最新六年级定义新运算

合集下载

小学数学定义新运算

小学数学定义新运算

小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。

在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。

见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。

例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。

如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。

二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。

需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。

(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。

符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。

三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。

分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。

那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。

六年级《定义新运算》奥数教案

六年级《定义新运算》奥数教案
生:12。
师:所以4⊙6等于多少?
生:2+12=14。
板书:
4、6的最大公约数是2;
4、6的最小公倍数是12;
所以4⊙6=2+12=14。
(一)星海历练1(5分钟)
把64=2×2×2×2×2×2表示成∫(64)=6,把243=3×3×3×3×3表示成g(243)=5,那么∫(16)=g___。
分析:
师:然后再怎么计算?
生:再将x和10代入公式就可以了。
板书:
解:4◇1=3×4-2×1=10
x◇10=3x-2×10=3x-20
x◇(4◇1)=3x-20=7
x=9
(二)太空探险2(5分钟)
对于数a,b,c,d,规定(a,b,c,d)=2ab-c+d。已知(1,3,5,x)=7,求x的值。
分析:
根据新运算所代表的意义,将(1,3,5,x)=7转化成我们所学过的加减乘除的形式再计算。
备课教员:
第八讲 定义新运算
一、教学目标:
1. 理解新定义符号的含义,严格按新的规则操作。
2. 经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养运用数学转化思想指导思维活动的能力。
3. 通过将新定义运算转化成一般运算的过程,感受数学中转化的思想方法。
二、教学重点:
理解新定义,按照新定义的式子代入数值。
(一)星海遨游1(10分钟)
定义新运算“⊙”如下:对于两个自然数a和b,他们的最大公约数与最小公倍数的和记为a⊙b,那么4⊙6=_________。
师:题目中新运算符号⊙所代表的意义是什么?
生:表示两个自然数最大公约数与最小公倍数的和。
师:对的,那4和6的最大公约数是多少?

最新六年级奥数定义新运算(精品课件)

最新六年级奥数定义新运算(精品课件)

练习1:
1.将新运算“*”定义为:a*b=(a+b)×(a-b).。求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。
【思路导航】根据定义先算4△6。在这里“△”是新的运算符号。
3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
练习2:
1.设p、q是两个数,规定p△q=4×q-(p+q)÷2, 求5△(6△4)。 2.设p、q是两个数,规定p△q=p2+(p-q)×2。求 30△(5△3)。 3.设M、N是两个数,规定M*N=M/N+N/M,求10*20 -1/4。
第1讲 定义新运算
知识要点
定义新运算是指运用某种特殊符号来表示特定的意义,从而 解答某些算式的一种运算。 解答定义新运算,关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序,将数值代入,转化为常规的 四则运算算式进行计算。 定义新运算是一种人为的、临时性的运算形式,它使用的是 一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中 的“+、-、×、÷”不同的。 新定义的算式中有括号的,要先算括号里面的。 但它在没有转化前,是不适合于各种运算定律的。
⑤=4×5×6,…… 如果1/⑥-1/⑦ =1/⑦×A,那么,A是 几?
【思路导航】这题的新运算被定义为: @ = (a-1)×a×(a+1), 据此,可以求出 : 1/⑥-1/⑦ =1/(5×6×7)-1/(6×7×8),

