2018年高考数学(理科)模拟试卷(二)

合集下载

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案1.已知复数 $\frac{1+2i}{1-2i}=\frac{-43}{55}$,求其值。

2.已知集合 $A=\{(x,y)|x+y^2\leq 3,x\in Z,y\in Z\}$,求$A$ 中元素的个数。

3.函数 $f(x)=\frac{e^x-e^{-x}}{x^2}$ 的图像大致为什么样子?4.已知向量 $a,b$ 满足 $|a|=1$,$a\cdot b=-1$,求 $a\cdot (2a-b)$ 的值。

5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为 $3$,求其渐近线方程。

6.在$\triangle ABC$ 中,$\cos A=\frac{4}{5}$,$BC=1$,$AC=5$,求 $AB$ 的值。

7.设计一个程序框图来计算 $S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{100}$。

8.XXX猜想是“每个大于 $2$ 的偶数可以表示为两个素数的和”,在不超过 $30$ 的素数中,随机选取两个不同的数,其和等于 $30$ 的概率是多少?9.在长方体 $ABCD-A_1B_1C_1D_1$ 中,$AB=BC=1$,$AA_1=3$,求异面直线$AD_1$ 和$DB_1$ 所成角的余弦值。

10.若 $f(x)=\cos x-\sin x$ 在 $[-a,a]$ 上是减函数,求$a$ 的最大值。

11.已知 $f(x)$ 是定义域为 $(-\infty,+\infty)$ 的奇函数,满足 $f(1-x)=f(1+x)$,且 $f(1)=2$,求$f(1)+f(2)+f(3)+\cdots+f(50)$ 的值。

12.已知 $F_1,F_2$ 是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点,$A$ 是椭圆的左顶点,点 $P$ 在过 $A$ 且斜率为 $3$ 的直线上,$\triangle PF_1F_2$ 是等腰三角形,且 $\angleF_1PF_2=120^\circ$,求椭圆的离心率。

2018年高考理科数学全国卷2(含详细答案)

2018年高考理科数学全国卷2(含详细答案)

理科数学a 2b 2 1 a2 x 2 x准确粘贴在条 __ 卷__ _ __ __ __ 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

考 上--------------------本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只7.为计算 S 1 1__ 答A. 4B.3C.3 4 D. 3 4__ 5 5 i55i 5 5 i 5 5 i __ __ __ -------------------- ee x 2的图象大致为A.1-------------绝密 ★ 启用前2018 年普通高等学校招生全国统一考试在--------------------本试卷共 23 题,共 150 分,共 5 页,考试结束后,将本试卷和答题卡一并交回。

4.已知向量 a,b 满足 a 1,a b 1 ,则 a 2a bA. 4B. 3C. 2D. 0x 2 y 25.双曲线 0,b 0 的离心率为 3 ,则其渐近线方程为注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码A. y 2xB. y 3xC.y 2D.y 3此--------------------形码区域内。

6.在 ABC 中, cos C 2 55 ,BC1,AC 5,则 AB =__3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效; 号 证 准__1 2i__名 A.9 B. 8 C. 5 D. 4姓 题2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写, 字体工整、笔迹清楚。

--------------------在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

有一项是符合题目要求的.)__ 1. 1 2i-------------------- 3 42.已知集合 A x,y x 2 y 2 3,x Z ,y Z ,则 A 中元素的个数为x x3.函数 f(x)5B.4D.A .42B. 30 C . 29 D . 251 1 1 1234 99 100 ,设计了右侧的程序框图,则在空白框中应填入 A. i i 1B. i i 2C.i i 3D.i i 48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果 ,哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 30=7+23 . 在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是1 1 112 B. 14 C. 15 D.18无--------------------9.在长方体 ABCD A B C D 中, AB BC 1,AA1 1 1 1成角的余弦值为1 3,则异面直线 AD 1 与 DB 1 所A. 15 6 C.5 5 D. 2210.若 f(x) cosx sinx 在 a,a 是减函数,则 a 的最大值是效----------------A.4 B.2 C.3理科数学试题 A 第 1 页(共 24 页)理科数学试题 A 第 2 页(共 24 页)6的直线上,PF F为等腰三角形,3B.8,SA与圆锥底面所成角为45.n 的通项公式;11.已知f(x)是定义域为,的奇函数,满足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)f(50)A.50B.0C.2D.50下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.12.已知F,F是椭圆C:12x2y2a2b21(a b0)的左、右焦点,A是C的左顶点,点P在过A且斜率为312F F P120,则C的离心率为12A.212C.113D.4二、填空题(本题共4小题,每小题5分,共20分)13.曲线y2ln(x1)在点0,0处的切线方程为_____________.x2y50,14.若x,y满足约束条件x2y30,则z x y的最大值为________.x50,15.已知sin cos1,cos sin0,则sin__________.16.已知圆锥的顶点为S,母线SA、SB所成角的余弦值为7若SAB的面积为515,则该圆锥的侧面积为__________.三、解答题(共70分。

【2018年数学高考】2018年普通高等学校招生全国统一考试模拟试题二数学理科

【2018年数学高考】2018年普通高等学校招生全国统一考试模拟试题二数学理科

2018年普通高等学校招生全国统一考试模拟试题二数学(理科)命题:高贵彩 珠海市第二中学本试卷共5页,23小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}R 12,1,0,1,2,{|0}2x A B x x -=--=≥+ð,则A B ⋂= A. {}1,0,1- B. {}1,0- C . {}2,1,0-- D. {}0,1,22.已知,αβ是相异两平面,,m n 是相异两直线,则下列命题中错误..的是 A.若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβC.若,//m m αβ⊥,则αβ⊥ D .若//,m n ααβ= ,则//m n3.变量X 服从正态分布()()210,,12X N P X a σ>= ,()810P X b ≤≤=,则直线1ax by +=过定点A .(1,1)B .(1,2)C .(2,1)D .(2,2)4.“欧几里得算法”是有记载的最古老的算法,可追溯至 公元前300年前,上面的程序框图的算法思路就是来源于“欧几里得算法”,执行该程序框图(图中“aMODb ”表示a 除以b 的余数),若输入的,a b 分别为675,125,则输出的a =( )A. 0 B . 25 C. 50 D. 755.记不等式组222 20x y x y y +≤⎧⎪+≥⎨⎪+≥⎩表示的平面区域为Ω,点M 的坐标为(),x y .已知命题p : M ∀∈Ω, x y -的最小值为6;命题q : M ∀∈Ω,224205x y ≤+≤; 则下列命题中的真命题是 A.p q ∨ B .p q ∧ C.q ⌝ D .p q p q q ∨∧⌝、、都是假命题 6.设21,F F 为椭圆22:1C x my +=的两个焦点,若点1F 在圆2221:()2F x y n m++=上, 则椭圆C 的方程为 A .2212y x += B .2221x y += C.2212x y += D .2221x y += 7.若20c o s a x d x π=⎰,则6(2)a x x+-的展开式中含5x 项的系数为 A .24- B .12- C .12 D .24 8.已知定义在R 上的奇函数()f x 满足()()2fx f x +=-,当[]0,1x ∈时,()21x f x =-,则 A. ()()11672f f f ⎛⎫<-< ⎪⎝⎭ B. ()()11762f f f ⎛⎫<-< ⎪⎝⎭ C. ()()11762f f f ⎛⎫-<< ⎪⎝⎭ D . ()()11672f f f ⎛⎫<<- ⎪⎝⎭9.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且PT =.下列关系中正确的是 A .BP TS RS-=B .CQ TP+= C .12ES AP BQ -=D . 12AT BQ CR += 10.已知函数()2s i n (2)6f x x π=+在[,]()4a a a R π-∈上的最大值为1y ,最小值为2y ,则1y 2y -的取值范围是 A.[2 B .C.D .[2A 11.对于任一实数序列{} ,,,321a a a A =,定义A ∆为序列{} ,,,342312a a a a a a ---,它的第n 项是n n a a -+1,假定序列)(A ∆∆的所有项都是1,且0201718==a a ,则=2018aA .0B .1000C. 1009 D .201812.已知}0)(|{==ααf M ,{|()0}N g ββ==,若存在M ∈α,N ∈β,使得1||<-βα,则称函数)(x f 与)(x g 互为“和谐函数”.若2()23x f x x -=+-与3)(2+--=a ax x x g 互为“和谐函数”则实数a 的取值范围为A.),2(+∞B.),2[+∞ C .)3,2( D.),3(+∞二、填空题:本大题共4小题,每题5分,满分20分.把答案填在题中的横线上.13.设复数z =(其中i 为虚数单位),则复数z 的实部为_____,虚部为_____. 14.点F 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,点P 为双曲线上位于第二象限的点,点P 关于原点的对称点为Q ,且2PF FQ =,OP =,则双曲线E 的离心率为_____.15.在数列{}n a 中,如果存在非零常数T ,使得n T n a a +=对于任意的正整数n 均成立,那么就称 数列{}n a 为周期数列,其中T 叫数列{}n a 的周期.已知数列{}n b 满足:21(*)n n n b b b n N ++=-∈, 若11b =,2(,0)b a a R a =∈≠,当数列{}n b 的周期最小时,该数列的前2018项的和是_____. 16.一个正八面体的外接球的体积与其内切球的体积之比的比值为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. (本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,M 为AC 的中点,且44cos 3sin a b C c B =+. (Ⅰ)求cosB 的大小; (Ⅱ)若045,ABM a ∠==求ABC ∆的面积.。

2018年高考理科数学全国卷2(含答案解析)

2018年高考理科数学全国卷2(含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。

2018年江西省南昌市高考数学二模试卷(理科)(解析版)

2018年江西省南昌市高考数学二模试卷(理科)(解析版)

