年级初一数学下学期第六章 实数单元 易错题综合模拟测评学能测试试题

人教版七年级初一数学下学期第六章 实数单元 易错题综合模拟测评学能测试试题

人教版七年级初一数学下学期第六章 实数单元 易错题综合模拟测评学能测试试题一、选择题1.下列式子正确的是( )A .25=±5B .81=9C .2(10)-=﹣10D .±9=32.3164的算术平方根是( ) A .12 B .14C .18D .12±3.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 4.下列说法中正确的个数有( ) ①0是绝对值最小的有理数; ②无限小数是无理数;③数轴上原点两侧的数互为相反数; ④相反数等于本身的数是0; ⑤绝对值等于本身的数是正数; A .2个B .3个C .4个D .5个5.下列实数中是无理数的是( ) A .B .C .0.38D .6.27 ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.已知,x y 为实数且|1|10x y ++-=,则2012x y ⎛⎫⎪⎝⎭的值为( )A .0B .1C .-1D .20128.若320,a b -+=则+a b 的值是( ) A .2 B 、1 C 、0 D 、1-9.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±, 10.下列各数中,介于6和7之间的数是( )A 43B 50C 58D 339二、填空题11.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.12.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.13.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____. 14116的算术平方根为_______. 15.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.16.3是______的立方根;81的平方根是________32=__________.17.31.35 1.105≈3135 5.130≈30.000135-≈________. 18.34330035.12=30.3512x =-,则x =_____________. 19.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 20.已知2(21)10a b ++-=,则22004a b +=________.三、解答题21.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 22.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; . 请选择其中一个立方根写出猜想、验证过程。

第六章 实数单元 易错题测试综合卷检测

第六章 实数单元 易错题测试综合卷检测

第六章 实数单元 易错题测试综合卷检测一、选择题1.若24a =,29b =,且0ab <,则-a b 的值为( )A .5±B .2-C .5D .5- 2.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C .m 倍D .2m 倍 3.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b = 4.下列数中,有理数是( )A .﹣7B .﹣0.6C .2πD .0.151151115… 5.25的算术平方根是( )A .5±B .5C .52±D .56.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 7.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x8.设n 为正整数,且n 65n+1,则n 的值为( )A .5B .6C .7D .89.下列各数中,属于无理数的是( )A .227B 2C 9D .0.101001000110.2243522443355+=22444333555+=,仔细222020420203444333+个个 ) A .20174555个 B .20185555个 C .20195555个 D .20205555个 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.如果某数的一个平方根是﹣5,那么这个数是_____.15.27的立方根为 .16.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 17.3是______的立方根;81的平方根是________32=__________.18.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.19.31.35 1.105≈3135 5.130≈30.000135-≈________.20.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式253a 2b 3a 3=+,求a ,b 的值. 解:因为253a 2b 3a 3-=+ 所以()253a 2b a 33=-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y 是有理数,并且满足等式2x 2y 2y 1742--=-x y +的值.22.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭ 114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 23.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:…(1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____;(3)请利用上述规律计算:20+21+22+23+ (2100)24.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 25.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳26.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先根据平方根的定义求出a 、b 的值,再由ab <0,可知a 、b 异号,由此即可求出a-b 的值.【详解】解:∵a 2=4,b 2=9,∴a=±2,b=±3,而ab <0,∴①当a >0时,b <0,即当a=2时,b=-3,a-b=5;②a <0时,b >0,即a=-2时,b=3,a-b=-5.故选:A .【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.C解析:C【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R ,增加前的半径为r ,根据题意得:πR 2=mπr 2,∴,故选:C .【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.A解析:A【分析】根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.【详解】A. 有理数是整数和分数的统称,正确;B. 立方等于本身的数是-1,0,1,错误;C. a -不一定是负数,错误;D. 若a b =,则a b =或=-a b ,错误;故答案为:A .【点睛】本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.4.B解析:B【分析】根据有理数的定义选出即可.【详解】解:A是无理数,故选项错误;B、﹣0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.l51151115…是无理数,故选项错误.故选:B.【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.5.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.6.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.C解析:C【分析】根据点E,F,M,N表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x<2<y,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.8.D解析:D【分析】n的值.【详解】∴89,∵n n+1,∴n=8,故选;D.【点睛】9.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A、227是小数,不是无理数;B是无理数;C是整数,不是无理数;D、0.1010010001是有限小数,不是无理数,故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.10.D解析:D【分析】当根号内的两个平方的底数为1位数时,结果为5,当根号内的两个平方的底数为2位数时,结果为55,当根号内的两个平方的底数为3位数时,结果为555,据此即可找出规律,根据此规律作答即可.【详解】5,55=,555=,……20205555个.故选:D .【点睛】本题主要考查了与算术平方根有关的数的规律探求问题,解题的关键是由前三个式子找到规律,再根据所找到的规律解答.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π. 解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.13.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 14.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.15.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算16.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.17.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.18.【分析】根据公式代入计算即可得到答案.【详解】∵a ⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正解析:【分析】根据公式代入计算即可得到答案.【详解】∵a ⊗b =a 2﹣2b +1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.19.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】n=中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】5.130≈≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.20.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键.解析:1 2020【分析】设1120182019m=+,代入原式化简即可得出结果.【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.23.24-23=16-8=23 24﹣23=16﹣8=23 2n ﹣2(n ﹣1)═2(n ﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n 个等式,利用提公因式法即可证明规律的正确性. (3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n 个等式:2n -2(n-1)=2(n-1);证明:2n -2(n-1), =2(n-1)×(2-1), =2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.24.(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a为不同值时,p的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14;(2)如果2﹣p=18,那么p=3;如果a﹣2=116,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【点睛】本题考查新定义,能够理解a的负P次幂等于a的p次幂的倒数这个规定定义是解题关键.25.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.26.(1;(2)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=,∴a∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.。