六年级奥数定义新运算

六年级奥数定义新运算

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算.解答定义新运算, 关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序, 将数值代入, 转化为常规的四则运算算式进行计算.定义新运算是一种人为的、临时性的运算形式, 它使用的是一些特殊的运算符号, 如:*、△、⊙等, 这是与四则运算中的“+、-、×、÷”不同的.新定义的算式中有括号的, 要先算括号里面的. 但它在没有转化前, 是不适合于各种运算定律的.二、精讲精练【例题1】假设a*b=(a+b)+(a-b), 求13*5和13*(5*4).练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).. 求27*9.2、设a*b=a2+2b, 那么求10*6和5*(2*8).【例题2】设p、q是两个数, 规定:p△q=4×q-(p+q)÷2. 求3△(4△6).练习2:1、设p、q是两个数, 规定p△q=4×q-(p+q)÷2, 求5△(6△4).2、设p、q是两个数, 规定p△q=p2+(p-q)×2. 求30△(5△3).【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, 4*2=4+44, 那么7*4=________;210*2=________.练习3:1、如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, ……那么4*4=________.2、规定, 那么8*5=________.【例题4】规定②=1×2×3, ③=2×3×4 , ④=3×4×5, ⑤=4×5×6, ……如果1/⑥-1/⑦ =1/⑦×A, 那么, A是几?练习4:1、规定:②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤=4×5×6, ……如果1/⑧-1/⑨=1/⑨×A, 那么A=________.2、规定:③=2×3×4, ④=3×4×5, ⑤=4×5×6, ⑥=5×6×7, ……如果1/⑩+1/⑾=1/⑾×□, 那么□=________.【例题5】设a⊙b=4a-2b+ ab /2,求x⊙(4⊙1)=34中的未知数x.练习5:1、设a⊙b=3a-2b, 已知x⊙(4⊙1)=7求x.2、对两个整数a和b定义新运算“△”:a△b= , 求6△4+9△8.3、设M、N是两个数, 规定M*N=M/N+N/M, 求10*20-1/4.三、课后作业1、设a*b=3a-b×1/2, 求(25*12)*(10*5).2、如果2*1=1/2, 3*2=1/33, 4*3=1/444, 那么(6*3)÷(2*6)=________.3、如果1※2=1+2, 2※3=2+3+4, ……5※6=5+6+7+8+9+10, 那么x※3=54中, x=________.4、对任意两个整数x和y定于新运算, “*”:x*y=(其中m是一个确定的整数). 如果1*2=1, 那么3*12=________.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。

(完整)小学六年级数学:定义新运算.doc

(完整)小学六年级数学:定义新运算.doc

第三讲定义新运算学生姓名年级小学 6 年级学科数学授课教师日期时段核心内容新运算课型教学目标重、难点1、能理解运算定义及熟练解决新运算2、培养学生整体思想和转换思想;3、会灵活运用这些方法解决实际问题新运算解答方程;【精准诊查】【课首小测】1、一个长为 20 厘米、宽为 16 厘米的长方形纸片,沿它的边剪去一个长为8 厘米、宽为 4 厘米的小长方形。

求;剩余部分的周长。

2、几个连续自然数相加,和能等于56 吗?如果能,有几种不同的答案?写出这些答案;如果不能、说明理由。

【互动导学】【导学】:定义新运算新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义。

1.按照新定义的运算准确计算,常见的如△、◎、※等。

(特殊的运算符号,表示特定的意义,是人为设定的。

)2.理解新定义,严格按照新定义的式子代入数值计算。

3.把定义的新运算转化成我们所熟悉的四则运算或方程。

1【例题精讲】【例 1】定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。

a 1【例 2】定义新运算为a e bb( 1)求2 e 3 e 4 的值;(2)若 x e 4 1.25 ,则x的值为多少?【例 3】如果:1※2=1+112 ※ 3= 2+22+2223※ 4= 3+33+333+3333计算:(3※2)× 5【例 4】对于任意的自然数a和b,规定新运算:a b a ( a 1) (a 2) L( a b1) ( 1)求 1 100 的值(2)已知x1075,求x为多少?【我爱展示】1. P 、 Q 表示数, P * Q 表示P Q,求 3 * (6 * 8)。

22. 如果 a △ b 表示 ( a 2) b ,例如 3△ 43 24 4 ,那么,当 a △ 5=30时 ,a=3. 定义: 6 ※2=6+66=722※3=2+22+222=246, 1 ※4=1+11+111+1111=1234. 7 ※5=。

六年级奥数第01讲 - 定义新运算

六年级奥数第01讲 - 定义新运算
【变式2-1】设p、q是两个数,规定 ,那么 。
【变式2-2】设p、q是两个数,规定 ,那么 。
【变式2-3】设M、N是两个数,规定 ,那么 。
【例3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。那么7*4=?,210*2=?
【变式4-2】如果 , , ,那么 中x=。
【例5】设 ,求 中的未知数x。
【变式5-1】设 ,若 ,则x=。
【变式5-2】对两个整数a和b定义新运算“▽”: ,那么 。
【变式5-3】对任意两个整数x和y定于新运算,“*”: (其中m是一个确定的整数)。如果 ,那么 。
【变式3-1】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……,那么4*4=,18*3=。
【变式3-2】规定 ,那么,那么 。
【例4】规定: , , , ,……。如果 ,那么A是几?
【变式4-1】规定: , , , ,……。如果 ,那么A=。
定义新运算
定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、、、·”不同的。
新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。