2018年江西省南昌市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集为R,集合A={x|log2x<2},B={x|x2﹣2x﹣3>0},则(∁R A)∩B等于()A.[1,+∞)B.[4,+∞)C.(﹣∞,﹣1)∪(3,+∞)D.(﹣∞,﹣1)∪[4,+∞)2.(5分)若实数x,y满足+y=2+i(i为虚数单位),则x+yi在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知a,b为实数,则“ab>b2”是“a>b>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)已知一个几何体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积为()A.8B.32C.16D.165.(5分)执行如图的程序框图,若a=8,则输出的S=()A.2B.C.0D.﹣16.(5分)已知抛物线y2=4x的焦点为F,准线l与x轴的交点为K,抛物线上一点P,若|PF|=5,则△PKF的面积为()A.4B.5C.8D.107.(5分)已知点P(m,n)在不等式组表示的平面区域内,则实数m的取值范围是()A.[]B.[﹣5]C.[﹣5]D.[﹣5,1]8.(5分)如图,已知函数f(x)=cos(ωx+φ)(ω>0,﹣φ<0)的部分图象与x轴的一个交点为A(﹣),与y轴的交点为B(0,),那么函数f(x)图象上的弧线AB与两坐标所围成图形的面积为()A.B.C.D.9.(5分)已知函数f(x)=,设g(x)=kf(x)+x2+x(k为常数),若g (10)=2018,则g(﹣10)等于()A.1998B.2038C.﹣1818D.﹣221810.(5分)在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有23=8种组合方法,这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,就是两个八卦的叠合,即共有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是()A.B.C.D.11.(5分)在△ABC中,A=,△ABC的面积为2,则的最小值为()A.B.C.D.12.(5分)已知双曲线(a>0,b>0)的左右焦点分别为F1,F2,过点F2的直线l:12x﹣5y﹣24=0交双曲线的右支于A,B两点,若∠AF1B的角平分线的方程为x ﹣4y+2=0,则三角形AF1B内切圆的标准方程为()A.(x﹣)2+(y﹣)2=()2B.(x﹣1)2+(y﹣)2=()2C.(x﹣1)2+(y﹣)2=()2D.(x﹣)2+(y﹣)2=()2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)从某企业的某种产品中抽取1000件,测量该种产品的一项指标值,由测量结果得到如图所示的频率分布直方图.假设这种指标值在[185,215]内’则这项指标合格,估计该企业这种产品在这项指标上的合格率为.14.(5分)已知正△ABC的边长为2,若=2,则等于.15.(5分)已知正三棱台ABC﹣A1B1C1的上下底边长分别为3,高为7,若该正三棱台的六个顶点均在球O的球面上,且球心O在正三棱台ABC﹣A1B1C1内,则球O 的表面积为.16.(5分)如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形OCD,弓形CMD,扇形AOC和扇形BOD(其中∠AOC=∠BOD).某次菊花展分别在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜.预计这三种菊花展示带来的日效益分别是:50元/米2,30元/米2,40元/米2.为使预计日总效益最大,∠COD 的余弦值应等于.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知各项均为正数且递增的等比数列{a n}满足:2a3,,2a5成等差数列,前5项和S5=31.(1)求数列{a n}的通项公式;(2)求数列a 1,a2,a2,a2,a3,a3,a3,a3,a3,…的前100项和.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB =2CD=2AD=4,侧面P AB是等腰直角三角形,P A=PB,平面P AB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面P AD.(1)确定点E,F的位置,并说明理由;(2)求二面角D﹣EF﹣C的余弦值.19.(12分)为提升教师专业功底,引领青年教师成长,某市教育局举行了全市“园丁杯”课堂教学比赛,在这次比赛中,通过采用录像课评比的片区预赛,有A,B,C,D,…I,J共10位选手脱颖而出进入全市决赛.决赛采用现场上课形式,从学科评委库中采用随机抽样抽选代号1,2,3,…,7的7名评委,规则是:选手上完课,评委们当初评分,并从7位评委评分中去掉一个最高分,去掉一个最低分,根据剩余5位评委的评分,算出平均分作为该选手的最终得分.记评委i对某选手评分排名与该选手最终排名的差的绝对值为“评委i对这位选手的分数排名偏差”(i=1,2…7).排名规则:由高到低依次排名,如果选手分数一样,认定名次并列(如:选手B,E分数一致排在第二,则认为他们同属第二名,没有第三名,接下来分数为第四名).七位评委评分情况如下表所示:(1)根据最终评分表,填充如下表格:(2)试借助评委评分分析表,根据评委对各选手的排名偏差的平方和,判断评委4与评委5在这次活动中谁评判更准确.号评委评分分析表(3)从这10位选手中任意选出3位,记其中评委4比评委5对选手排名偏差小的选手数位X,求随机变量X的分布列和数学期望.20.(12分)已知平面直角坐标系内两定点A(),B(2)及动点C(x,y),△ABC的两边AC,BC所在直线的斜率之积为.(1)求动点C的轨迹E的方程;(2)设P是y轴上的一点,若(1)中轨迹E上存在两点M,N使得=2,求以AP为直径的圆面积的取值范围.21.(12分)已知函数f(x)=2xlnx+2x,g(x)=a(x﹣1)(a为常数,且a∈R).(1)若当x∈(1,+∞)时,函数f(x)与g(x)的图象有且只要一个交点,试确定自然数n的值,使得a∈(n,n+1)(参考数值≈4.48,ln2≈0.69,ln3≈1.10,ln7≈1.95);(2)当x>3时,证明:f(x)(其中e为自然对数的底数).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程是ρ=4sinθ,曲线C2的极坐标方程为.(1)求曲线C1,C2的直角坐标方程;(2)设曲线C1C2交于点A,B,曲线C2与x轴交于点E,求线段AB的中点到点E的距离.[选修4-5:不等式选讲]23.已知函数f(x)=﹣|x﹣a|+a,g(x)=|2x﹣1|+|2x+4|.(1)解不等式g(x)<6;(2)若对任意的x1∈R,存在x2∈R,使得﹣g(x1)=f(x2)成立,求实数a的取值范围.2018年江西省南昌市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集为R,集合A={x|log2x<2},B={x|x2﹣2x﹣3>0},则(∁R A)∩B等于()A.[1,+∞)B.[4,+∞)C.(﹣∞,﹣1)∪(3,+∞)D.(﹣∞,﹣1)∪[4,+∞)【解答】解:A={x|0<x<4},B={x|x<﹣1,或x>3};∴∁R A={x|x≤0,或x≥4};∴(∁R A)∩B={x|x<﹣1,或x≥4}=(﹣∞,﹣1)∪[4,+∞).故选:D.2.(5分)若实数x,y满足+y=2+i(i为虚数单位),则x+yi在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵+y=2+i(i为虚数单位),∴x+y+yi=(1+i)(2+i)=1+3i,∴,解得y=3,x=﹣2.则x+yi在复平面内对应的点(﹣2,3)位于第二象限.故选:B.3.(5分)已知a,b为实数,则“ab>b2”是“a>b>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:a>b>0⇒ab>b2,反之不成立,例如:a=﹣2,b=﹣1.∴“ab>b2”是“a>b>0”的必要不充分条件.故选:B.4.(5分)已知一个几何体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积为()A.8B.32C.16D.16【解答】解:由已知中的三视图,可得该几何体是一个三棱柱,底面面积S=×4×2=4,高h=4,故该几何体的体积V=4×4=16,故选:D.5.(5分)执行如图的程序框图,若a=8,则输出的S=()A.2B.C.0D.﹣1【解答】解:若a=8,则当k=0时,满足进行循环的条件,S=﹣1,k=1;当k=1时,满足进行循环的条件,S=,k=2;当k=2时,满足进行循环的条件,S=2,k=3;当k=3时,满足进行循环的条件,S=﹣1,k=4;当k=4时,满足进行循环的条件,S=,k=5;当k=5时,满足进行循环的条件,S=2,k=6;当k=6时,满足进行循环的条件,S=﹣1,k=7;当k=7时,满足进行循环的条件,S=,k=8;当k=8时,不满足进行循环的条件,故输出的S=,故选:B.6.(5分)已知抛物线y2=4x的焦点为F,准线l与x轴的交点为K,抛物线上一点P,若|PF|=5,则△PKF的面积为()A.4B.5C.8D.10【解答】解:F(1,0),K(﹣1,0),准线方程为x=﹣1,设P(x0,y0),则|PF|=x0+1=5,即x0=4,不妨设P在第一象限,则P(4,4),∴S PKF=×|FK|×|y0|=×2×4=4.故选:A.7.(5分)已知点P(m,n)在不等式组表示的平面区域内,则实数m的取值范围是()A.[]B.[﹣5]C.[﹣5]D.[﹣5,1]【解答】解:不等式组表示的平面区域如图阴影部分:由题意可得:,消去n,可得m=﹣4或m=1,由图形可知m∈[﹣5,1].故选:C.8.(5分)如图,已知函数f(x)=cos(ωx+φ)(ω>0,﹣φ<0)的部分图象与x轴的一个交点为A(﹣),与y轴的交点为B(0,),那么函数f(x)图象上的弧线AB与两坐标所围成图形的面积为()A.B.C.D.【解答】解:如图,根据函数f(x)=cos(ωx+φ)(ω>0,﹣φ<0)的部分图象与y轴的交点为B(0,),可得cosφ=,∴cosφ=,∴φ=﹣.根据函数的图象x轴的一个交点为A(﹣),结合五点法作图可得ω•(﹣)﹣=﹣,∴ω=2,∴函数f(x)=cos(2x﹣).弧线AB与两坐标所围成图形的面积为cos(2x﹣)dx=sin(2x﹣)=﹣﹣(﹣)=,故选:A.9.(5分)已知函数f(x)=,设g(x)=kf(x)+x2+x(k为常数),若g (10)=2018,则g(﹣10)等于()A.1998B.2038C.﹣1818D.﹣2218【解答】解:∵函数f(x)=,设g(x)=kf(x)+x2+x(k为常数),g(10)=2018,∴g(10)=kf(10)+100+10=k(210﹣1)+110=2018,∴k(210﹣1)=1908,∴g(﹣10)=kf(﹣10)+100﹣10=k(210﹣1)+90=1908+90=1998.故选:A.10.(5分)在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有23=8种组合方法,这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,就是两个八卦的叠合,即共有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是()A.B.C.D.【解答】解:在一次所谓“算卦”中得到六爻,基本事件总数n=26=64,这六爻恰好有三个阳爻三个阴爻包含的基本事件m==20,∴这六爻恰好有三个阳爻三个阴爻的概率是p==.故选:B.11.(5分)在△ABC中,A=,△ABC的面积为2,则的最小值为()A.B.C.D.【解答】解:△ABC中,A=,△ABC的面积为2,∴S△ABC==bc=2,bc=8,∴=,令t=则t>0,上式化为:==≥2﹣=,当且仅当2t+1=2,即t=,可得b=2c,又bc=8,解得c=4,b=2时,等号成立;∴的最小值为:.