人教版八年级数学特殊的平行四边形同步测试题测试题

合集下载

2020-2021学年人教版数学八年级下册 18.2 特殊的平行四边形 同步测试题

2020-2021学年人教版数学八年级下册  18.2  特殊的平行四边形  同步测试题

18.2 特殊的平行四边形同步测试题(满分120分;时间:90分钟)一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 在▱ABCD中,增加下列条件中的一个,就能断定它是矩形的是()A.∠A+∠C=180∘B.AB=BCC.AC⊥BDD.AC=2AB2. 矩形ABCD的对角线AC、BD相交于点O,∠AOD=120∘,AC=8,则△ABO的周长为()A.16B.12C.24D.203. 矩形具有而菱形不一定具有的性质是()A.对角线相等B.四边相等C.对角线互相垂直D.对角线互相平分4. 如图,在梯形ABCD中,AD // BC,∠B+∠C=90∘,E、F分别是AD、BC的中点,若AD=5cm,BC=13cm,那么EF=()A.4cmB.5cmC.6.5cmD.9cm5. 下列各组条件中,能判定四边形ABCD是矩形的一组是()A.AB//CD,AC=BDB.AB//CD,∠A=∠C=90∘C.AB//CD,∠B=∠C=90∘D.AB//CD,∠A=∠D=90∘6. 已知,在四边形ABCD中,∠A=∠B=90∘,要使四边形ABCD为矩形,那么需要添加的一个条件是()A.AB=BCB.AD=BCC.AD=ABD.BC=CD7. 菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,则点O到边AB的距离为()A.2B.94C.73D.1258. 如图,在矩形ABCD中,O为AC的中点,EF过O点且EF⊥AC分别交DC于E,交AB于E,点G是AE的中点,且∠AOG=30∘,则下列结论:(1)DC=3OG;(2)OG=12BC;(3)四边形AECF为菱形;(4)S△AOE=16S四边形ABCD.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(本题共计7 小题,每题3 分,共计21分,)9. 菱形的面积为24cm2,一条对角线长为6cm,则另一条对角线长为________.10. 两张宽2cm矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.FC,则四边11. 如图,矩形ABCD中,AB=8cm,BC=3cm,E是DC的中点,BF=12形DBFE的面积为________cm2.12. 在矩形ABCD中,再增加条件________(只需填一个)可使矩形ABCD成为正方形.13. 如图,△ABC中,∠ABC=90∘,O为AC的中点,连接BO并延长到D,连接AD,CD.添加一个条件,使四边形ABCD是矩形(填一个即可).________14. 如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD的面积为________.15. 如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a7=________.三、解答题(本题共计7 小题,共计75分,)16. 已知,如图,在△ABC中,D是AB边上的一点,且BD=BC,BE⊥CD于点E,交AC于点F,请再添加一个条件,使四边形DMCF是菱形,并加以证明.17. 如图,在△ABC中,∠ABC=90∘,点D为AC的中点,过点C作CE⊥BD于点E,过点A 作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.18. 附加题:已知正方形ABCD的面积35平方厘米,E、F分别为边AB、BC上的点,AF 和CE相交于点G,并且△ABF的面积为5平方厘米,△BCE的面积为14平方厘米,求四边形BEGF的面积.19. 如图,∠ADC=90∘,E是AC的中点,BE=DE.求证:AB⊥BC.20. 如图所示,在等边三角形中,BC=8cm,射线AG // BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;(2)填空:①当t为________s时,四边形AFCE是菱形;②当t为________s时,△ACE的面积是△ACF的面积的2倍.21. 如图,将一长方形纸片ABCD沿着EF折叠,已知AF // BE,DF // CE,CE交AF于点G,过点G作GH // EF,交线段BE于点H.(1)判断∠CGH与∠DFE是否相等,并说明理由;(2)①判断GH是否平分∠AGE,并说明理由;②若∠DFA=52∘,求∠HGE的度数.22. 如图,在四边形ABCD中,AD//BC,∠B=90∘,AD=24cm,AB=8cm,BC= 26cm,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s的速度运动,动点P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒.(1)当t为何值时,四边形ABQP为矩形?(2)当t为何值时,四边形PQCD为平行四边形?。

八年级数学人教版下册18.2《特殊的平行四边形》测试卷、练习卷(带答案解析)

八年级数学人教版下册18.2《特殊的平行四边形》测试卷、练习卷(带答案解析)