七年级初一数学下学期第六章 实数单元 易错题难题综合模拟测评学能测试试卷

七年级初一数学下学期第六章 实数单元 易错题难题综合模拟测评学能测试试卷

七年级初一数学下学期第六章 实数单元 易错题难题综合模拟测评学能测试试卷一、选择题1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .862.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④(*)(*2)aa b c b c c+=+. A .①②③B .①②④C .①③④D .②④3.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .64.下列说法正确的是( ) A .有理数是整数和分数的统称 B .立方等于本身的数是0,1 C .a -一定是负数D .若a b =,则a b =5.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( ) A .n +1B .21n +C .1n +D .21n6.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( ) A .4mB .4m +4nC .4nD .4m ﹣4n7.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 8.下列各数中,比-2小的数是( ) A .-1 B .-5 C .0D .19.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 10.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 12.若已知()21230a b c -+++-=,则a b c -+=_____.13.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.14.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.15.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 16.一个数的立方等于它本身,这个数是__.17.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____. 18.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.19.若实数x ,y 满足()2230x y +++=,则()22xy --的值______.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文.22.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32 ,即2<<3, 7的整数部分为27-2). 请解答:(110的整数部分是__________,小数部分是__________(2)5a 37的整数部分为b ,求a +b 5的值; 23.探究:()()()211132432222122222222-=⨯-⨯=-==-== ……(1)请仔细观察,写出第5个等式; (2)请你找规律,写出第n 个等式; (3)计算:22018201920202222-2++⋅⋅⋅++. 24.你能找出规律吗?(1=,=;=,= .“<”).(2)请按找到的规律计算:;(3)已知:a,b= (可以用含a ,b 的式子表示). 25.(1)计算:321|2(2)-++-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根. 26.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数. (1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。