故选:C.12.(5分)已知双曲线(a>0,b>0)的左右焦点分别为F1,F2,过点F2的直线l:12x﹣5y﹣24=0交双曲线的右支于A,B两点,若∠AF1B的角平分线的方程为x ﹣4y+2=0,则三角形AF1B内切圆的标准方程为()A.(x﹣)2+(y﹣)2=()2B.(x﹣1)2+(y﹣)2=()2C.(x﹣1)2+(y﹣)2=()2D.(x﹣)2+(y﹣)2=()2【解答】解:如图,设三角形AF1B的内切圆切AB于E,切AF1于G,切BF1于H,则由BF1﹣BF2=AF1﹣AF2,得BH+HF1﹣(BE+EF2)=AG+GF1﹣(AE﹣EF2),∴﹣EF2=EF2,即EF2=0,也就是E与F2重合.由∠AF1B的角平分线的方程为x﹣4y+2=0,可得F1(﹣2,0),则F2(2,0).设三角形AF1B的内切圆的圆心C(a,b),则,解得a=,b=.∴三角形AF1B的内切圆的半径r=.∴三角形AF1B内切圆的标准方程为(x﹣)2+(y﹣)2=()2 ,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)从某企业的某种产品中抽取1000件,测量该种产品的一项指标值,由测量结果得到如图所示的频率分布直方图.假设这种指标值在[185,215]内’则这项指标合格,估计该企业这种产品在这项指标上的合格率为79%.【解答】解:这种指标值在[185,215]内,则这项指标合格,由频率分布直方图得这种指标值在[185,215]内的频率为:(0.022+0.033+0.024)×10=0.79,∴估计该企业这种产品在这项指标上的合格率为0.79×100%=79%.故答案为:79%.14.(5分)已知正△ABC的边长为2,若=2,则等于1.【解答】解:根据题意,正△ABC的边长为2,若=2,=+=+,则=•(+)=2+ו=4+×2×2×cos120°=4﹣3=1;故答案为:1.15.(5分)已知正三棱台ABC﹣A1B1C1的上下底边长分别为3,高为7,若该正三棱台的六个顶点均在球O的球面上,且球心O在正三棱台ABC﹣A1B1C1内,则球O 的表面积为100π.【解答】解:如图,设下底面中心为G,上底面中心为G1,连接GG1,则球心O在GG1上,连接OA,OA1,则OA=OA1,由已知求得,.∴OG2+42=(7﹣OG)2+32,解得OG=3.∴OA2=25.则球O的表面积为4π×25=100π.故答案为:100π.16.(5分)如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形OCD,弓形CMD,扇形AOC和扇形BOD(其中∠AOC=∠BOD).某次菊花展分别在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜.预计这三种菊花展示带来的日效益分别是:50元/米2,30元/米2,40元/米2.为使预计日总效益最大,∠COD的余弦值应等于.【解答】解:设∠AOC=α(0<α<),日总效益设为y,则y=α•202•40•2+•202•sin(﹣2α)•50+[(﹣2α)•202﹣•202•sin(﹣2α)]•30=16000α+10000sin(﹣2α)﹣6000sin(﹣2α)+4000π﹣12000α=4000[α+sin(﹣2α)]+4000π,(0<α<),y′=4000[1﹣2cos(﹣2α)],由y′=0,可得﹣2α=,解得α=,由0<α<,函数y递增;<α<,函数y递减,即有α=,即有∠COD=时,预计日总效益最大,∠COD的余弦值应等于,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知各项均为正数且递增的等比数列{a n}满足:2a3,,2a5成等差数列,前5项和S5=31.(1)求数列{a n}的通项公式;(2)求数列a 1,a2,a2,a2,a3,a3,a3,a3,a3,…的前100项和.【解答】解:(1)由各项均为正数且递增的等比数列{a n}满足:2a3,,2a5成等差数列,则:5a4=2a3+2a5,设数列的公比为q,则:2q2﹣5q+2=0,解得:q=2或q=(舍去),所以:=31,解得:a1=1.所以数列的通项公式为:.(2)由1+3+5+…+(2n﹣1)=n2=100,解得:n=10.所以所求数列的前100项和T100=a1+3a2+5a3+…+19a10,即:①,②,①﹣②得:,=,解得:.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB =2CD=2AD=4,侧面P AB是等腰直角三角形,P A=PB,平面P AB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面P AD.(1)确定点E,F的位置,并说明理由;(2)求二面角D﹣EF﹣C的余弦值.【解答】解:(1)平面CEF∥平面P AD,平面CEF∩平面ABCD=CE,平面P AD∩平面ABCD=AD,∴CE∥AD,又∵AB∥DC,∴四边形AECD是平行四边形,∴DC=AE=,即点E是AB的中点,∵平面CEF∥平面P AD,平面CEF∩平面P AB=EF,平面P AD∩平面P AB=P A,∴EF∥P A,点E是AB的中点,∴点F是PB的中点,综上,E,F分别是AB,PB的中点;(2)∵P A=PB,AE=EB,∴PE⊥AB,又∵平面P AB⊥平面ABCD,∴PE⊥平面ABCD,又AB⊥AD,∴CE⊥AB.如图以点E为坐标原点,EC,EB,EP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则B(0,2,0),C(2,0,0),D(2,﹣2,0),E(0,0,0),由中点公式得到F(0,1,1),设平面CEF,平面DEF的法向量分别为,,由,令y1=1,得,由,令y2=1,得.∴cos<>=.综上,二面角D﹣EF﹣C的余弦值是.19.(12分)为提升教师专业功底,引领青年教师成长,某市教育局举行了全市“园丁杯”课堂教学比赛,在这次比赛中,通过采用录像课评比的片区预赛,有A,B,C,D,…I,J共10位选手脱颖而出进入全市决赛.决赛采用现场上课形式,从学科评委库中采用随机抽样抽选代号1,2,3,…,7的7名评委,规则是:选手上完课,评委们当初评分,并从7位评委评分中去掉一个最高分,去掉一个最低分,根据剩余5位评委的评分,算出平均分作为该选手的最终得分.记评委i对某选手评分排名与该选手最终排名的差的绝对值为“评委i对这位选手的分数排名偏差”(i=1,2…7).排名规则:由高到低依次排名,如果选手分数一样,认定名次并列(如:选手B,E分数一致排在第二,则认为他们同属第二名,没有第三名,接下来分数为第四名).七位评委评分情况如下表所示:(1)根据最终评分表,填充如下表格:(2)试借助评委评分分析表,根据评委对各选手的排名偏差的平方和,判断评委4与评委5在这次活动中谁评判更准确. 4 号评委评分分析表(3)从这10位选手中任意选出3位,记其中评委4比评委5对选手排名偏差小的选手数位X ,求随机变量X 的分布列和数学期望. 【解答】解:(1)依据评分规则:==85,==93.所以选手的均分及最终排名表如下:(2)对4号评委分析:4号评委评分分析表排名偏差平方和为:12+02+22+12+12+22+22+12+02+12=17.对5号评委分析:5号评委评分分析表排名偏差平方和为:22+12+52+12+12+12+32+02+12+02=43.由于17<43,所以评委4更准确.(3)10位选手中,评委4比评委5评分偏差小的有5位,X可能取值有0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为:所以数学期望EX==.20.(12分)已知平面直角坐标系内两定点A(),B(2)及动点C(x,y),△ABC的两边AC,BC所在直线的斜率之积为.(1)求动点C的轨迹E的方程;(2)设P是y轴上的一点,若(1)中轨迹E上存在两点M,N使得=2,求以AP为直径的圆面积的取值范围.【解答】解:(1)由已知,即,整理得:3x2+4y2=24,又三点构成三角形,得y≠0.∴点C的轨迹E的方程为(y≠0).(2)设点P的坐标为(0,t),当直线MN斜率不存在时,可得M,N分别是短轴的两端点,得到t=,当直线MN斜率存在时,设直线MN的方程为y=kx+t,M(x1,y1),N(x2,y2),则由,得x1=﹣2x2,①联立,得(3+4k2)x2+8ktx+4t2﹣24=0,由△>0,得64k2t2﹣4(3+4k2)(4t2﹣24)>0,整理得t2<8k2+6.由韦达定理得,,②由①②,消去x1,x2,得,由,解得,又∵M为长轴端点(,0)时,可求得N点,此时t=,综上,或2<t2<6,又∵以AP为直径的圆面积S=,∴S的取值范围是.21.(12分)已知函数f(x)=2xlnx+2x,g(x)=a(x﹣1)(a为常数,且a∈R).(1)若当x∈(1,+∞)时,函数f(x)与g(x)的图象有且只要一个交点,试确定自然数n的值,使得a∈(n,n+1)(参考数值≈4.48,ln2≈0.69,ln3≈1.10,ln7≈1.95);(2)当x>3时,证明:f(x)(其中e为自然对数的底数).【解答】解:(1)记F(x)f(x)﹣g(x)=2xlnx+(2﹣a)x+a,则F′(x)=2lnx+4﹣a,当a≤4时,因为x>1,F′(x)>0,函数F(x)单调递增,F(x)>F(1)=2=,函数y=F(x)无零点,即函数f(x)与g(x)的图象无交点;当a>4时,F′(x)=0⇒x=>1,且x∈(1,)时,F′(x)<0,x>时,F′(x)>0,所以,F(x)min=F(),函数f(x)与g(x)的图象有且只有一个交点,得F(x)min=F()=0,化简得:a﹣=0,记h(a)=a﹣,h′(a)=1﹣<0,所以h(a)在(4,+∞)上单调递减,又h(6)=6﹣2e>0,h(7)=7﹣2e<0,所以a∈(6,7),即n=6.(2)由(1)得:当x>3时,f(x)≥g(x)=a(x﹣1)>6(x﹣1),只要证明:x>3时,6(x﹣1)即eln(x﹣2)﹣>0,记G(x)=eln(x﹣2)﹣,则G′(x)=﹣=,记φ(x)=3ex2﹣(6e+4)x+3e+8,图象为开口向上的抛物线,对称轴为x=1+<3,且φ(3)=12e﹣4>0,所以当x>3时,φ(x)>0,即G′(x)>0,所以G(x)在区间(3,+∞)上单调递增,从而G(x)>G(3)=0,即eln(x﹣2)﹣>0,成立,所以f(x)成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程是ρ=4sinθ,曲线C2的极坐标方程为.(1)求曲线C1,C2的直角坐标方程;(2)设曲线C1C2交于点A,B,曲线C2与x轴交于点E,求线段AB的中点到点E的距离.【解答】解:(1)∵曲线C1的极坐标方程是ρ=4sinθ,∴曲线C1的极坐标方程可以化为:ρ2﹣4ρsinθ=0,∴曲线C1的直角坐标方程为:x2+y2﹣4y=0,∵曲线C2的极坐标方程为.∴曲线C2的极坐标方程可以化为:+=2,∴曲线C2的直角坐标方程为:x+﹣4=0.(2)∵点E的坐标为(4,0),C2的倾斜角为,∴C2的参数方程为:(t为参数),将C2的参数方程代入曲线C1的直角坐标方程得到:(4﹣t)2+﹣2t=0,整理得:+16=0,判别式>0,∵,∴中点对应的参数为2,∴线段AB中点到E点距离为2.[选修4-5:不等式选讲]23.已知函数f(x)=﹣|x﹣a|+a,g(x)=|2x﹣1|+|2x+4|.(1)解不等式g(x)<6;(2)若对任意的x1∈R,存在x2∈R,使得﹣g(x1)=f(x2)成立,求实数a的取值范围.【解答】解:(1)g(x)=|2x﹣1|+|2x+4|=①当x≤﹣2时,﹣4x﹣3<6,得x>﹣,即﹣<x≤﹣2;②当﹣2<x<时,5<6,即﹣2<x<;③当x≥时,4x+3<6,得x<,即≤x<;综上,不等式g(x)<6解集是(﹣,).(2)对任意的x1∈R,存在x2∈R,使得﹣g(x1)=f(x2)成立,即f(x)的值域包含﹣g(x)的值域,由f(x|=﹣|x﹣a|+a,知f(x)∈(﹣∞,a),由g(x)=|2x﹣1|+|2x+4|≥|2x﹣1﹣2x﹣4|=5,且等号能成立,所以﹣g(x)∈(﹣∞,﹣5),所以a≥﹣5,即a的取值范围为[﹣5,+∞).。