18.2《特殊的平行四边形》测试卷、练习卷(带答案解析)一、选择题(本大题共10小题,共30.0分)1.如果一个四边形的对角线相等,那么顺次连接这个四边形各边中点所得四边形是()A. 平行四边形B. 正方形C. 矩形D. 菱形2.矩形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分3.平行四边形两邻边之比为3:4,两条对角线长都是10,则这个平行四边形的周长是().A. 14B. 20C. 28D. 无法确定4.如图,P为矩形ABCD外一点,S△PCD=5,S△PBC=8,则△PAC的面积是().A. 3B. 4C. 1.5D. 2.55.顺次连结矩形各边的中点,所得四边形是().A. 筝形B. 矩形C. 菱形D. 正方形6.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A. (√3,1)B. (2,1)C. (1,√3)D. (2,√3)7.如图,正方形ABCD的边长为4,点A的坐标为(−1,1),AB平行于x轴,则点C的坐标为()A. (3,1)B. (−1,1)C. (3,5)D. (−1,5)8.如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A. BE=AFB. ∠DAF=∠BECC. ∠AFB+∠BEC=90∘D. AG⊥BE9.如图,在边长为2的菱形ABCD中,∠B=45∘,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD交于点F,则B′F的长度为()A. 1B. √2C. 2−√2D. 2√2−210.如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4√2−2时,P点最多有9个③当P点有8个时,x=2√2−2④当△PEF是等边三角形时,P点有4个A. ①③B. ①④C. ②④D. ②③二、填空题(本大题共4小题,共12.0分)11.如图,在菱形ABCD中,∠B=50∘,点E在CD上,若AE=AC,则∠BAE=°.12.如下图,将矩形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠B′MD=50∘,则∠BEF的度数为.13.如下图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B,⋯⋯,依次类推,则平行四边形AO2019C2020B的面积为.14.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为°.三、解答题(本大题共7小题,共58.0分)15.已知:四边形ABCD中,AB=CD,∠A+∠D=180°,AC、BD相交于点O,△AOB是等边三角形。

人教版八年级下册:18.2特殊的平行四边形同步练习卷 含答案解析

人教版八年级下册:18.2特殊的平行四边形同步练习卷  含答案解析

人教版八年级下册:18.2特殊的平行四边形同步练习卷一.选择题(共10小题)1.下列性质中,矩形不一定具有的是()A.对角线相等B.对角线互相平分C.4个内角相等D.一条对角线平分一组对角2.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°3.如图,已知△ABC中,AD是BC边上的中线,则下列结论不一定正确的是()A.B.BD=CD C.D.4.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC 5.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD6.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.157.如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5°B.30°C.45°D.67.5°8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.49.已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()①AB=BC,②∠ABC=90˚,③AC=BD,④AC⊥BDA.选①②B.选①③C.选②③D.选②④10.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A.∠DAN=15°B.∠CMN=45°C.AM=MN D.MN=NC二.填空题(共8小题)11.工人师傅在测量一个门框是否是矩形时,只需要用到一个直角尺,则他用到的判定方法是.12.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是.13.矩形ABCD中,要使矩形ABCD成为正方形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.如图,已知菱形ABCD的面积为6cm2,BD的长为4cm,则AC的长为cm.15.如图,在矩形ABCD中,AC,BD交于点O,M、N分别为BC、OC的中点.若BD=8,则MN的长为.16.如图,Rt△ABC中,∠ACB=90°,∠A=28°,D是AB的中点,则∠DCB=度.17.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B为顶点的四边形是矩形,则点D的坐标为.18.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN,若AB=9,BE=6,则MN 的长为.三.解答题(共8小题)19.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.20.如图,正方形ABCD的对角线AC与BD交于点O,过点C作CE∥BD,过点D作DE ∥AC,CE与DE交于点E.求证:四边形OCED是正方形.21.如图.在平行四边形ABCD中,E、F分别为AB、CD的中点,连结DE、DB、BF.(1)求证:DE=BF;(2)若∠ADB=90°,证明:四边形BFDE是菱形.22.已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC、DE,当∠B=∠AEB=45°时,求证四边形ACED是正方形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.25.