人教版第六章 实数单元 易错题综合模拟测评检测试题

人教版第六章 实数单元 易错题综合模拟测评检测试题

人教版第六章 实数单元 易错题综合模拟测评检测试题一、选择题 1.已知253.6=15.906,25.36=5.036,那么253600的值为( )A .159.06B .50.36C .1590.6D .503.6 2.16的算术平方根是( ) A .2 B .2± C .4D .4± 3.下列各数是无理数的为( )A .-5B .πC .4.12112D .0 4.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④ 5.如果-1<x<0,比较x 、x 2、x -1的大小 A .x -1<x<x 2B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x 6.0,0.121221222,13,25,2π,33这6个实数中有理数的个数是( ) A .2 B .3 C .4 D .57.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n8.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158-9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.比较552、443、334的大小( ) A .554433234<< B .334455432<< C .553344243<<D .443355342<< 二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.64的立方根是___________. 13.若已知x-1+(y+2)2=0,则(x+y)2019等于_____.14.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.15.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.16.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).17.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____18.如果某数的一个平方根是﹣5,那么这个数是_____.19.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=. ①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.22.阅读理解.459253.∴151<21的整数部分为1,12.解决问题:已知a ﹣3的整数部分,b ﹣3的小数部分.(1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.23.(1)计算:321|2(2)-++-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根.24.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 .(3)求52014+52013+52012+…+52+5+1的值.25.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围. 26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据已知等式,利用算术平方根性质判断即可得到结果.【详解】,=×100=503.6,故选:D.【点睛】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.2.C解析:C【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题.【详解】∵(±4)2=16,∴16的算术平方根是4.故选:C.【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.3.B解析:B【分析】根据无理数与有理数的概念进行判断即可得.【详解】解:A. -5是有理数,该选项错误;B. π是无理数,该选项正确;C. 4.12112是有理数,该选项错误;D. 0是有理数,该选项错误.故选:B【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等.4.D解析:D【分析】根据实数、无理数,算术平方根的意义和实数的大小比较方法逐一进行判断即可得到答案.【详解】是无理数,正确;是实数,正确;是2的算术平方根,正确;④12,正确.故选:D【点睛】本题考查了实数、无理数,算术平方根的意义和实数的大小比较方法等知识点,是常考题型.5.A解析:A【分析】直接利用负整数指数幂的性质结合x 的取值范围得出答案.【详解】∵-1<x <0,∴x -1<x <x 2,故选A.【点睛】此题主要考查了负整数指数幂的性质以及实数的大小比较,正确利用x 的取值范围分析是解题的关键.6.C解析:C【分析】根据有理数的定义:整数和分数统称为有理数即可判断.【详解】0是整数,是有理数,0.121221222是有限小数,是有理数,13是分数,是有理数,,是有理数,2是含π的数,是无理数,3含开方开不尽的数,是无理数,综上所述:有理数有0,0.121221222,134个, 故选C.【点睛】 本题考查了实数的定义,解答此题要明确有理数和无理数的概念和分类.有理数是指有限小数和无限循环小数,无理数是无限不循环小数.7.B解析:B【分析】根据n+p=0可以得到n 和p 互为相反数,原点在线段PN 的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n 和p 互为相反数,∴原点在线段PN 的中点处,∴绝对值最大的一个是Q 点对应的q .故选B .【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.8.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=, 故选:A .【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键.9.B解析:B【分析】【详解】由被开方数越大算术平方根越大,得由不等式的性质得:故选B.本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C .【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.13.-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】解:∵+(y+2)2=0∴∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】(y+2)2=0∴1020 xy-=+=⎧⎨⎩12x y =⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x 与y 是解题的关键.14.【分析】设点C 表示的数是x ,再根据中点坐标公式即可得出x 的值.【详解】解:设点C 表示的数是x ,∵数轴上1、的点分别表示A 、B ,且点A 是BC 的中点,根据中点坐标公式可得:,解得:,故答案解析:2-【分析】设点C 表示的数是x ,再根据中点坐标公式即可得出x 的值.【详解】解:设点C 表示的数是x ,∵数轴上1的点分别表示A 、B ,且点A 是BC 的中点,根据中点坐标公式可得:=12,解得:,故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键. 15.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.16.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a (b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.17.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.18.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.19.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找=+≥(1)n n【分析】=+=(2(3=+n(n≥1)的等式表示出来是n n=+≥(1)【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是=+≥n n(1)=+≥(1)n n【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为10,x =10时,第2次输出的结果为11052⨯=, x =5时,第3次输出的结果为5+3=8, x =8时,第4次输出的结果为1842⨯=, x =4时,第5次输出的结果为1422⨯=, x =2时,第6次输出的结果为1212⨯=, x =1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时, 原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-. 【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.22.(1)a =1,b ﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a =1,b 4;(2)(﹣a )3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a )3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.23.(11;(2【分析】(1)根据立方根、绝对值、乘方进行运算即可;(2)利用平方根、立方根的定义求出x 、y 的值,再利用算术平方根的定义即可解答【详解】解:(1)原式=1334-+-++=(2)∵21x -的平方根为2±,21x y +-的立方根为2-∴2x 142x y 18-=⎧⎨+-=-⎩∴5x 2y 12⎧=⎪⎨⎪=-⎩ ∴52=2+12=172-⨯x y ∴2x y -【点睛】本题考查了绝对值、乘方、平方根、立方根、算术平方根的定义,解题的关键是掌握计算的方法,准确的进行化简求值.24.(1)a2015﹣1;(2)22015﹣1;(3)2015514-. 【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)=a 2015﹣1,故答案为:a 2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1 =14×(5﹣1)×(52014+52013+52012+…+52+5+1) =2015514-. 【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.25.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值;(3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>= ∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.26.(1)12;(2)-4;(3)2--或14-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a 、b 的值,根据两点间的距离,可得答案;(2)根据A 和B 所对应的数,可得AB 中点所表示的数,即为点P 所表示的数; (3)根据题意可以得到c 的值,然后利用分类讨论的方法即可求得点P 对应的数.【详解】解:(1)∵2110|2|02ab a ⎛⎫++-= ⎪⎝⎭, ∴11002ab +=,20a -=, 解得:a=2,b=-10, ∴A 、B 之间的距离为:2-(-10)=12;(2)∵P 到A 和B 的距离相等,∴此时点P 所对应的数为:()21042+-=-; (3)∵|ac|=-ac ,a=2>0,∴c <0,又|AC|=∴c=2-BC=12-∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14-【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别.。