2018年山东省临沂市高考数学二模试卷(理科)(解析版)

2018年山东省临沂市高考数学二模试卷(理科)(解析版)

2018年山东省临沂市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知a∈R,复数z=,若=z,则a=()A.1B.﹣1C.2D.﹣22.(5分)已知集合M={x|≤0},N={x|y=log3(﹣4x2+11x﹣6)},则M∩N=()A.(,1]B.(﹣2,1]C.[1,2)D.(,2)3.(5分)已知函数f(x)=lg(1﹣x)+lg(1+x),则()A.f(x)是奇函数,且在(0,1)是增函数B.f(x)是偶函数,且在(0,1)是增函数C.f(x)是奇函数,且在(0,1)是减函数D.f(x)是偶函数,且在(0,1)是减函数4.(5分)下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=1”的逆否命题为:“若x≠1,则x2﹣4x+3≠0”B.“a>1”是“<1”的充分不必要条件C.若“p∨¬q”为假命题,则q为假命题D.命题“∃x0∈R,使得x0sin x0<0”的否定为“∀x∈R,都有x sin x≥0”5.(5分)甲、乙、丙等五人排成一排照相,甲、乙不能在丙的同侧,则不同的排法共有()A.24B.40C.56D.606.(5分)设{a n}是公比为q的等比数列,|q|<1,令b n=a n﹣1,若数列{b n}中有连续的四项在集合{﹣19,﹣9,5,11,26}中,则q=()A.﹣B.C.﹣D.7.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九韶算法f(x)=a n x n+a n﹣1x n﹣1+…+a1x+a0改写成如下形式:f(x)=(…((a n x n+a n)x+a n﹣2)x+…a1)x+a0,至今仍是比较先进的算法,如图所示的程序框图给出了利用﹣1秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为()A.25B.50C.100D.2008.(5分)设x,y满足约束条件,若z=ax+y的最大值为2a+9,最小值为2a ﹣1,则a的取值范围是()A.[﹣,2]B.(﹣∞,﹣2]∪[,+∞)C.[﹣2,]D.(﹣∞,﹣]∪[2,+∞)9.(5分)某空间几何体的三视图如图,俯视图虚线部分为半圆弧,则该几何体的体积为()A.B.C.D.10.(5分)已知抛物线C1:y2=8x和圆C2:(x﹣2)2+y2=4,直线l:y=k(x﹣2)与C1,C2依次相交于A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)四点(其中x1<x2<x3<x4),则|AB|•|CD|的值为()A.2B.4C.6D.811.(5分)已知,是单位向量,•=0,若向量满足|﹣3﹣4|=1,则||的取值范围为()A.[﹣1,+1]B.[1,+1]C.[5,6]D.[4,6]12.(5分)在三棱锥D﹣ABC中,CD⊥底面ABC,AE∥CD,△ABC为等边三角形,AB =CD=AE=,又知三棱锥D﹣ABC与三棱锥E﹣ABC的公共部分为一个三棱锥,则此公共三棱锥的外接球的表面积为()A.4πB.πC.3πD.π二、填空题(共4小题,每小题5分,满分20分)13.(5分)若,则=.14.(5分)若随机变量X~N(2,σ2),且P(x≤1)=P(x≥a),则(x+a)2(ax﹣)5展开式中x3项的系数是15.(5分)点P在双曲线C:﹣=1(a>0,b>0)的右支上,C的左、右焦点分别为F1,F2,若直线PF1与以坐标原点O为圆心,a为半径的圆相切与点A,线段PF1的垂直平方线恰好过点F2,则=.16.(5分)已知等差数列{a n}的前n项和为S n,且S6=36,a2+a4=10,若b n=(﹣1)n﹣1,则数列{bn}的前101项的和为三、解答题(共5小题,满分60分)17.(12分)已知函数f(x)=2cos2x﹣sin(2x﹣π).(1)求f(x)的单调递增区间(2)已知△ABC的外接圆半径为R,A,B,C的对边分别为a,b,c,若f(A)=,sin B+sin C=,求a的取值范围.18.(12分)如图①,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,如图②.(1)求证:平面ABC⊥平面ADC;(2)若AD=1,二面角C﹣AB﹣D的平面角的正切值为,求二面角B﹣AE﹣D的正弦值.19.(12分)某铸件厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=ax b(a,b为大于0的常数),现随机抽取6件合格产品,测得数据如表:对以上数据作了初步判断,得到部分统计数据的值:(lnx i lny i)=1.54,lnx i=24.6,lny i=0.3,(lnx i)2=101.48(1)参照所给数据,求y关于x的回归方程;(2)按照某项指标测定,当产品质量与尺寸的比在区间(,)内时为A等品,现从抽取的6件合格产品中再任选3件,记X为选到A等品的件数,试求随机变量X的分布列和数学期望EX.附:对于一组数据(v1,u1),(v2,u2),…,(v n,u n),其回归直线=+v的斜率和截距的最小二乘法估计值分别为=,=﹣.20.(12分)已知椭圆C:+=1(a>b>0)的左、右焦点分别是F1(﹣c,0),F2(c,0),上顶点为B,又知N点坐标为(,0),且满足3=+2,||=2.(1)求椭圆C的方程;(2)过点N的直线l与椭圆C相交于不同的两点S和T,若C上存在点P满足+=t (O为坐标原点),求实数t的取值范围.21.(12分)已知函数f(x)=alnx+,g(x)=2e x﹣1+a.(1)讨论f(x)的单调性;(2)如果s,t满足|s﹣r|≤|t﹣r|,那么称s比t更靠近,当a>4,且x≥1时,试比较h(x)=f(x)﹣alnx和g(x)哪个更靠近2lnx,并说明理由.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求曲线C的极坐标方程;(Ⅱ)若射线与曲线C交于点P,直线的交点为点Q,求线段PQ的长.[选修4-4:不等式选讲]23.已知函数|.(I)当a=3时,求不等式f(x)>4的解集;(Ⅱ)证明:.2018年山东省临沂市高考数学二模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知a∈R,复数z=,若=z,则a=()A.1B.﹣1C.2D.﹣2【解答】解:∵z===,且=z,∴1+a=0,即a=﹣1.故选:B.2.(5分)已知集合M={x|≤0},N={x|y=log3(﹣4x2+11x﹣6)},则M∩N=()A.(,1]B.(﹣2,1]C.[1,2)D.(,2)【解答】解:集合M={x|≤0}={x|﹣2<x≤1},N={x|y=log3(﹣4x2+11x﹣6)}={x|﹣4x2+11x﹣6>0}={x|<x<2},则M∩N={x|<x≤1}=(,1].故选:A.3.(5分)已知函数f(x)=lg(1﹣x)+lg(1+x),则()A.f(x)是奇函数,且在(0,1)是增函数B.f(x)是偶函数,且在(0,1)是增函数C.f(x)是奇函数,且在(0,1)是减函数D.f(x)是偶函数,且在(0,1)是减函数【解答】解:由得,即﹣1<x<1,即函数的定义域为(﹣1,1),f(﹣x)=lg(1+x)+lg(1﹣x)=f(x),则函数f(x)是偶函数,f(x)=lg(1﹣x)+lg(1+x)=lg(1﹣x)(1+x)=lg(1﹣x2),当0<x<1时,函数t=1﹣x2,为减函数,∴函数f(x)为减函数,故选:D.4.(5分)下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=1”的逆否命题为:“若x≠1,则x2﹣4x+3≠0”B.“a>1”是“<1”的充分不必要条件C.若“p∨¬q”为假命题,则q为假命题D.命题“∃x0∈R,使得x0sin x0<0”的否定为“∀x∈R,都有x sin x≥0”【解答】解:对于A、命题“若x2﹣4x+3=0,则x=1”的逆否命题为:“若x≠1,则x2﹣4x+3≠0”,故A正确;对于B、由a>1,可得<1,反之,由<1,不一定有a>1,如a<0,“a>1”是“<1”的充分不必要条件,故B正确;对于C、若“p∨¬q”为假命题,则p、¬q均为假命题,则q为真命题,故C错误;对于D、命题“∃x0∈R,使得x0sin x0<0”的否定为“∀x∈R,都有x sin x≥0”,故D正确.∴错误的说法是C.故选:C.5.(5分)甲、乙、丙等五人排成一排照相,甲、乙不能在丙的同侧,则不同的排法共有()A.24B.40C.56D.60【解答】解:根据题意,设5人中除甲乙丙之外的2人为A、B,甲、乙、丙等5个人排成一排照相,若甲、乙不在丙的同侧,则甲乙在丙的两侧,先排甲、乙、丙三人,丙在中间,甲乙在两边,有A22=2种排法,3人排好后,有4个空位可用,在4个空位中任选1个,安排A,有C41=4种情况,4人排好后,有5个空位可用,在5个空位中任选1个,安排B,有C51=5种情况,则不同的排法共有2×4×5×6=40种;故选:B.6.(5分)设{a n}是公比为q的等比数列,|q|<1,令b n=a n﹣1,若数列{b n}中有连续的四项在集合{﹣19,﹣9,5,11,26}中,则q=()A.﹣B.C.﹣D.【解答】解:由b n=a n﹣1,可得:a n=1+b n,∵数列{b n}中有连续的四项在集合{﹣19,﹣9,5,11,26}中,则数列{a n}中有连续的四项在集合{﹣18,﹣8,6,12,27}中,则连续的四项为:27,﹣18,12,﹣8.∴q=﹣.故选:C.7.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九韶算法f(x)=a n x n+a n﹣1x n﹣1+…+a1x+a0改写成如下形式:f(x)=(…((a n x n+a n)x+a n﹣2)x+…a1)x+a0,至今仍是比较先进的算法,如图所示的程序框图给出了利用﹣1秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为()A.25B.50C.100D.200【解答】解:根据程序框图:n=4,x=2,v=1,i=4﹣1=3,由于:i=3≥0,所以:执行循环,v=1•2+3=5,i=3﹣1=2,v=5•2+2=12,i=2﹣1=1,v=12•2+1=25,i=1﹣1=0,v=25•2+0=50所以:输出v=50.故选:B.8.(5分)设x,y满足约束条件,若z=ax+y的最大值为2a+9,最小值为2a ﹣1,则a的取值范围是()A.[﹣,2]B.(﹣∞,﹣2]∪[,+∞)C.[﹣2,]D.(﹣∞,﹣]∪[2,+∞)【解答】解:作出x,y满足约束条件对应的平面区域如图:(阴影部分).由z=ax+y,得y=﹣ax+z,平移直线y=﹣ax+z,要使z=ax+y的最大值为2a+9,最小值为2a﹣1,即直线y=﹣ax+z经过点A,由可得A(2,9)时,截距最大,2a+9.经过点B,可得B(2,﹣1),经B时,截距最小,2a﹣1,∴a≤,则目标函数的斜率﹣a,满足2≥﹣a≥﹣,即a∈[﹣2,]故选:C.9.(5分)某空间几何体的三视图如图,俯视图虚线部分为半圆弧,则该几何体的体积为()A.B.C.D.【解答】解:由题意可知几何体是有关边长为2的四棱锥挖去有关底面半径为1的半圆锥,如图:几何体的体积为:×=,故选:A.10.(5分)已知抛物线C1:y2=8x和圆C2:(x﹣2)2+y2=4,直线l:y=k(x﹣2)与C1,C2依次相交于A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)四点(其中x1<x2<x3<x4),则|AB|•|CD|的值为()A.2B.4C.6D.8【解答】解:∵y2=8x,焦点F(2,0),准线l0:x=﹣2.