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.26.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.参考答案一.选择题(共10小题)1.【解答】解:∵矩形的对角线互相平分且相等,故选项A、B不合题意;∵矩形的四个角都是直角,故选项C不合题意;∵矩形的一条对角线不一定平分一组对角;故D符合题意;故选:D.2.【解答】解:∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=∠DAB=25°.故选:B.3.【解答】解:如图,在△ABC中,AD是BC边上的中线,则BD=CD=BC,故选项A、B、D不符合题意.若∠BAC=90°时,AD=BC才成立,否则不成立.故选项C符合题意.故选:C.4.【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.不能判定平行四边形ABCD为矩形,故此选项符合题意;D.平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∵AC=BD,∴四边形ABCD是矩形,故选项A不符合题意;B、∵AB⊥BC,∴四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=60°,不能得出四边形ABCD是菱形;选项C不符合题意;D、∵AC⊥BD,∴四边形ABCD是菱形,故选项D符合题意;故选:D.6.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.7.【解答】解:∵BE=DB,∴∠BDE=∠E,∵∠DBA=∠BDE+∠BED=45°∴∠BDE=×45°=22.5°.故选:A.8.【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.9.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意.D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;故选:C.10.【解答】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB∥MG∥CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°﹣75°=15°,∠CMN=180°﹣75°﹣60°=45°,故A,B,C正确,故选:D.二.填空题(共8小题)11.【解答】解:用直角尺测量门框的三个角是否都是直角,如果都是直角,则四边形是矩形.故答案为:三个角是直角的四边形为矩形12.【解答】解:过点A作AE⊥BC于E,AF⊥CD于F,如图,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形;故答案为:菱形.13.【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).14.【解答】解:∵菱形ABCD的面积为6cm2,BD的长为4cm,∴×4×AC=6,解得:AC=3,故答案为:3.15.【解答】解:如图,∵四边形ABCD是矩形,AC,BD交于点O,BD=8∴BD=2BO,即2BO=8.∴BO=4.又∵M、N分别为BC、OC的中点,∴MN是△CBO的中位线,∴MN=BO=2.故答案是:2.16.【解答】解:∵∠ACB=90°,D是AB的中点,∴CD=AB=AD,∴∠ACD=∠A=28°,∴∠DCB=90°﹣28°=62°,故答案为:62.17.【解答】解:如图,当AB为对角线时,观察图象可知D(5,3).当AB为矩形的边时,观察图象可知D2(﹣3,2),∴直线AD2的解析式为y=x+,∴C1(0,),∵AC1=BD1,∴D1(3,),综上所述,满足条件的点D的坐标为(5,3)或(﹣3,2)或(3,).故答案为(5,3)或(﹣3,2)或(3,).18.【解答】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=9,BE=6,∴GF=GB=6,BC=9,∴GC=GB+BC=6+9=15,∴CF===3.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.三.解答题(共8小题)19.【解答】证明;∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.20.【解答】证明:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵正方形ABCD的对角线AC与BD交于点O,∴OD=OC,∠DOC=90°,∴四边形CODE是正方形.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,DC=AB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=BE,∴四边形DEFB是平行四边形,∴DE=BF;(2)证明:由(1)得,四边形DEBF是平行四边形,∴DC=AB,CD∥AB,∴DF∥EB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=EB,∴四边形DEBF是平行四边形,∵∠ADB=90°,∴DE=AB,∴DE=EB,∴四边形DEBF是菱形.22.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△AOD和△EOC中,,∴△AOD≌△EOC(AAS);(2)∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.23.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.25.【解答】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=4,AD=5,∴AB=5,BE=3.∵AB=BC=5,∴CE=8.∴AC=4,∵对角线AC,BD交于点O,∴AO=CO=2.∴OE=2.26.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.。