(完整)小学六年级数学:定义新运算

(完整)小学六年级数学:定义新运算

第三讲定义新运算【课首小测】1、一个长为20厘米、宽为16厘米的长方形纸片,沿它的边剪去一个长为8厘米、宽为4厘米的小长方形。

求;剩余部分的周长。

2、几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;如果不能、说明理由。

【互动导学】【导学】:定义新运算新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义。

1.按照新定义的运算准确计算,常见的如△、◎、※等。

(特殊的运算符号,表示特定的意义,是人为设定的。

)2.理解新定义,严格按照新定义的式子代入数值计算。

3.把定义的新运算转化成我们所熟悉的四则运算或方程。

【例题精讲】【例1】定义新运算为a △b =(a +1)÷b ,求6△(3△4)的值。

【例2】定义新运算为1a ab b+=(1)求()234的值; (2)若4 1.25x=,则x 的值为多少?【例3】如果:1※2=1+112※3=2+22+222 3※4=3+33+333+3333计算:(3※2)×5【例4】对于任意的自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++++++-(1)求1*100的值 (2)已知x *10=75,求x 为多少?【我爱展示】1.P 、Q 表示数,*P Q 表示2P Q+,求3*(6*8)。

2.如果a △b 表示(2)a b -⨯,例如3△4()3244=-⨯=,那么,当a △5=30时,a=3.定义: 6※2=6+66=722※3=2+22+222=246, 1※4=1+11+111+1111=1234. 7※5= 。

4.定义新运算”⊗“,使下列算式成立:248⊗=,5313⊗=,3511⊗=,9725⊗=,求73⊗= 。

5.对于任意的两个自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++-,如果(3)23660x **=,那么x 等于几?【能力展示】【知识技巧回顾】1、学习到哪些知识:2、解答新运算的步骤:【巩固练习】1.如果规定a b *=5×a-12b ,其中a 、b 是自然数,那么106*= 。