由定义得:|AF|=x1+2,又∵|AF|=|AB|+2,∴|AB|=x1,同理:|CD|=x4,由题意可知直线l的斜率存在且不等于0,则直线l的方程为:y=k(x﹣2)代入抛物线方程,得:k2x2﹣(4k2+8)x+4k2=0,∴x1x4=4,则|AB|•|CD|=4.综上所述,|AB|•|CD|=4,故选:B.11.(5分)已知,是单位向量,•=0,若向量满足|﹣3﹣4|=1,则||的取值范围为()A.[﹣1,+1]B.[1,+1]C.[5,6]D.[4,6]【解答】解:令=,=,=3+4,=,如图所示:则||=5,又|﹣3﹣4|=1,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时||达到最值,最大值为5+1,最小值为5﹣1,所以||的取值范围为[4,6].故选:D.12.(5分)在三棱锥D﹣ABC中,CD⊥底面ABC,AE∥CD,△ABC为等边三角形,AB =CD=AE=,又知三棱锥D﹣ABC与三棱锥E﹣ABC的公共部分为一个三棱锥,则此公共三棱锥的外接球的表面积为()A.4πB.πC.3πD.π【解答】解:如下图所示:三棱锥D﹣ABC与三棱锥E﹣ABC的公共部分为三棱锥F﹣ABC,底面ABC是边长为的等边三角形,外接圆半径为1,内切圆半径为,AF⊥CF,几何体的外接球的球心在AC的垂直平分线上,因为,△ABC为等边三角形,所以它的外接圆的圆心就是球心,外接圆的半径就是球的半径,外接球的表面积S=4πR2=4π,故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若,则=.【解答】解:∵,∴cos(+α)=,∴=cos[2(+α)]=2cos2(+α)﹣1=2×﹣1=.故答案为:.14.(5分)若随机变量X~N(2,σ2),且P(x≤1)=P(x≥a),则(x+a)2(ax﹣)5展开式中x3项的系数是1620【解答】解:∵随机变量X~N(2,σ2),且P(x≤1)=P(x≥a),则=2,求得a =3,∴(x+a)2(ax﹣)5=(x+3)2(3x﹣)5=(x2+6x+9)•(243x5﹣405+270x2﹣90+15x﹣1﹣),∴展开式中x3项的系数是6×270=1620,故答案为:1620.15.(5分)点P在双曲线C:﹣=1(a>0,b>0)的右支上,C的左、右焦点分别为F1,F2,若直线PF1与以坐标原点O为圆心,a为半径的圆相切与点A,线段PF1的垂直平方线恰好过点F2,则=.【解答】解:由题意,线段PF1的垂直平分线恰过点F2,垂直为D,AD为△F1F2D的中位线,则y D=2y A=y p,y A=y p,∴==,则=,故答案为:.16.(5分)已知等差数列{a n}的前n项和为S n,且S6=36,a2+a4=10,若b n=(﹣1)n﹣1,则数列{bn}的前101项的和为【解答】解:设等差数列{a n}的公差为d,∵S6=36,a2+a4=10,∴6a1+d=36,2a1+4d=10,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵b n=(﹣1)n﹣1=(﹣1)n﹣1=(﹣1)n﹣1×,则数列{b n}的前101项的和=++……﹣+==.故答案为:.三、解答题(共5小题,满分60分)17.(12分)已知函数f(x)=2cos2x﹣sin(2x﹣π).(1)求f(x)的单调递增区间(2)已知△ABC的外接圆半径为R,A,B,C的对边分别为a,b,c,若f(A)=,sin B+sin C =,求a的取值范围.【解答】解:(1)函数f(x)=2cos2x﹣sin(2x﹣π).=cos2x+1+sin(2x﹣)=cos2x+sin2x+1=cos(2x﹣)+1,令2kπ﹣π≤2x﹣≤2kπ(k∈Z),解得kπ﹣≤x≤kπ+(k∈Z),所以单调递增区间为[kπ﹣,kπ+](k∈Z).(2)由(1)得:f(A)=,则:cos(2A+)=,由于:0<A<π,解得:,所以:A=.由于:sin B+sin C=,所以:2R sin B+2R sin C=4,即:b+c=4.所以:则:a2=b2+c2﹣2bc cos A=b2+c2+bc,解得:a,因为a<b+c=4故:a的取值范围是:[2,4).18.(12分)如图①,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,如图②.(1)求证:平面ABC⊥平面ADC;(2)若AD=1,二面角C﹣AB﹣D的平面角的正切值为,求二面角B﹣AE﹣D的正弦值.【解答】证明:(1)∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,又BD⊥DC,∴DC⊥平面ABD.…(1分)∵AB⊂平面ABD,∴DC⊥AB.…(2分)又∵折叠前后均有AD⊥AB,DC∩AD=D,…(3分)∴AB⊥平面ADC.…(4分)∵AB⊂平面ABC,∴平面ABC⊥平面ADC.…(6分)解:(2)由(1)知AB⊥平面ADC,∴二面角C﹣AB﹣D的平面角为∠CAD.又DC⊥平面ABD,AD⊂平面ABD,∴DC⊥AD.依题意tan∠CAD==.…(7分)∵AD=1,∴CD=.设AB=x(x>0),则BD=,依题意△ABD~△BDC,∴=,即=.解得x=1,故AB=1.…(8分)如图所示,建立空间直角坐标系D﹣xyz,则D(0,0,0),A(,0,),B(,0,0),C(0,,0),E(,,0),=(﹣,0,),=(﹣,,0),=(),=(,0),设平面ABE的法向量=(x,y,z),则,取x=1,得=(1,1,1),设平面ADE的法向量=(x,y,z),则,取x=1,得=(1,﹣1,﹣1),设二面角B﹣AE﹣D的平面角为θ,则cosθ===,∴sinθ==.∴二面角B﹣AE﹣D的正弦值为.19.(12分)某铸件厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=ax b(a,b为大于0的常数),现随机抽取6件合格产品,测得数据如表:对以上数据作了初步判断,得到部分统计数据的值:(lnx i lny i)=1.54,lnx i=24.6,lny i=0.3,(lnx i)2=101.48(1)参照所给数据,求y关于x的回归方程;(2)按照某项指标测定,当产品质量与尺寸的比在区间(,)内时为A等品,现从抽取的6件合格产品中再任选3件,记X为选到A等品的件数,试求随机变量X的分布列和数学期望EX.附:对于一组数据(v1,u1),(v2,u2),…,(v n,u n),其回归直线=+v的斜率和截距的最小二乘法估计值分别为=,=﹣.【解答】解:(1)为了能使用求和数据,对y=ax b两边取自然数e为底的对数,可得lny=blnx+lna.令v i=lnx i,u i=lny i.得:=b+lna.===得:lna=,∴a=.故得y关于x的回归方程为.(2)由题意=∈(,)解得:49<x<81.x可取值为:x=58,68,76.即优等品由3件.X为选到A等品的件数可取到0,1,2,3,且P(X=0)=且P(X=1)=且P(X=2)=且P(X=3)=所以X分布列为:所以,E(X)=0×+1×++=.20.(12分)已知椭圆C:+=1(a>b>0)的左、右焦点分别是F1(﹣c,0),F2(c,0),上顶点为B,又知N点坐标为(,0),且满足3=+2,||=2.(1)求椭圆C的方程;(2)过点N的直线l与椭圆C相交于不同的两点S和T,若C上存在点P满足+=t (O为坐标原点),求实数t的取值范围.【解答】解:(1)由F1(﹣c,0),F2(c,0),B(0,b),N(,0),可得=(c,﹣b),=(﹣c,﹣b),=.∵3=+2,||=2.∴3c=﹣c+2,=2,又a2=b2+c2,联立解得a=2,b=c=2.∴椭圆C的方程为:+=1.(2)设直线l的方程为:my=x﹣4,S(x1,y1),T(x2,y2).联立,化为:(m2+2)y2+8my+8=0,△=64m2﹣32(m2+2)>0,化为:m2>2.∴y1+y2=﹣,y1y2=,∴x1+x2=m(y1+y2)+8=.∵+=t(O为坐标原点),∴x P=×(x1+x2)=×,y P=×.代入椭圆方程可得:+2×=8,化为:t2=<4.解得:﹣2<t<2,t=0时不满足题意,舍去.因此t的求值范围是:(﹣2,0)∪(0,2).21.(12分)已知函数f(x)=alnx+,g(x)=2e x﹣1+a.(1)讨论f(x)的单调性;(2)如果s,t满足|s﹣r|≤|t﹣r|,那么称s比t更靠近,当a>4,且x≥1时,试比较h(x)=f(x)﹣alnx和g(x)哪个更靠近2lnx,并说明理由.【解答】解:(1)f′(x)=﹣,x>0,当a≤0时,f′(x)<0恒成立,函数f(x)在(0,+∞)上单调递减,当a>0时,令f′(x)=0,解得x=,当x∈(0,)时,f′(x)<0,函数单调递减,当x∈(,+∞)时,f′(x)>0,函数单调递增,综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减,当a>0时,f(x)在(0,)上单调递减,在(,+∞)上函数单调递增,(2)令p(x)=h(x)﹣2lnx=alnx+﹣alnx﹣2lnx=﹣﹣2lnx,q(x)=2e x﹣1+a﹣2lnx (x≥1),∴p′(x)=﹣﹣<0,故p(x)在[1,+∞)上单调递减,故当1≤x≤e时,p(x)≥p(e)=0,当x>e时,p(x)<0;q′(x)=2e x﹣1﹣,q″(x)=2e x﹣1+>0,q′(x)在[1,+∞)上单调递增,故q′(x)≥q′(1)=0,则q(x)在[1,+∞)上单调递增,q(x)≥q(1)=a+1>0.①当1≤x≤e时,令m(x)=|p(x)|﹣|q(x)|=p(x)﹣q(x)=﹣2lnx﹣2e x﹣1﹣a+2lnx=﹣2e x﹣1﹣a.∴m′(x)=﹣﹣﹣2e x﹣1<0,故m(x)在[1,e]上单调递减,∴m(x)≤m(1)=2e﹣2﹣a<0,即|p(x)|<|q(x)|,∴h(x)=f(x)﹣alnx比g(x)更靠近2lnx;②当x>额、时,令n(x)=|p(x)|﹣|q(x)|=﹣p(x)﹣q(x)=﹣﹣+2lnx﹣2e x﹣1﹣a+2lnx=﹣﹣2e x﹣1﹣4lnx﹣a.∴n′(x)=﹣﹣2e x﹣1﹣<﹣1﹣2e3<0,故n(x)在[e,+∞)上单调递减,∴n(x)≤n(e)<0,即|p(x)|<|q(x)|,∴h(x)=f(x)﹣alnx比g(x)更靠近2lnx.综上,当a>4,且x≥1时h(x)=f(x)﹣alnx比g(x)更靠近2lnx.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求曲线C的极坐标方程;(Ⅱ)若射线与曲线C交于点P,直线的交点为点Q,求线段PQ的长.【解答】解:(Ⅰ)曲线C的参数方程为(θ为参数),化为,两式平方相加得:(x﹣1)2+y2=13,即x2+y2﹣2x﹣12=0.把x=ρcosθ,y=ρsinθ代入,得C的极坐标方程为ρ2﹣2ρcosθ﹣12=0;(Ⅱ)由,解得ρ=4,即P点坐标为P(4,),由,解得ρ=1,即Q点的坐标为Q(1,).故线段PQ的长|PQ|=|ρ1﹣ρ2|=4﹣1=3.[选修4-4:不等式选讲]23.已知函数|.(I)当a=3时,求不等式f(x)>4的解集;(Ⅱ)证明:.【解答】(I)解:当a=2时,f(x)=|x+3|+|x+|,不等式f(x)>3等价于或,或∴x<﹣或x>,∴不等式f(x)>3的解集为{x|x<﹣或x>};(Ⅱ)证明:f(2m)+f(﹣)=|2m+a|+|2m+|+|﹣+a|+|﹣+|≥|2m+a+|+|2m++﹣|≥2(|2m+|,∴f(2m)+f(﹣).。