2021-2022学年人教版八年级数学下册《18-2特殊平行四边形》同步达标测试题(附答案)

2021-2022学年人教版八年级数学下册《18-2特殊平行四边形》同步达标测试题(附答案)

2021-2022学年人教版八年级数学下册《18-2特殊平行四边形》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列说法中,正确的是()A.两邻边相等的四边形是菱形B.一条对角线平分一组内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2.如图,在菱形ABCD中,添加一个条件不能证明△ABE≌△CDF的是()A.∠BAE=∠FCD B.∠BEA=∠DFC C.AE=CF D.BE=DF3.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,点E在BC上,且CE=AC,∠BAE=15°,则∠CDE的大小为()A.70°B.75°C.80°D.85°4.如图,矩形ABCD中,点G是AD的中点,GE⊥BG交CD于点E,CB=CE,连接CG 交BE于点F,则∠ECF的度数为()A.30°B.22.5°C.25°D.15°5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4B.4.8C.5.2D.66.如图,正方形ABCO和正方形DEFO的顶点A,O,E在同一直线l上,且EF=,AB =3,给出下列结论:①∠COD=45°;②AE=5;③CF=BD=;④△COF的面积是.其中正确的结论为()A.①②④B.①④C.②③D.①③④7.如图,已知四边形ABCD为正方形AB=2,点E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE、EF为邻边作矩形DEFG,连接CG.在下列结论中:①矩形DEFG是正方形;②2CE+CG=AD;③CG平分∠DCF;④CE =CF.其中正确的结论有()A.①③B.②④C.①②③D.①②③④8.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且A(﹣3,0),B (2,b),则b的值为()A.3B.2C.﹣3D.﹣2二.填空题(共8小题,满分32分)9.如图,在四边形ABCD中,AD∥BC,AB=AD,下列条件①AC⊥BD;②OA=OC;③AC平分∠BCD;④∠ABC=∠ADC,能判定四边形ABCD是菱形的有.(填写序号)10.有两个全等矩形纸条,长与宽分别为10和6,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为.11.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.12.如图,F是矩形ABCD内一点,AF=BF,连接DF并延长交BC于点G,且点C与AB 的中点E恰好关于直线DG对称,若AD=6,则AB的长为.13.如图,四边形ABCD为菱形,AB=3,∠ABC=60°,点M为BC边上一点且BM=2CM,过M作MN∥AB交AC,AD于点O,N,连接BN.若点P,Q分别为OC,BN的中点,则PQ的长度为.14.如图,在矩形ABCD中,AD=13,AB=5,E为BC上一点,DE平分∠AEC,则CE 的长为.15.如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CE、BD交于点G,连接AG,那么∠AGD的度数是度.16.如图,正方形ABCD中,点M,N为CD,BC上的点,且DM=CN,AM与DN交于点P,连接AN,点Q为AN中点,连接PQ,若AB=8,DM=2,则PQ的长为.三.解答题(共6小题,满分56分)17.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.18.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.19.如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.20.如图,在矩形ABCD中,点P为CB延长线上一点,连接AP.(1)如图1,以CD为底向内作等腰△CDE,延长DE恰好交CB延长线于点P,交AB 于点F,若AF=5BF,EC=6,求EF的长;(2)如图2,若∠APB=60°,AB=AD,以CD为边向外作等边△CDF,连接AF,DE 平分∠ADC交AF于点E,连接PE.求证:P A+PC=PE.21.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.22.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.(1)写出AF与BE的数量关系为,位置关系为.(2)若AB=2,AE=2,试求线段BH的长.(3)如图②,连接CP并延长交AD于点Q,若点H是BP的中点,试求CP:PQ的值.参考答案一.选择题(共8小题,满分32分)1.解:A、∵两邻边相等的平行四边形是菱形,∴选项A不符合题意;B、∵一条对角线平分一组内角的平行四边形是菱形,∴选项B符合题意;C、∵对角线互相平分且一组邻边相等的四边形是菱形,∴选项C不符合题意;D、∵对角线垂直的平行四边形是菱形,∴选项D不符合题意;故选:B.2.解:∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∠ABE=∠CDF,A、添加∠BAE=∠FCD,利用ASA能得出△ABE≌△CDF,不符合题意;B、添加∠BEA=∠DFC,利用AAS能得出△ABE≌△CDF,不符合题意;C、添加AE=CF,不能得出△ABE≌△CDF,符合题意;D、添加BE=DF,利用SAS能得出△ABE≌△CDF,不符合题意;故选:C.3.解:∵∠ACB=90°,CE=AC,∴∠CAE=∠AEC=45°,∵∠BAE=15°,∴∠CAB=60°,∴∠B=30°,∵∠ACB=90°,D为AB的中点,∴CD=BD=AD=AB,∴△ACD是等边三角形,∠DCB=∠B=30°,∴AC=DC=CE,∴∠CDE=∠CED=×(180°﹣30°)=75°.故选:B.4.