人教版第六章 实数单元 易错题难题综合模拟测评检测试题

人教版第六章 实数单元 易错题难题综合模拟测评检测试题

人教版第六章 实数单元 易错题难题综合模拟测评检测试题一、选择题1.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④(*)(*2)aa b c b c c+=+. A .①②③ B .①②④ C .①③④ D .②④ 2.若24a =,29b =,且0ab <,则-a b 的值为( )A .5±B .2-C .5D .5-3.2(4)-的平方根与38-的和是( ) A .0 B .﹣4 C .2 D .0或﹣4 4.16的算术平方根是( )A .2B .2±C .4D .4±5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >06.若2a a a -=,则实数a 在数轴上的对应点一定在( ) A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧7.下列各式正确的是( ) A .164=±B .1116493= C .164-=- D .164=8.设42-的整数部分为a ,小整数部分为b ,则1a b-的值为( ) A .2-B .2C .212+D .212-9.若33=0x y +,则x 和y 的关系是( ). A .x =y =0 B .x 和y 互为相反数 C .x 和y 相等D .不能确定10.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 12.观察下面两行数: 2,4,8,16,32,64…① 5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).13.观察下列算式:16+4=20;40+4=44;…__________ 14.如果某数的一个平方根是﹣5,那么这个数是_____. 15.27的立方根为 .16.比较大小:12__________0.5.(填“>”“<”或“=”)17.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.18.3是______的立方根;81的平方根是________2=__________.19.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b .例如8914*=,那么*(*16)m m =__________.20.7.071≈≈≈≈,按此规_____________三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________.(3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; … (1)你发现的规律是_________________.(用含n 的式子表示; (2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 24.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算:22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果)25.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2x+5的平方根是它本身,求x+y 的立方根. 26.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】①中(*)2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b ca b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B.2.A解析:A 【分析】首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b 的值.【详解】解:∵a2=4,b2=9,∴a=±2,b=±3,而ab<0,∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;②a<0时,b>0,即a=-2时,b=3,a-b=-5.故选:A.【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.D解析:D【分析】【详解】=4,4的平方根是±2,的平方根为±2,2,﹣2+(﹣2)=﹣4,2+(﹣2)=0.0或﹣4.故选:D.【点睛】本题考查的是实数的运算,熟知平方根的定义及立方根的定义是解答此题的关键.4.C解析:C【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题.【详解】∵(±4)2=16,∴16的算术平方根是4.故选:C.【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.5.D【分析】根据实数在数轴上的位置判断大小,结合实数运算法则可得.【详解】根据数轴,﹣4<a<﹣3,﹣2<b<﹣1,0<c<1,2<d<3,∵﹣4<a<﹣3,0<c<1,∴ac<0,故A错误;∵﹣2<b<﹣1,0<c<1,∴1<|b|<2,0<|c|<1,故|c|<|b|,故B错误;∵﹣4<a<﹣3,2<d<3,∴﹣3<﹣d<﹣2,故a<﹣d,故C错误;∵﹣2<b<﹣1,2<d<3,∴b+d>0,故D正确.故选:D.【点睛】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键.6.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.7.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】=,故原选项错误;4=,故原选项错误;D. 4=,计算正确,故此选项正确.故选D.【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.解析:D 【详解】解:∵1<2<4,∴1<2, ∴﹣2<<﹣1,∴2<43, ∴a=2,b=422=-2∴1222122a b -==-=-. 故选D . 【点睛】本题考查估算无理数的大小.9.B解析:B 【解析】分析:先移项,再两边立方,即可得出x=-y ,得出选项即可. 详解:,= ∴x=-y ,即x 、y 互为相反数, 故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y .10.A解析:A 【分析】的点可能是哪个. 【详解】∵12,的点可能是点P . 故选A . 【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.二、填空题【解析】 【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=. “解析:12++n n . 【解析】 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.515 【分析】由已知条件可得:①中各数都符合2n 的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可. 【详解】根据题意可知,①中第8个数为28=256;②第8解析:515 【分析】由已知条件可得:①中各数都符合2n 的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可. 【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259, 故它们的和为256+259=515, 故答案为:515. 【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.13.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.14.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.15.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算16.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.17.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.18.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵,∴81的平方根是;∵ ,∴;故答案为:2解析:根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.19.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】7.071≈≈≈≈,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的估值扩大1022.36≈.故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.三、解答题21.(1)5012nn =∑;(2)1011nn =∑;(3)50【分析】(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【详解】解:解:(1)根据题意得:2+4+6+8+10+ (100)5012nn =∑;(2)1+12+13+…+110=1011nn=∑;(3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85.故答案为:(1)5012nn =∑;(2)1011nn =∑;(3)85.【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.(1)111111n n n n-⨯=-+++;(2)20172018-【分析】(1)由已知的等式得出第n个式子为111111 n n n n-⨯=-+++;(2)根据规律将原式中的积拆成和的形式,运算即可.【详解】(1)∵第1个式子为11 1122 -⨯=-+第2个式子为1111 2323 -⨯=-+第3个式子为1111 3434 -⨯=-+……∴第n个式子为111111 n n n n-⨯=-+++故答案为:111111 n n n n-⨯=-+++(2)由(1)知:原式1111111 (1)()()()2233420172018 =-++-++-++⋅⋅⋅+-+112018=-+20172018=-【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.23.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.24.(1)5766⨯;9111010⨯(2)10092017(3)12n n + 【解析】试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017 ; (3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.25.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数; 所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x=﹣5,∴x+y=﹣3﹣5=﹣8,∴x+y的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.26.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.。