2018年全国高考新课标2卷理科数学试题(解析版)

2018年全国高考新课标2卷理科数学试题(解析版)

2018年全国高考新课标2卷理科数学试题(解析版)2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知1+2i/(1-2i),则结果为:A。

--iB。

-+iC。

--iD。

-+i解析:选D。

2.已知集合A={(x,y)|x+y≤3,x∈Z,y∈Z },则A中元素的个数为:A。

9B。

8C。

5D。

4解析:选A。

问题为确定圆面内整点个数。

3.函数f(x)=2/x的图像大致为:A。

B。

C。

D。

解析:选B。

f(x)为奇函数,排除A。

当x>0时,f(x)>0,排除D。

取x=2,f(2)=1,故选B。

4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=:A。

4B。

3C。

2D。

2-2xy解析:选B。

a·(2a-b)=2a-a·b=2+1=3.5.双曲线a^2(x^2)-b^2(y^2)=1(a>0,b>0)的离心率为3,则其渐近线方程为:A。

y=±2xB。

y=±3xC。

y=±2x/abD。

y=±3x/ab解析:选A。

e=3,c=3ab=2a。

6.在ΔABC中,cosC=1/5,BC=1,AC=5,则AB=:A。

42B。

30C。

29D。

25解析:选A。

cosC=2cos^2(C/2)-1=-1/5,AB=AC+BC-2AB·BC·cosC=32,AB=42.7.为计算S=1-1/3+1/5-1/7+……+(-1)^n-1/(2n-1),设计了右侧的程序框图,则在空白框中应填入:开始N=0,T=1i=1是N=N+1/T=T+(-1)^N-1/(2N-1)i<100否S=N-T输出S结束A。

届汉中市高三理科数学模拟试卷题目及答案

届汉中市高三理科数学模拟试卷题目及答案

届汉中市高三理科数学模拟试卷题目及答案2018届汉中市高三理科数学模拟试卷题目及答案要想在高考数学中取得好,就要在最短的时间内拟定解决问题的最佳方案,实现答题效率最优化。