解:取BE的中点O,连接OG,OC,∵O,G为中点,∴OG为四边形ADEB的中位线,∴AB∥OG∥DE,∴∠OGC=∠ECF,∵CE=BC,∠BCE=90°,∴△BCE是等腰直角三角形,∴∠CBE=∠BEC=45°,∵∠BCE=90°,O为BE的中点,∴OC=OE=BE,∴∠OCE=∠OEC=45°,∵GE⊥BG,O为BE的中点,∴OG=BE,∴OG=OC,∴∠OGC=∠OCG,∴∠OCG=∠ECF=∠OCE=22.5°,故选:B.5.解:如图,连接P A.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当P A最小时,EF也最小,即当AP⊥CB时,P A最小,∵AB•AC=BC•AP,即AP===4.8,∴线段EF长的最小值为4.8;故选:B.6.解:①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正确;②∵EF=,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②正确;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF===,BH=3﹣1=2,DH=3+1=4,BD===2,故③错误;④△COF的面积S△COF=×3×1=,故④正确;∴其中正确的结论为①②④,故选:A.7.解:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,∴NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形;故①正确;∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=CE+CG=AD,故③错误;当DE⊥AC时,点C与点F重合,∴CE不一定等于CF,故④错误,故选:A.8.解:作BM⊥x轴于M.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,∴∠DAO=∠ABM,∵∠AOD=∠AMB=90°,在△DAO和△ABM中,,∴△DAO≌△ABM(AAS),∴BM=OA,∵A(﹣3,0),B(2,b),∴BM=OA=3,∴b=﹣3.故选:C.二.填空题(共8小题,满分32分)9.解:①∵AB=AD,AC⊥BD,∴OB=OD,∵AD∥BC,∴∠ADO=∠CBO,又∵∠AOD=∠COB,∴△AOD≌△COB(ASA),∴AD=CB,∴四边形ABCD是平行四边形,又∵AB=AD,∴平行四边形ABCD是菱形,故①能判定四边形ABCD是菱形;②∵AB=AD,AC⊥BD,∴OB=OD,∵OA=OC,∴四边形ABCD是平行四边形,又∵AB=AD,∴平行四边形ABCD是菱形,故②能判定四边形ABCD是菱形;③∵AD∥BC,∴∠DAC=∠BCA,∵AC平分∠BCD,∴∠DCA=∠BCA,∴∠DAC=∠DCA,∴AD=CD,∴AB=AD=CD,不能判定四边形ABCD是菱形;④∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=∠ADC,∴∠BAD+∠ADC=180°,∴AB∥CD,∴四边形ABCD是平行四边形,又∵AB=AD,∴平行四边形ABCD是菱形,故④能判定四边形ABCD是菱形;故答案为:①②④.10.解:由题意得:矩形ABCD≌矩形BEDF,∴∠A=90°,AB=BE=6,AD∥BC,BF∥DE,AD=10,∴四边形BGDH是平行四边形,∴平行四边形BGDH的面积=BG×AB=BH×BE,∴BG=BH,∴四边形BGDH是菱形,∴BH=DH=DG=BG,设BH=DH=x,则AH=10﹣x,在Rt△ABH中,由勾股定理得:62+(10﹣x)2=x2,解得:x=,∴BH=,∴四边形BGDH的周长=4BH=,故答案为:.11.解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.12.解:方法一:连接EF、FC、EC,如图所示:∵四边形ABCD是矩形,∴BC=AD=6,AD∥BC,∠BAD=∠ABC=90°,∴AB⊥AD,∵AF=BF,点E是AB的中点,∴EF⊥AB,AB=2BE,AE=BE,∴∠AEF=∠ABC=90°,∴EF∥BC,∴EF∥AD∥BC,∴DF=FG,在Rt△DCG中,CF为斜边DG上的中线,∴CF=DG=FG,∵EF∥GC,∴∠OEF=∠OCG,∠OFE=∠OGC,∵点C与AB的中点E关于直线DG对称,∴DG垂直平分线段EC,∴FG⊥CE,EO=CO,EF=CF,在△OEF和△OCG中,,∴△OEF≌△OCG(AAS),∴EF=CG,∴CF=FG=CG,∴△CGF是等边三角形,∴∠GCF=60°,∵CO⊥GF,∴CO平分∠GCF,∴∠GCO=GCF=30°,在Rt△BCE中,∠EBC=90°,∠BCE=30°,BC=6,∴CE=2BE,∴在Rt△BCE中,AB=4;方法二:如图,连接CE,根据题意可知:GD为CE的垂直平分线,连接DE,则有DE=CD,设AE为x,则DE=2x,在Rt△AED,根据勾股定理,得DE2﹣AE2=AD2,∴3x2=36,∴x=2,∴AB=2x=4.故答案为:4.13.解:连接BD交AC于E,连接QE,过Q作QF⊥AC于F,如图所示:∵四边形ABCD是菱形,AB=3,∴BC=CD=AD=AB=3,BE=DE,AE=CE,AD∥BC,AB∥CD,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AC=AB=3,∴AE=CE=AC=,∵BM=2CM,BM+CM=BC=3,∴CM=1,∵MN∥AB∥CD,AD∥BC,∴四边形MNDC是平行四边形,∴DN=CM=1,∵Q是BN的中点,BE=DE,∴QE是△BDN的中位线,∴QE=DN=,QE∥DN∥BC,∴∠AEQ=∠ACB=60°,∵QF⊥AC,∴∠EQF=90°﹣60°=30°,∴EF=QE=,在Rt△QEF中,由勾股定理得:QF===,∵MN∥AB,∴∠CMN=∠ABC=60°,∵∠ACB=60°,∴△CMO是等边三角形,∴OC=CM=1,∵P是OC的中点,∴PC=OC=,∴PE=AC﹣AE﹣CP=3﹣﹣=1,∴PF=PE+EF=1+=,在Rt△PQF中,由勾股定理得:PQ===,故答案为:.14.