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。

12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。

4×26﹣2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级定义新运算
年级 班 姓名 得分
一、填空题
1.规定a ☉b =
a b b a -,则2☉(5☉3)之值为 .
2.规定“※”为一种运算,对任意两数a ,b ,有a ※b 3
2b a +=
,若6※x 322=,则x =
.
3.设a ,b ,c ,d 是自然数,定义bc ad d c b a +>=<,,,.则
<><><<,3,2,1,4,4,3,2,13, 4, 1, 2>>=<>1,4,3,2, .
4.[A ]表示自然数A 的约数的个数.例如,4有1,2,4三个约数,可以表示成
[4]=3.计算:]7[])22[]18([÷+= .
5.规定新运算※:a ※b=3a -2b .若x ※(4※1)=7,则x= .
6.两个整数a 和b ,a 除以b 的余数记为a ☆b .例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9) ☆4= .
7.对于数a ,b ,c ,d 规定d c ab d c b a +->=<2,,,.如果7,5,3,1>=<x ,
那么x = .
8.规定:6※六年级定义新运算※六年级定义新运算
1※4=1+11+111+1111=1234.7※5= .
9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]= .
10.假设式子b a a ⨯#表示经过计算后,a 的值变为原来a 与b 的值的积,而式子b a b -#表示经过计算后,b 的值为原来a 与b 的值的差.设开始时a =2,b =2,依次进行计算b a a ⨯#,b a b -#,b a a ⨯#,b a b -#,则计算结束时,a 与b 的和
是 .
二、解答题
11.设a ,b ,c ,d 是自然数,对每两个数组(a ,b ),(c ,d ),我们定义运算※如下: (a ,b )※(c ,d )= (a+c ,b +d );又定义运算△如下: (a ,b )△(c ,d )= (ac+bd ,ad+bc ).试计算((1,2) ※(3,6))△((5,4)※(1,3)).
12.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.
小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.
对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:
羊△(狼☆羊)☆羊△(狼△狼).
13.22264⨯⨯=222⨯⨯⨯表示成()664=f ;
33333243⨯⨯⨯⨯=表示成()5243=g .
试求下列的值:
(1)()=128f ; (2))()16(g f =; (3)6)27()(=+g f ;
(4)如果x , y 分别表示若干个2的数的乘积,试证明:)()()(y f x f y x f +=⋅.
14.两个不等的自然数a 和b ,较大的数除以较小的数,余数记为a ☉b ,比如5☉2=1,7☉25=4,6☉8=2.
(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;
(2)已知11☉x =2,而x 小于20,求x ;
(3)已知(19☉x )☉19=5,而x 小于50,求x .
———————————————答 案—————————————————————— 1. 120
411. 5☉3=15
165335=-,
2☉(5☉3)=2☉120
41112016121516
15
1621516==-=.
2. 8.
依题意,6※326x x +=
,因此3
22326=+x ,所以x=8.
3. 280.
;1421343,2,1,4;1032414,3,2,1=⨯+⨯>=<=⨯+⨯>=<
.1443121,4,3,2;1014232,1,4,3=⨯+⨯>=<=⨯+⨯>=< 原式2801014141014,10,14,10=⨯+⨯>==<.
4. 5.
因为23218⨯=有6)12()11(=+⨯+个约数,所以[18]=6,同样可知
[22]=4,[7]=2.
原式52)46(=÷+=.
5. 9.
因为4※1=101243=⨯-⨯,所以x ※(4※1)= x ※10=3x -20.故3x -20=7,解得x =9.
6. 0.
89226+⨯=,26☆9=8,又428⨯=,故(26☆9)☆4=8☆4=0.
7. 6.
因为x x x +=+-⨯⨯>=<15312,5,3,1,所以71=+x ,故6=x .
8. 86415.
7※5=7+77+777+7777+77777=86415.
9. 25.
原式=[3△5]×[5☉7]=5×5=25.
10. 14.
第1次计算后,422=⨯=a ;第2次计算后,224=-=b ;第3次计算后,824=⨯=a ;第4次计算后,628=-=b .此时1468=+=+b a .
11. (1,2)※(3,6)=(1+3,2+6)=(4,8),(5,4)※(1,3)=(5+1,4+3)=(6,7). 原式=(4,8)△(6,7)=(4×6+8×7,4×7+8×6)=(80,76).
12. 原式=羊△羊☆羊△狼=羊☆羊△狼=羊△狼=狼.
13. (1)()72)128(7==f f ;
(2)()())81(342)16(44g g f f ====;
(3)因为()())8(233636)27(633f f g g ===-=-=-,所以
6)27()8(=+g f ;
(4)令,2,2n m y x ==则n y f m x f ==)(,)(.
()())()(222)(y f x f n m f f y x f n m n m +=+==⋅=⋅+.
14. (1)1991☉2000=9;
由5☉19=4,得(5☉19)☉19=4☉19=3;
由19☉5=4,得(19☉5)☉5=4☉5=1.
(2)我们不知道11和x 哪个大(注意,x ≠11),即哪个作除数,哪个作被除数,这样就要分两种情况讨论.
1) x <11,这时x 除11余2, x 整除11-2=9.又x ≥3(因为x 应大于余数2),所以x =3或9.
2) x >11,这时11除x 余2,这说明x 是11的倍数加2,但x <20,所以x =11+2=13.
因此(2)的解为x =3,9,13.
(3)这个方程比(2)又要复杂一些,但我们可以用同样的方法来解.
用y 表示19☉x ,不管19作除数还是被除数,19☉x 都比19小,所以y 应小于19.
方程y ☉19=5,说明y 除19余5,所以y 整除19-5=14,由于y ≥6,所以y =7,14.
当y =7时,分两种情况解19☉x =7.
1)x <19,此时x 除19余7,x 整除19-7=12.由于x ≥8,所以x =12.
2) x >19,此时19除x 余7, x 是19的倍数加7,由于x <50,所以x =19+7=26或7219+⨯=x =45.
当y =14时,分两种情况解19☉x =14.
1) x <19,这时x 除19余14, x 整除19-14=5,但x 大于14,这是不可能的.
2)x >19,此时19除x 余14,这就表明x 是19的倍数加14,因为x <50,所以x =19+14=33.
总之,方程(19☉x )☉19=5有四个解,x =12,26,33,45.。

相关文档
最新文档