我们可以多做一些数学模拟试卷来提升这方面的能力,以下是店铺为你整理的2018届汉中市高三理科数学模拟试卷,希望能帮到你。

2018届汉中市高三理科数学模拟试卷题目一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.83.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <04.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.35.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.10246.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.87.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=09.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]二、填空题(本大题共4小题,每小题5分)13.(2x﹣1)5的展开式中,含x3项的系数为(用数字填写答案)14.已知实数x,y满足则z= 的取值范围为.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为.三、解答题17.(12分)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.18.(12分)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.19.(12分)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:PQ∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.20.(12分)已知椭圆C: + =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .21.(12分)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )四、选修4-4:极坐标与参数方程22.(10分)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.选修4-5:不等式选讲23.(10分)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.2018届汉中市高三理科数学模拟试卷答案一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]【考点】交、并、补集的混合运算.【分析】求出A,B中不等式的解集确定出B,找出B的补集,求出A与B补集的交集即可.【解答】解:A={x|(x﹣2)(x+3)<0}=(﹣3,2),B={x|y= }=(﹣1,+∞),∴∁RB=(﹣∞,﹣1]∴A∩(∁RB)=(﹣3,﹣1].故选:B.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.8【考点】复数求模;复数代数形式的混合运算.【分析】利用复数运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:z( +3i)=16i(i为虚数单位),∴z( +3i)( ﹣3i)=16i( ﹣3i),∴16z=16i( ﹣3i),∴z=3+ i.则复数|z|= =4.故选:C.【点评】本题考查了复数运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.3.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <0【考点】线性回归方程.【分析】利用公式求出,,即可得出结论.【解答】解:样本平均数 =0.2, =﹣1.7,∴ = = >0,∴ =﹣1.7﹣×0.2<0,故选:C.【点评】本题考查线性回归方程的求法,考查最小二乘法,属于基础题.4.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.3【考点】平面向量数量积的运算.【分析】利用向量垂直关系推出等式,求出x,然后求解向量的模.【解答】既然:向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),2 + =(1,x﹣8),(2 + )⊥ ,可得:1+8﹣x=0,解得x=9.则| |= =3 .故选:D.【点评】本题考查平面向量的数量积的运算,向量的模的求法,考查计算能力.5.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.1024【考点】等比数列的性质.【分析】利用已知条件求出a2a8的值,然后利用等比数列的性质求解T9的值.【解答】解:log2a2+log2a8=2,可得log2(a2a8)=2,可得:a2a8=4,则a5=±2,等比数列{an}的前9项积为T9=a1a2…a8a9=(a5)9=±512.故选:A.【点评】本题考查的等比数列的性质,数列的应用,考查计算能力.6.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.8【考点】程序框图.【分析】模拟执行程序的运行过程,即可得出程序运行后输出的i 值.【解答】解:模拟执行程序的运行过程,如下;S=1,i=1,S<30;S=2,i=2,S<30;S=4,i=3,S<30;S=8,i=4,S<30;S=16,i=5,S<30;S=32,i=6,S≥30;终止循环,输出i=6.故选:B【点评】本题主要考查了程序框图的应用问题,模拟程序的运行过程是解题的常用方法.7.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.【考点】简单空间图形的三视图.【分析】找出各点在xoy平面内的投影得出俯视图.【解答】解:由题意,A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0)在xOy平面上投影坐标分别为A(2,0,0),B(2,1,0),C(0,2,0),D(1,2,0).故选:C.【点评】本题考查了三视图的定义,简单几何体的三视图,属于基础题.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=0【考点】圆的切线方程.【分析】求出P的坐标,设直线l的方程为x+ y+c=0,代入P,求出c,即可求出直线l的`方程.【解答】解:由题意,切线的倾斜角为30°,∴P(1, ).设直线l的方程为x+ y+c=0,代入P,可得c=﹣4,∴直线l的方程为x+ y﹣4=0,故选B.【点评】本题考查直线与圆的位置关系,考查直线方程,考查学生的计算能力,属于中档题.9.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.【考点】函数的图象.【分析】先判断函数的奇偶性,再取特殊值验证.【解答】解:∵f(x)=( ﹣1)•sinx,∴f(﹣x)=( ﹣1)•sin(﹣x)=﹣( ﹣1)sinx=( ﹣1)•sinx=f(x),∴函数f(x)为偶函数,故排除C,D,当x=2时,f(2)=( ﹣1)•sin2<0,故排除B,故选:A【点评】本题考查了函数图象的识别,关键掌握函数的奇偶性和函数值的特点,属于基础题.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)【考点】函数y=Asin(ωx+φ)的图象变换;余弦函数的单调性.【分析】利用三角恒等变换化简f(x)的解析式,利用正弦函数的周期性求得ω的值,再利用余弦函数的单调性,求得函数g(x)的增区间.【解答】解:函数f(x)= sinωx﹣cosωx(ω<0)=2sin(ωx﹣ ),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,则为函数f(x)的周期,即=k•| |,∴ω=±4k,k∈Z.记ω的最大值为ω0,则ω0=﹣4,函数g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).令2kπ﹣π≤4x+ ≤2kπ,求得﹣≤x≤ ﹣,故函数g(x)的增区间为[ ﹣,﹣ ],k∈Z.故选:A.【点评】本题主要考查三角恒等变换,正弦函数的周期性,余弦函数的单调性,属于中档题.11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2关于双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.【考点】双曲线的简单性质.【分析】设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.【解答】解:设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),即有 =﹣,且•n= • ,解得m= ,n=﹣,将F'( ,﹣ ),即( ,﹣ ),代入双曲线的方程可得﹣ =1,化简可得﹣4=1,即有e2=5,解得e= .故选:D.【点评】本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]【考点】函数恒成立问题.【分析】由条件利用函数的奇偶性和单调性,可得0≤2mx﹣lnx≤6对x∈[1,3]恒成立,2m≥ 且2m≤ 对x∈[1,3]恒成立.求得相应的最大值和最小值,从而求得m的范围.【解答】解:∴定义在R上的函数f(x)的图象关于y轴对称,∴函数f(x)为偶函数,∵函数数f(x)在[0,+∞)上递减,∴f(x)在(﹣∞,0)上单调递增,若不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)对x∈[1,3]恒成立,即f(2mx﹣lnx﹣3)≥f(3)对x∈[1,3]恒成立.∴﹣3≤2mx﹣lnx﹣3≤3对x∈[1,3]恒成立,即0≤2mx﹣lnx≤6对x∈[1,3]恒成立,即2m≥ 且2m≤ 对x∈[1,3]恒成立.令g(x)= ,则g′(x)= ,在[1,e)上递增,(e,3]上递减,∴g(x)max= .令h(x)= ,h′(x)= <0,在[1,3]上递减,∴h(x)min= .综上所述,m∈[ , ].故选D.【点评】本题主要考查函数的奇偶性和单调性的综合应用,函数的恒成立问题,体现了转化的数学思想,属于中档题.二、填空题(本大题共4小题,每小题5分)13.(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项的系数为﹣260 (用数字填写答案)【考点】二项式定理的应用.【分析】分析x3得到所有可能情况,然后得到所求.【解答】解:(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项为﹣30x2 =80x3﹣40x3﹣300x3=﹣260x3,所以x3的系数为﹣260;故答案为:﹣260.【点评】本题考查了二项式定理;注意各种可能.14.已知实数x,y满足则z= 的取值范围为[ ] .【考点】简单线性规划.【分析】由约束条件作出可行域,再由z= 的几何意义,即可行域内的动点与定点P(﹣2,﹣1)连线的斜率求解.【解答】解:由约束条件作出可行域如图:A(2,0),联立,解得B(5,6),z= 的几何意义为可行域内的动点与定点P(﹣2,﹣1)连线的斜率,∵ ,∴z= 的取值范围为[ ].故答案为:[ ].【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.【考点】数列递推式;数列的求和.【分析】n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),可得[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.可得Sn= = ﹣ .利用“裂项求和”方法即可得出.【解答】解:∵n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),∴[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.∴n(n+1)Sn﹣1=0,∴Sn= = ﹣ .∴S1+S2+…+S2017= +…+ = .故答案为: .【点评】本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为13π.【考点】球内接多面体;球的体积和表面积.【分析】由题意得PA2+PB2=AB2,即可得D为△PAB的外心,在CD上取点O1,使O1为等边三角形ABC的中心,在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心,在△DEC中求解OC,即可得到球半径,【解答】解:由题意,PA2+PB2=AB2,因为,∴AD⊥面DEC,∵AD⊂PAB,AD⊂ABC,∴面APB⊥面DEC,面ABC⊥面DEC,在CD上取点O1,使O1为等边三角形ABC的中心,∵D为△PAB斜边中点,∴在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心.∵∠EDC=90°,∴ ,又∵ ,∴OO1= ,三棱锥P﹣ABC的外接球的半径R= ,三棱锥P﹣ABC的外接球的表面积为4πR2=13π,故答案为:13π.【点评】本题考查了几何体的外接球的表面积,解题关键是要找到球心,求出半径,属于难题.三、解答题17.(12分)(2017•内蒙古模拟)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.【考点】正弦定理;三角形中的几何计算.【分析】(Ⅰ)根据题意,由正弦定理可得sinC= sinBsinC﹣sinCcosB,进而变形可得1= sinC﹣cosB,由正弦的和差公式可得1=2sin(B﹣ ),即可得B﹣的值,计算可得B的值,即可得答案;(Ⅱ)由余弦定理可得(a+c)2﹣3ac=12,又由a、b、c成等比数列,进而可以变形为12=(a+c)2﹣36,解可得a+c=4 ,进而计算可得△ABC的周长l=a+b+c,由面积公式S△ABC= acsinB= b2sinB计算可得△ABC的面积.【解答】解:(Ⅰ)根据题意,若c= bsinC﹣ccosB,由正弦定理可得sinC= sinBsinC﹣sinCcosB,又由sinC≠0,则有1= sinC﹣cosB,即1=2sin(B﹣ ),则有B﹣ = 或B﹣ = ,即B= 或π(舍)故B= ;(Ⅱ)已知b=2 ,则b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=12,又由a、b、c成等比数列,即b2=ac,则有12=(a+c)2﹣36,解可得a+c=4 ,所以△ABC的周长l=a+b+c=2 +4 =6 ,面积S△ABC= acsinB= b2sinB=3 .【点评】本题考查正弦、余弦定理的应用,关键利用三角函数的恒等变形正确求出B的值.18.(12分)(2017•汉中一模)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.【考点】独立性检验.【分析】(Ⅰ)求出前三组频率之和,即可根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)确定基本事件的个数,即可求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)根据所给数据得出2×2列联表,求出K2,即可判断是否有99%的把握认为月底丰富与性别有关.【解答】解:(Ⅰ)前三组频率之和为0.1+0.2+0.25=0.55,∴中位数位于第三组,设中位数为a,则 = ,∴a=38,∴估计该校女生年阅读量的中位数为38;(Ⅱ)利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,从这6人中随机抽取2人,共有方法 =15种,各组分别为4人,2人,[30,40)这一组中至少有1人被抽中的概率1﹣= ;(Ⅲ)性别阅读量丰富不丰富合计男 4 16 20女 9 11 20合计 13 27 40K2= ≈2.849<6.635,∴没有99%的把握认为月底丰富与性别有关.【点评】本题考查频率分布直方图,考查概率的计算,考查独立性检验知识的运用,属于中档题.19.(12分)(2017•内蒙古模拟)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF 的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:P Q∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取EB的中点M,连接PM,QM,证明:平面PMQ∥平面BCD,即可证明PQ∥平面BCD;(Ⅱ)建立坐标系,利用向量方法,即可求二面角A﹣DB﹣E的余弦值.【解答】(Ⅰ)证明:取EB的中点M,连接PM,QM,∵P为DE的中点,∴PM∥BD,∵PM⊄平面BCD,BD⊂平面BCD,∴PM∥平面BCD,同理MQ∥平面BCD,∵PM∩MQ=M,∴平面PMQ∥平面BCD,∵PQ⊂平面PQM,∴PQ∥平面BCD;(Ⅱ)解:在平面DFC内,过F作FC的垂线,则∠DFC= ,建立坐标系,则E(2,0,0),C(0,1,0),B(2,1,0),D(0,﹣1,﹣),A(2,﹣1, ),∴ =(﹣2,﹣2, ), =(0,2,﹣ ), =(0,1,0),设平面DAB的一个法向量为 =(x,y,z),则,取 =(0,, ),同理平面DBE的一个法向量为 =( ,0, ),∴cos< , >= = ,∴二面角A﹣DB﹣E的余弦值为 .【点评】本题考查线面平行的证明,考查二面角的大小的求法,考查向量方法的运用,是中档题.20.(12分)(2017•内蒙古模拟)已知椭圆C:+ =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆的离心率公式求得a和b的关系,将(﹣,)代入椭圆方程,即可求得a和b的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,求得P的横坐标,求得丨BP丨,利用直线垂直的斜率关系求得丨BQ丨,由= ,根据函数零点的判断即可存在k∈R, = .【解答】解:(Ⅰ)椭圆的离心率e= = = ,则a2=2b2,将点(﹣, )代入椭圆方程,解得:a2=4,b2=2,∴椭圆的标准方程为:,(Ⅱ)由题意的对称性可知:设存在存在k>0,使得 = ,由a2=2b2,椭圆方程为:,将直线方程代入椭圆方程,整理得:(1+2k2)x2+4kbx=0,解得:xP=﹣,则丨BP丨= × ,由BP⊥BQ,则丨BQ丨= ×丨丨= • ,由 = .,则2 × = • ,整理得:2k3﹣2k2+4k﹣1=0,设f(x)=2k3﹣2k2+4k﹣1,由f( )<0,f( )>0,∴函数f(x)存在零点,∴存在k∈R, = .【点评】本题考查椭圆的标准方程及椭圆的离心率,考查直线与椭圆的位置关系,弦长公式,考查函数零点的判断,考查计算能力,属于中档题.21.(12分)(2017•内蒙古模拟)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出lnx< x﹣,令x=1+ (n≥2),得到ln(1+ )< ( ﹣ ),累加即可证明结论.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)= ,令h(x)=﹣ax2+x﹣a,记△=1﹣4a2,当△≤0时,得a≥ ,若a≥ ,则﹣ax2+x﹣a≤0,f′(x)≤0,此时函数f(x)在(0,+∞)递减,当0显然x1>x2>0,故此时函数f(x)在( , )递增,在(0, )和( ,+∞)递减;综上,0在(0, )和( ,+∞)递减,a≥ 时,函数f(x)在(0,+∞)递减;(Ⅱ)证明:令a= ,由(Ⅰ)中讨论可得函数f(x)在区间(0,+∞)递减,又f(1)=0,从而当x∈(1,+∞)时,有f(x)<0,即lnx< x﹣,令x=1+ (n≥2),则ln(1+ )< (1+ )﹣ == ( + )< = ( ﹣ ),从而:ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< (1﹣ + ﹣ + ﹣+…+ ﹣ + ﹣ + ﹣ )= (1+ ﹣﹣ )< (1+ )= ,则有ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< ,可得(1+ )(1+ )(1+ )…(1+ )【点评】本题考查了函数的单调性问题,考查不等式的证明以及导数的应用,是一道中档题.四、选修4-4:极坐标与参数方程22.(10分)(2017•内蒙古模拟)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得普通方程,展开利用互化公式可得极坐标方程.