解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,∵DE平分∠AEC,∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=13,在直角△ABE中,BE===12,∴CE=BC﹣BE=AD﹣BE=13﹣12=1.故答案为1.15.解:∵四边形ABCD是正方形,∴AB=BC=AD=CD,∠ABC=90°,∠ADG=∠CDG,∠ABD=45°,∵GD=GD,∴△ADG≌△CDG,∴∠AGD=∠CGD,∵∠CGD=∠EGB,∴∠AGD=∠EGB,∵△ABE是等边三角形,∴AB=BE,∠ABE=60°,∴BE=BC,∠EBC=150°,∴∠BEC=∠ECB=15°,∴∠BGE=180°﹣∠BEC﹣∠EBG=180°﹣15°﹣60°﹣45°=60°,∴∠AGD=60°故答案为60.16.解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM与△DCN中,,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∠DMA=∠CND,∵∠DAM+∠AMD=90°,∴∠PDM+∠DMP=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP为直角三角形,∴AN为直角三角形的斜边,由直角三角形的性质得PQ=AN,∵DM=CN=2,BC=CD=AB=8,∴BN=BC﹣CN=6,在△ANB中,AN===10,∴PQ=5.故答案为:5..三.解答题(共6小题,满分56分)17.证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.18.(1)证明:如图,连接BD,∵四边形ABCD是菱形,∴AC⊥DB,AD=AB,∵EM⊥AC,∴ME∥BD,∵点E是AB的中点,∴点M是AD的中点,AE=AB,∴AM=AD,∴AM=AE.(2)解:①由(1)得,点M是AD的中点,∴AM=MD,∵四边形ABCD是菱形,∴AB∥CD,∴∠F=∠AEM,∠EAM=∠FDM,∴△MDF≌△MAE(AAS),∴AE=DF,∵AB=2AE,DF=2,∴AB=4,∴菱形ABCD的周长为4AB=4×4=16.②如图,连接CM,记EF与AC交点为点G,∵AM=AE,△MAE≌△MDF,∴DF=DM,MF=ME,∴∠DMF=∠DFM,∴∠ADC=2∠DFM,∵∠ADC=2∠MCD,∴∠MCD=∠DFM,∴MF=MC=ME,∠EMC=2∠FDM=∠MDC,∵ME⊥AC,AM=AE,∴∠MGC=90°,ME=2MG,∴MC=2MG,∴∠GMC=60°,∴∠ADC=60°,∴∠MCD=30°,∴∠DMC=90°,∴△DMC为直角三角形,∵DF=2,∴DM=2,CD=4,∴CM==2,∴ME=2.19.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵CF∥ED,∴四边形CDEF是平行四边形,∵DC=DE.∴四边形CDEF是菱形;(2)解:如图,连接GF,∵四边形CDEF是菱形,∴CF=CD=5,∵BC=3,∴BF===4,∴AF=AB﹣BF=5﹣4=1,在△CDG和△CFG中,,∴△CDG≌△CFG(SAS),∴FG=GD,∴FG=GD=AD﹣AG=3﹣AG,在Rt△FGA中,根据勾股定理,得FG2=AF2+AG2,∴(3﹣AG)2=12+AG2,解得AG=.20.(1)解:∵CE=DE,∴∠ECD=∠EDC,∵∠DPC+∠PDC=90°,∠ECP+∠ECD=90°,∴∠EPC=∠ECP,∴PE=CE=6,∴PD=12,∵PB∥AD,∴PF=2,DF=10,∴EF=4;(2)证明:连接CE,∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∵△CDF是等边三角形,∴∠CDF=60°,AD=DF,∴∠DAF=15°,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∴∠AED=120°,又∵DE=DE,在△ADE和△CDE中,,△ADE≌△CDE(SAS),∴∠AED=∠CED=∠AEC=120°,AE=CE,∵∠APB=60°,∴∠APB+∠AEC=120°,∴点A、P、C、E四点共圆,∴∠APE=∠EPC=30°,∴∠PEC=∠PCE=75°,∴PE=PC,设PB=a,则P A=2a,AB=BC=,∴P A+PC=2a+a+=()=(BC+PB)=PC,∴P A+PC=PE.21.解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=6﹣t,得t=3故当t=3时,四边形ABQP为矩形.(2)由(1)可知,四边形AQCP为平行四边形∴当AQ=CQ时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得t=,故当t=s时,四边形AQCP为菱形.(3)当t=时,AQ=,CQ=,则周长为:4AQ=4×=15cm面积为:(cm2).22.解:(1)AF=BE,AF⊥BE,理由:在正方形ABCD中,AB=DA,∠EAB=∠D=90°,又∵AE=DF,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,AF=BE,又∵∠DAF+∠F AB=∠EAB=90°,∴∠ABE+∠F AB=90°,∴∠APB=90°,∴AF⊥BE,故答案为:AF=BE,AF⊥BE;(2)在正方形ABCD中,∠EAB=90°,AB=2,AE=2,∴BE===4,∵S△ABE=AB•AE=BE•AP,∴AP==,在Rt△ABP中,BP===3,∵∠APB=∠ABC=90°,∴∠ABP+∠HBC=90°,∠HCB+∠HBC=90°,∴∠ABP=∠HCB,∵CH⊥BE,∴∠HCB=90°,又∵AB=BC,∴△ABP≌△BCH(AAS),∴BH=AP=,∴PH=BP﹣BH=BP﹣AP=3﹣;(3)在正方形ABCD中,AB=BC,AD∥BC,∵CH⊥BP,PH=BH,∴CP=BC,∴∠CBP=∠CPB,∵∠CPB=∠QPE,∠CBP=∠QEP,∴∠QPE=∠QEP,在Rt△APE中,∠QAP=∠QP A,∴QE=QP=QA,在四边形QABC中,设QP=a,CP=b,则AB=BC=b,AQ=a,QC=a+b,∵DC2+DQ2=CQ2,∴b2+(b﹣a)2=(a+b)2,∴b2=4ab,即b=4a,∴CP:PQ=4.。