人教版第六章 实数单元 易错题专项训练检测试卷

人教版第六章 实数单元 易错题专项训练检测试卷

人教版第六章 实数单元 易错题专项训练检测试卷一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6662.对于实数a ,我们规定,用符号a ⎡⎤⎣⎦表示不大于a 的最大整数,称a ⎡⎤⎣⎦为a 的根整数,例如:93⎡⎤=⎣⎦,103⎡⎤=⎣⎦.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5 B .10 C .15 D .16 3.16的算术平方根是( )A .2B .2±C .4D .4±4.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 5.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( ) A .26B .65C .122D .1236.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0C .27的平方根是7D .负数有一个平方根7.15a ,小数部分为b ,则a-b 的值为() A .615-B 156C .815D 1588.估计25+的值在( ) A .1到2之间 B .2到3之间C .3到4之间D .4到5之间9.下列说法正确的是( )A .a 2的正平方根是aB 819=±C .﹣1的n 次方根是1D 321a --一定是负数10.下列各组数中互为相反数的是( ) A .32(3)-B .﹣|2|2)C .﹣38和38-D .﹣2和12二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______12.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…; (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 14.估计512与0.5的大小关系是:512_____0.5.(填“>”、“=”、“<”) 15.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.16.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.17.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.18.若()221210a b c -+-=,则a b c ++=__________. 19.23(2)0y x --=,则y x -的平方根_________.20.已知2(21)10a b ++-=,则22004a b +=________.三、解答题21.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.22.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 23.阅读下列解题过程:(12====;(2== 请回答下列问题:(1)观察上面解题过程,的结果为__________________.(2)利用上面所提供的解法,请化简: ......24.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(2325.z 是64的方根,求x y z -+的平方根 26.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; 2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.点睛本题考查了估算无理数的大小.2.C解析:C【分析】对各选项中的数分别连续求根整数即可判断得出答案.【详解】解:当x=5时,5221,满足条件;当x=10时,10331,满足条件;当x=15时,15331,满足条件;当x=16时,16442,不满足条件;∴满足条件的整数x的最大值为15,故答案为:C.【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.3.C解析:C【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题.【详解】∵(±4)2=16,∴16的算术平方根是4.故选:C.【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.4.B解析:B【解析】根据数轴的意义,由图示可知b<0<a,且|a|<|b|,因此根据有理数的加减乘除的法则,可知a+b<0,a-b>0,ab<0,ab<0.故选B. 5.B解析:B 【分析】依照题意分别求出a l =26,n 2=8,a 2=65,n 3=11,a 3=122,n 4=5,a 4=26…然后依次循环,从而求出结果. 【详解】解:∵n 1=5,a l =52+1=26, n 2=8,a 2=82+1=65, n 3=11,a 3=112+1=122, n 4=5,…,a 4=52+1=26… ∵20183=6722÷∴20182=65=a a . 故选:B . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题.6.B解析:B 【分析】根据0.5是0.25的一个平方根可对A 进行判断;根据一个正数的平方根互为相反数可对B 进行判断;根据平方根的定义对C 、D 进行判断. 【详解】A 、0.5是0.25的一个平方根,所以A 选项错误;B 、正数有两个平方根,且这两个平方根之和等于0,所以B 选项正确;C 、72的平方根为±7,所以C 选项错误;D 、负数没有平方根. 故选B . 【点睛】本题考查了平方根:若一个数的平方定义a ,则这个数叫a 的平方根,记作a≥0);0的平方根为0.7.A解析:A 【分析】先根据无理数的估算求出a 、b 的值,由此即可得. 【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=,故选:A .【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8.D解析:D 【分析】2与3之间,所以2在4与5之间. 【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5, 故选:D . 【点睛】键.9.D解析:D 【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可. 【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9=,错误;C :当n 是偶数时,()1=1n- ;当n 时奇数时,()1=-1n-,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键.10.B解析:B 【分析】根据相反数的定义,找到只有符号不同的两个数即可. 【详解】解:A 3,3B 、﹣||,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.故选:B.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题11..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数. 故 解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数p . 故答案为:p . 【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.-1 【分析】根据新定义中的运算方法求解即可. 【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…, ∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1 【分析】根据新定义中的运算方法求解即可. 【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…, ∴f(2019)=2018. ∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…, ∴1()2019f 2019,∴1(2019)()2019f f 2018-2019=-1. 故答案为:-1. 