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐标方程.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,利用|PQ|=|ρ1﹣ρ2|= 即可得出.【解答】解:(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得: +(y+1)2=9,展开为:x2+y2﹣2 x+2y﹣5=0,可得极坐标方程:ρcosθ+2ρsinθ﹣5=0.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,∴ρ1+ρ2=2,ρ1•ρ2=﹣5,∴|PQ|=|ρ1﹣ρ2|= = =2 .【点评】本题考查了直角坐标方程化为极坐标方程及其应用、参数方程化为普通方程、弦长公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲23.(10分)(2017•内蒙古模拟)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.【考点】函数的图象.【分析】(Ⅰ)根据函数解析式作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,可得p,q∈(﹣,3),若p,q∈M,且|p+q+pq|<λ,利用绝对值不等式,即可求实数λ的取值范围.【解答】解:(Ⅰ)函数g(x)=f(x)+|x+2|﹣4=|3x﹣4|+|x+2|﹣4,图象如图所示,由图象可得,x= ,g(x)有最小值﹣ ;(Ⅱ)由题意,|3x﹣4|<5,可得﹣∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,∴λ≥15.【点评】本题考查函数的图象,考查绝对值不等式的运用,考查数形结合的数学思想,属于中档题.【2018届汉中市高三理科数学模拟试卷题目及答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学(理科)模拟试卷(二) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1} B.{0,1,2}C.{-1,0,1} D.{-1,0,1,2}2.已知z为纯虚数,且z(2+i)=1+a i3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.(2016年新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图M2-1.图中A点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20 ℃的月份有5个图M2-1 图M2-24.已知平面向量a =(1,2),b =(-2,k ),若a 与b 共线,则||3a +b =( ) A .3 B .4 C.5 D .5 5.函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞)6.阅读如图M2-2所示的程序框图,运行相应的程序,则输出的结果为( ) A .2 B .1 C .0 D .-17.(2014年新课标Ⅱ)如图M2-3,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )图M2-3A.1727B.59C.1027D.138.已知F 1,F 2分别为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,离心率为53,过原点的直线l 交双曲线左、右两支分别于A ,B ,若|BF 1|-|AF 1|=6,则该双曲线的标准方程为( )A.x 29-y 216=1B.x 218-y 232=1 C.x 29-y 225=1 D.x 236-y 264=19.若函数f (x )=⎩⎪⎨⎪⎧x -a 2x ≤0,x +1x +a x >0的最小值为f (0),则实数a 的取值范围是( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]10.已知变量x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,x ≤2,x +y -2≥0,则x +y +3x +2的取值范围是( )A.⎣⎡⎦⎤2,52B.⎣⎡⎦⎤54,52C.⎣⎡⎦⎤45,52D.⎣⎡⎦⎤54,2 11.在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A.13B.2πC.12D.2312.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数:(ⅰ)对任意的x ∈[0,1],恒有f (x )≥0;(ⅱ)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立.则下列四个函数中不是M 函数的个数是( )①f (x )=x 2;②f (x )=x 2+1;③f (x )=ln(x 2+1);④f (x )=2x -1. A .1 B .2 C .3 D .4第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于__________.14.(2016年天津)⎝⎛⎭⎫x 2-1x 8的展开式中x 7的系数为________.(用数字作答)15.已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为________.16.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2016年浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值.18.(本小题满分12分)(2016年云南统测)某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A ,求事件A 的概率P (A );(2)设X 为选出的4人中女生的人数,求随机变量X 的分布列和数学期望.19.(本小题满分12分)(2016年浙江)如图M2-4,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.图M2-420.(本小题满分12分)(2016年山东)如图M2-5,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过点P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.图M2-521.(本小题满分12分)设函数f (x )=(ax 2+x -1)e x (a <0). (1)讨论f (x )的单调性;(2)当a =-1时,函数y =f (x )与g (x )=13x 3+12x 2+m 的图象有三个不同的交点,求实数m 的取值范围.请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A 、B ,求|MA |·|MB |的值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +a |+|x -2|.(1)当a =-4时,求不等式f (x )≥6的解集;(2)若f (x )≤|x -3|的解集包含[0,1],求实数a 的取值范围.2018年高考数学(理科)模拟试卷(二)1.C 解析:由A ={x |-2<x <2},得A ∩B ={-1,0,1}.故选C.2.D 解析:设z =b i(b ∈R )且b ≠0,则(2+i)·b i =1+a i 3,即-b +2b i =1-a i ,所以a =2,b =-1,则a +z =2-i ,对应的点为(2,-1),所在象限为第四象限.故选D.3.D 解析:由图可知平均最高气温高于20 ℃的月份有3个,所以不正确.故选D. 4.C5.B 解析:∵y =12x 2-ln x ,∴y ′=x -1x .由y ′≤0解得0<x ≤1.故选B.6.C 解析:当i =1,S =0进入循环体运算时,S =0,i =2;S =0+(-1)=-1,i =3;S =-1+0=-1,i =4,∴S =-1+1=0,i =5;S =0+0=0,i =6>5,故选C.7.C 解析:该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34π(cm 3),圆柱体毛坯的体积为π×32×6=54π(cm 3),所以切削掉部分的体积为54π-34π=20π(cm 3).所以切削掉部分的体积与原来毛坯体积的比值为20π54π=1027.故选C.8.A 解析:连接AF 2,BF 2,由双曲线的对称性知,四边形AF 1BF 2是平行四边形,则|BF 1|=|AF 2|,所以|AF 2|-|AF 1|=2a .所以2a =6,a =3,又因为离心率为53,所以c a =53.所以c =5.所以b 2=c 2-a 2=16,即b =4,所以该双曲线的标准方程为x 29-y 216=1.故选A.9.D 解析:当a <0时,f (x )min =f (a )≠f (0),所以a ≥0; x >0,f (x )=x +1x +a ≥2+a ,∵f (x )min =f (0), ∴2+a ≥f (0)=a 2.解得-1≤a ≤2.∴0≤a ≤2.10.B 解析:根据题意作出不等式组所表示的可行域如图D193阴影部分,即△ABC 的边界及其内部,又因为x +y +3x +2=1+y +1x +2,而y +1x +2表示可行域内一点(x ,y )和点P (-2,-1)连线的斜率,由图可知k PB ≤y +1x +2≤k PC,根据原不等式组解得B (2,0),C (0,2).所以0+12+2≤y +1x +2≤2+10+2⇒14≤y +1x +2≤32⇒54≤x +y +3x +2≤52.故选B.图D19311.A 解析:x ∈⎣⎡⎦⎤-π2,π2,cos x 的值介于0到12之间,利用三角函数性质解得x ∈⎣⎡⎦⎤-π2,-π3∪⎣⎡⎦⎤π3,π2,在⎣⎡⎦⎤-π2,π2上随机取一个数是等可能的,结合几何概型的概率公式可得所求概率为p =2×⎝⎛⎭⎫π2-π3π2-⎝⎛⎭⎫-π2=13.12.A 解析:(ⅰ)在[0,1]上,四个函数都满足; (ⅱ)x 1≥0,x 2≥0,x 1+x 2≤1; 对于①,f (x 1+x 2)-[f (x 1)+f (x 2)]=(x 1+x 2)2-(x 21+x 22)=2x 1x 2≥0,满足;对于②,f (x 1+x 2)-[f (x 1)+f (x 2)]=[(x 1+x 2)2+1]-[(x 21+1)+(x 22+1)]=2x 1x 2-1<0,不满足. 对于③,f (x 1+x 2)-[f (x 1)+f (x 2)]=ln[(x 1+x 2)2+1]-[ln(x 21+1)+ln(x 22+1)]=ln[(x 1+x 2)2+1]-ln[(x 21+1)(x 22+1)]=lnx 1+x 22+1x 21+1x 22+1=ln x 21+x 22+2x 1x 2+1x 21x 22+x 21+x 22+1, 而x 1≥0,x 2≥0,∴1≥x 1+x 2≥2x 1x 2.∴x 1x 2≤14.∴x 21x 22≤14x 1x 2≤2x 1x 2. ∴x 21+x 22+2x 1x 2+1x 21x 22+x 21+x 22+1≥1.∴ln x 21+x 22+2x 1x 2+1x 21x 22+x 21+x 22+1≥0,满足; 对于④,f (x 1+x 2)-[f (x 1)+f (x 2)] =(2x 1+x 2-1)-(2x 1-1+2x 2-1)=2x 12x 2-2x 1-2x 2+1=(2x 1-1)(2x 2-1)≥0,满足.故选A.13.3-1 解析:由直线方程y =3(x +c )⇒直线与x 轴的夹角∠MF 1F 2=π3或2π3,且过点F 1(-c,0),∵∠MF 1F 2=2∠MF 2F 1,∴∠MF 1F 2=2∠MF 2F 1=π3,即F 1M ⊥F 2M .∴在Rt △F 1MF 2中,F 1F 2=2c ,F 1M =c ,F 2M =3c .∴由椭圆的第一定义可得2a =c +3c ,∴c a =21+3=3-1.14.-56 解析:展开式通项为T r +1=C r 8(x 2)8-r ·⎝⎛⎭⎫-1xr =(-1)r C r 8x 16-3r ,令16-3r =7,r =3,所以x 7的(-1)3C 38=-56.故答案为-56.15.35 解析:如图D194,连接DF ,图D194则AE ∥DF .∴∠D 1FD 即为异面直线AE 与D 1F 所成的角.设正方体棱长为a ,则D 1D =a ,DF =52a ,D 1F =52a ,∴cos ∠D 1FD =⎝ ⎛⎭⎪⎫52a 2+⎝ ⎛⎭⎪⎫52a 2-a22·52a ·52a=35.16.63 解析:设等比数列{a n }的首项为a ,公比为q ,易知q ≠1.根据题意可得⎩⎪⎨⎪⎧a 1-q 21-q=3,a 1-q 41-q=15,解得q 2=4,a1-q =-1.所以S 6=a 1-q 61-q=(-1)(1-43)=63.17.解:(1)由正弦定理,得sin B +sin C =2sin A cos B . 故2sin A cos B =sin B +sin(A +B ) =sin B +sin A cos B +cos A sin B . 于是,sin B =sin(A -B ), 又A ,B ∈(0,π),故0<A -B <π. 所以B =π-(A -B )或B =A -B . 因此,A =π(舍去)或A =2B . 所以A =2B .(2)由cos B =23,得sin B =53,cos 2B =2cos 2B -1=-19. 故cos A =-19,sin A =4 59.cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.18.解:(1)由已知,得P (A )=C 22C 23+C 23C 23C 48=635.所以事件A 的概率为635(2)随机变量X 的所有可能取值为1,2,3,4.由已知得P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4).所以随机变量X 的分布列为:X 1 234P错误错误错误错误随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52. 19.解:(1)延长AD ,BE ,CF 相交于点K ,如图D195.图D195因为平面BCFE ⊥平面ABC ,且AC ⊥BC , 所以,AC ⊥平面BCK , 因此,BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK . 又AC ∩CK =C ,所以BF ⊥平面ACFD . (2)方法一,过点F 作FQ ⊥AK ,连接BQ . 因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以,∠BQF 是二面角B -AD -F 的平面角. 在Rt △ACK 中,AC =3,CK =2,得FQ =3 1313. 在Rt △BQF 中,FQ =3 1313,BF =3, 得cos ∠BQF =34.所以,二面角B -AD -F 的平面角的余弦值为34.方法二,如图D196,延长AD ,BΕ,CF 相交于一点K ,则△BCK 为等边三角形.图D196取BC 的中点O ,则KO ⊥BC .又平面BCFΕ⊥平面ABC ,所以KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系Oxyz . 由题意,得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32.因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧ AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0. 取m =(3,0,-1);由⎩⎪⎨⎪⎧ AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0. 取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n ||m ·||n =34. 所以,二面角B -AD -F 的平面角的余弦值为34.20.解:(1)由题意知,a 2-b 2a =32,可得a =2b .因为抛物线E 的焦点为F ⎝⎛⎭⎫0,12, 所以a =1,b =12,所以椭圆C 的方程为x 2+4y 2=1.(2)(ⅰ)设P ⎝⎛⎭⎫m ,m 22(m >0),由x 2=2y ,可得y ′=x . 所以直线l 的斜率为m .因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0),联立方程⎩⎪⎨⎪⎧ y =mx -m 22,x 2+4y 2=1,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5).且x 1+x 2=4m 34m 2+1, 因此x 0=x 1+x 22=2m 34m 2+1.将其代入y =mx -m 22,得y 0=-m 224m 2+1. 因为y 0x 0=-14m ,所以直线OD 的方程为y =-14m x . 联立方程组⎩⎪⎨⎪⎧ y =-14m x ,x =m ,得点M 的纵坐标为y M =-14, 即点M 在定直线y =-14上.(ⅱ)由(ⅰ)知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22.所以G ⎝⎛⎭⎫0,-m 22. 又P ⎝⎛⎭⎫m ,m 22,F ⎝⎛⎭⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 224m 2+1, 所以S 1=12|GF |m =14m (m 2+1),S 2=12|PM |·|m -x 0|=m 2m 2+1284m 2+1, 所以S 1S 2=24m 2+1m 2+12m 2+12. 令t =2m 2+1,则S 1S 2=2t -1t +1t 2=-1t 2+1t +2.当1t =12,即t =2时,S 1S 2取得最大值94,此时m =22,满足Δ>0, 所以点P 的坐标为⎝ ⎛⎭⎪⎫22,14,因此S 1S 2的最大值为94,此时点P 的坐标为⎝ ⎛⎭⎪⎫22,14. 21.解:(1)f ′(x )=[ax 2+(2a +1)x ]e x =x (ax +2a +1)e x (a <0),令f ′(x )=0,解得x 1=0,x 2=-2-1a .①当a =-12时,f ′(x )=-12x 2e x ≤0,f (x )在(-∞,+∞)上递减;②当-12<a <0时,x 1<x 2,f (x )在(-∞,0)上递减;在⎝⎛⎭⎫0,-2-1a 上递增,在⎝⎛⎭⎫-2-1a ,+∞上递减;③当a <-12时,x 2<x 1,f (x )在⎝⎛⎭⎫-∞,-2-1a 上递减;在⎝⎛⎭⎫-2-1a ,0上递增,在(0,+∞)上递减.(2)当a =-1时,函数 y =f (x )与g (x )=13x 3+12x 2+m 的图象有三个不同的交点,等价于-m =(x 2-x +1)e x +13x 3+12x 2有三个不同的根.设h (x )=(x 2-x +1)e x +13x 3+12x 2h ′(x )=x (x +1)(e x +1),函数h (x )在(-∞,-1)上递增,在(-1,0)上递减,在(0,+∞)上递增,h (x )极大值=h (-1)=3e +16,h (x )极小值=h (0)=1,当-3e -16<m <-1时,方程-m =(x 2-x +1)e x +13x 3+12x 2有三个不同的根.22.解:(1)∵ρ=2cos θ,∴ρ2=2ρcos θ,∴x 2+y 2=2x .故它的直角坐标方程为(x -1)2+y 2=1.(2)直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),普通方程为y =33x -2 33.M (5,3)在直线l 上,过点M 作圆的切线,切点为Τ,则|MT |2=(5-1)2+3-1=18,由切割线定理.可得|MT |2=|MA |·|MB |=18.23.解:(1)当a =-4时,f (x )≥6,即|x -4|+|x -2|≥6,即⎩⎪⎨⎪⎧ x ≤2,4-x +2-x ≥6或⎩⎪⎨⎪⎧ 2<x <4,4-x +x -2≥6或⎩⎪⎨⎪⎧ x ≥4,x -4+x -2≥6,解得x ≤0,或x ≥6.所以解集为(-∞,0]∪[6,+∞).(2)原命题等价于f (x )≤|x -3|在[0,1]上恒成立,即|x +a |+2-x ≤3-x 在[0,1]上恒成立,即-1-x ≤a ≤1-x 在[0,1]上恒成立,即-1≤a ≤0.。

相关文档
最新文档