数学八年级下人教新课标19.2特殊的平行四边形同步测试题测试题

数学八年级下人教新课标19.2特殊的平行四边形同步测试题测试题

数学:19.2特殊的平行四边形同步测试题(人教新课标八年级下)一、填空题(每题3分,共30分)1.用一把刻度尺来判定一个零件是矩形的方法是.2.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.3.(08贵阳市)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为 cm2.4.如图1,DE∥BC,DF∥AC,EF∥AB,图中共有_______个平行四边形.5若四边形ABCD是平行四边形,请补充条件(写一个即可),使四边形ABCD是菱形.6.,在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=⒎以正方形ABCD的边BC 为边做等边△BCE,则∠AED的度数为.8.延长正方形ABCD的边AB到E,使BE=AC,则∠E=°9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD =2那么AP的长为.10.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是.二、选择题(每题3分,共30分)11.如图4在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=( )A .110°B .30°C .50°D .70°12.菱形具有而矩形不具有的性质是 ( ) A .对角相等 B .四边相等 C .对角线互相平分 D .四角相等13.平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( ) A .3 cm B .6 cm C .9 cm D .12 cm14.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中点.若AB =2,AD =4, 则图中阴影部分的面积为 ( ) A .8 B .6 C .4 D .315.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形 ( ) A .①③⑤ B .②③⑤ C .①②③ D .①③④⑤16.如图是一块电脑主板的示意图,每一转角处都是 直角,数据如图所示(单位:mm),则该主板的周长 是 ( )A .88 mmB .96 mmC .80 mmD .84 mm(6)E A DC B H G17、(08甘肃省白银市)如图,把矩形ABCD 沿EF对折后使两部分重合,若150∠=,则AEF ∠=( )A .110°B .115°C .120°D .130°18、(08哈尔滨市)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。

人教版八年级数学下册特殊的平行四边形同步练习(解析版)

人教版八年级数学下册特殊的平行四边形同步练习(解析版)

人教版八年级数学下册特殊的平行四边形同步练习(解析版)同步练习参考答案与试题解析一.选择题(共10小题)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直选D2.如图,矩形ABCD的对角线AC﹨BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B3.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9解:设大正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.4.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD ﹣DF解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.6.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).7.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.8.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E﹨F分别是BC﹨CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.9.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.10.如图是由三个边长分别为6﹨9﹨x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(62+92+x2)﹣6×3,解得x=3,或x=6,故选D.二.填空题(共5小题)11.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为30.解:∵在菱形ABCD中,对角线AC=6,BD=10,∴菱形ABCD的面积为:AC•BD=30.故答案为:30.12.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4或2.解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵P2是AD的中点,∴BP2==,易证得BP1=BP2,又∵BP1=BC,∴=4∴AB=2.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:4或2.13.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20.解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.14.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC 的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6.解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.15.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…﹨则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).三.解答题(共5小题)16.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.17.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC﹨AD分别相交于P﹨Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP﹨△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE﹨CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.如图,已知四边形ABCD是平行四边形,并且∠A=∠D.(1)求证:四边形ABCD为矩形;(2)点E是AB边的中点,F为AD边上一点,∠1=2∠2,若CE=4,CF=5,求DF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,又∠A=∠D,∴∠A=∠D=90°,∴平行四边形ABCD为矩形;(2)解:延长DA,CE交于点G,∵四边形ABCD是矩形,∴∠DAB=∠B=90°,AD∥BC,∴∠GAE=90°,∠G=∠ECB,∵E是AB边的中点,∴AE=BE,在△AGE和△BCE中,,∴△AGE≌△BCE(AAS),∴AG=BC,若CE=4,CF=5,设DF=x,根据勾股定理得:CD2=CF2﹣DF2=CG2﹣DG2,即52﹣x2=82﹣(5+x)2,解得:x=,即DF=.20.在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE﹨EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论:成立.(填“成立”或“不成立”)(3)如图3,当点E是线段AC延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF;(2)解:结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.。