【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.14.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵11120.52222-=-=20-> , ∴202> , ∴10.52> ,故答案为>.15.1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1解析:1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1或5. 【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.或 【解析】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得. 【详解】M{3,2x +1,4x -1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.17.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.18.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a、b、c的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 19.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y -3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】 解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.20.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】 本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.三、解答题21.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可;(2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】 解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知:193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.22.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1-2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【详解】==解:(1(2......==-1+10=9【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.24.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可;(2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实数单元 易错题综合模拟测评检测试卷一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 25 15 20 2621 2728则第20行从左至右第10个数为( )A .425B .426C .427D .4282.下列各数中,不是无理数的是( )AB .﹣3π CD .0.121 121 112… 3.计算:122019(1)(1)(1)-+-++-的值是( ) A .1- B .1 C .2019 D .2019-4.2,估计它的值( )A .小于1B .大于1C .等于1D .小于0 5.下列数中π、2273.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个 B .2个C .3个D .4个 6.下列各数中,比-2小的数是( )A .-1 B.C .0 D .1 7.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7D .负数有一个平方根 8.某数的立方根是它本身,这样的数有( )A .1 个B .2 个C .3 个D .4 个 9.,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定10.下列说法中不正确的是( )A.是2的平方根 B2的平方根C .2D .2二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).13.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.14.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__.15.规定运算:()a b a b *=-,其中b a 、为实数,则4)+=____16.已知2m =,则m 的相反数是________.17.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.18.若x <0____________.19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.已知正实数x 的平方根是m 和m b +.(1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.22.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试: 第一步:∵3100010=,31000000100=,1000593191000000<<,∴31059319100<<.∴能确定59319的立方根是个两位数.第二步:∵59319的个位数是9,39729=∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,而333275964<<,则33594<<,可得3305931940<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39.(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2)填空:321952=__________.23.对于实数a,我们规定用{a }表示不小于a 的最小整数,称{a}为 a 的根整数.如{10}=4.(1)计算{9}=?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次{12}=4,再进行第二次求根整数{4}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.24.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n a a a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究 (1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1=1; C .3④=4③ D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④. 25.定义☆运算:观察下列运算: (+3)☆(+15)= +18(﹣14)☆(﹣7)= +21 (﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23 0☆(﹣15)= +15 (+13)☆ 0= +13☆两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, . (2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.26.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而12<2212的小数部分.请解答下列问题:(121_______,小数部分是_________;(2)7的小数部分为15a ,b ,求7a b +(3)已知:100110x y +=+,其中x 是整数,且01y <<,求11024x y +-的平方根。

【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.2.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】B.3π-是无理数;12=,是有理数; D.0.121 121 112…是无理数;故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.A解析:A【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案.【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1,∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+- =2019(1)-=1-;故选:A.【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.4.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.5.C解析:C【解析】【分析】根据无理数的概念解答即可.【详解】解:在π、227 3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数是: π 3.2121121112…(每两个2之间多一个1),共3个, 故选C.【点睛】本题考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.是有理数中的整数.6.B解析:B【分析】根据正数大于零,零大于一切负数,两个负数比大小,绝对值越大负数反而小,可得答案【详解】解:1>0>-1,|>|-2|>-1 ,∴-2<-1,故选:B .【点睛】本题考查了实数大小比较,利用负数的绝对值越大负数反而小是解题关键.7.B解析:B【分析】根据0.5是0.25的一个平方根可对A 进行判断;根据一个正数的平方根互为相反数可对B进行判断;根据平方根的定义对C、D进行判断.【详解】A、0.5是0.25的一个平方根,所以A选项错误;B、正数有两个平方根,且这两个平方根之和等于0,所以B选项正确;C、72的平方根为±7,所以C选项错误;D、负数没有平方根.故选B.【点睛】本题考查了平方根:若一个数的平方定义a,则这个数叫a的平方根,记作a≥0);0的平方根为0.8.C解析:C【分析】根据立方根的定义,可以先设出这个数,然后列等式进行求解.【详解】设这个说为a,=,a∴3a=a,∴a=0或±1,故选C.【点睛】本题考查立方根,熟练掌握立方根的定义是解题关键.9.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.10.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.二、填空题11.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8解析:515【分析】由已知条件可得:①中各数都符合2n 的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.13.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:221 3n n -+. 15.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.16.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正解析:【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,=-+=,x x故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.20.-4【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键. 三、解答题21.(1)x 7-1;(2)x n+1-1;(3)51312-. 【分析】 (1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312- 故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-. 【点睛】 本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10=100=,11059210100000000<<,10100∴<,∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,,则45<<,可得4050<,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28=,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.23.(1)3;(2)2,3,4(3)3【分析】(1的大小,再根据新定义可得结果;(2)根据定义可知12,可得满足题意的m 的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为2.【详解】解:(1)根据新定义可得,,故答案为3;(2)∵{m}=2,根据新定义可得,1,可得m 的整数值为2,3,4,故答案为2,3,4; (3)∵{100}=10,{10}=4,{4}=2,∴对100进行连续求根整数,3次后结果为2;故答案为3.【点睛】本题考查了估算无理数的大小的应用,主要考查了对新定义的理解能力,准确理解新定义是解题的关键.24.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a ;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;本题选择说法错误的,故选C ;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=; (﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28;故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=.(3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.25.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52 【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.26.(1) 421;(2)1;(2) ±12.【解析】【分析】(121(2715a 、b 的值,再代入求出即可;(3110的范围,求出x 、y 的值,再代入求出即可.【详解】解:(1)∵4215,4,故答案为:4;(2)∵23,∴,∵34,∴b=3,∴=1;(3)∵100<110<121,∴10<11,∴110<<111,∵=x+y,其中x是整数,且0<y<1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.。

相关文档
最新文档