八年级数学下册18.2特殊的平行四边形同步练习(二)(含解析)(新版)新人教版

八年级数学下册18.2特殊的平行四边形同步练习(二)(含解析)(新版)新人教版

18.2 特别的平行四边形同步练习( 二)一、单项选择题(本大题共有15 小题,每题 3 分,共 45 分)1、矩形拥有而菱形不拥有的性质是()A.两组对角分别相等B.对角线相互均分C.两组对边分别平行D.对角线相等2、以下说法中错误的选项是().A.对角线垂直的矩形是正方形B.对角线相等的菱形是正方形C.四条边相等的四边形是正方形D.四个角相等的四边形是矩形3、如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为()A.B.C.D.4、在中,,是边上一点,交于点,交于点,若要使四边形是菱形,只要增添条件().A.B.C.D.5、正方形四边中点的连线围成的四边形(最正确的说法)必定是()A.平行四边形B.正方形C.菱形D.矩形6、如图,正方形的边长为,在各边上按序截取,则四边形的面积是()A.B.C.D.7、如图,已知是正方形对角线上一点,且,则度数是()A.B.C.D.8、过矩形的四个极点作对角线、的平行线分別交于、、、四点,则四边形是().A. 正方形B. 菱形C. 矩形D. 平行四边形9、如图,四边形为平行四边形,延伸到,使,连结,,,增添一个条件,不可以使四边形成为矩形的是()A.B.C.D.10、如图,在锐角中,点是边上的一个动点,过作直线,设交的均分线于点,交的外角均分线于点,以下结论中正确的选项是()①;②;③若,,则的长为;④当时,四边形是矩形.A.①②B.①④C.①③④D.②③④11、以下命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线相互垂直的四边形是菱形C.两条对角线相互垂直且相等的四边形是正方形D.两条对角线相互均分的四边形是平行四边形12、如图,在四边形中,、、、分别是、、、的中点,要使四边形是菱形,则四边形只要要知足一个条件,是()A. 四边形是梯形B. 四边形是菱形C. 对角线D.13、如图,在菱形中,,分别在,上,且,与交于点,连结.若,则的度数为()A.B.C.D.14、在中,,、分别是、的中点,在延伸线上,,,,则四边形的周长为()A.B.C.D.15、以下图,设表示平行四边形,表示矩形,表示菱形,表示正方形,则以下四个图形中,能表示它们之间关系的是()A.B.C.D.二、填空题(本大题共有 5 小题,每题 5 分,共 25 分)16、如图,在菱形中,对角线、交于点,为边的中点,若菱形的周长为,则的长为.17、如图,已知矩形的对角线长为,、、、分别是、、、的中点,则四边形的周长等于.18、如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快后,四边形成为矩形.19、图,在中,点是的中点,点,分别在线段及其延伸线上,且.给出以下条件:①;②;③;从中选择一个条件使四边形是菱形,你以为这个条件是________(只填写序号).20、如图,在中,,点,分别是边,的中点,延伸到点,使.若,则的长是.三、解答题(本大题共有 3 小题,每题10 分,共 30 分)21、如图已知正方形的边长为,点分别为各边的中点,求图中阴影部分的面积.22、如图,平面直角坐标系中,的三个极点坐标分别为,,.(1)请画出对于直线作轴对称变换获得的,求点的坐标(2)将四边形向左平移个单位得四边形.则四边形与四边形重叠部分图形的形状什么?它的面积是多少?23、已知垂直均分,,,(1)证明四边形是平行四边形.(2)若,,求的长.18.2 特别的平行四边形同步练习( 二 )答案部分一、单项选择题(本大题共有15 小题,每题 3 分,共 45 分)1、矩形拥有而菱形不拥有的性质是()A.两组对角分别相等B.对角线相互均分C.两组对边分别平行D.对角线相等【答案】 D【分析】解:矩形拥有的性质是:对角线相等且相互均分,两组对边分别平行,两组对角分别相等;菱形拥有的性质是:两组对边分别平行,对角线相互均分,两组对角分别相等;矩形拥有而菱形不拥有的性质是:对角线相等.2、以下说法中错误的选项是().A.对角线垂直的矩形是正方形B.对角线相等的菱形是正方形C.四条边相等的四边形是正方形D.四个角相等的四边形是矩形【答案】 C【分析】解:四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不切合题意;四条边相等的四边形是菱形,不必定是正方形,该说法错误,切合题意;对角线相等的菱形是正方形,该说法正确,不切合题意;对角线垂直的矩形是正方形,该说法正确,不切合题意.故正确答案选:四条边相等的四边形是正方形.3、如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为()A.B.C.D.【答案】 D【分析】解:连结,以下图:,,,,,,四边形是矩形,.是的中点,,依据直线外一点到直线上任一点的距离,垂线段最短,即时,最短,相同也最短,当时,,最短时,,当最短时,.4、在中,,是边上一点,交于点,交于点,若要使四边形是菱形,只要增添条件().A.B.C.D.【答案】 C【分析】解:只要增添,四边形是平行四边形四边形是菱形故正确答案是:5、正方形四边中点的连线围成的四边形(最正确的说法)必定是()A.平行四边形B.正方形C.菱形D.矩形【答案】 B【分析】解:连结、,交于,正方形,,,是的中点,是的中点,是的中点,是的中点,,,,,,,,四边形是平行四边形,平行四边形是正方形.6、如图,正方形的边长为,在各边上按序截取,则四边形的面积是()A.B.C.D.【答案】 B【分析】解:四边形是正方形,,,,.在、、和中,,(),,,四边形是菱形,,,,四边形是正方形,,,,四边形的面积是:,7、如图,已知是正方形对角线上一点,且,则度数是()A.B.C.D.【答案】 B【分析】解:是正方形,,,,.8、过矩形的四个极点作对角线、的平行线分別交于、、、四点,则四边形是().A.正方形B.菱形C.矩形D.平行四边形【答案】 B【分析】解:由题意知,,,四边形是平行四边形,.四边形为矩形,矩形的对角线相等,,,平行四边形是菱形 .故答案为:菱形.9、如图,四边形为平行四边形,延伸到,使,连结,,,增添一个条件,不可以使四边形成为矩形的是()A.B.C.D.【答案】 B【分析】解:四边形为平行四边形,,且,又,,且,四边形为平行四边形,,,,平行四边形为矩形;,,四边形不可以为矩形;,,平行四边形为矩形;,,平行四边形为矩形.10、如图,在锐角中,点是边上的一个动点,过作直线,设交的均分线于点,交的外角均分线于点,以下结论中正确的选项是()①;②;③若,,则的长为;④当时,四边形是矩形.A.①②B.①④C.①③④D.②③④【答案】 B【分析】解①交的均分线于点,交的外角均分线于点,,,,,,,,,,;①正确;②当时,;故②错误;③,,,,,,;故③错误;④当点在边上运动到中点时,四边形是矩形.证明:当为的中点时,,,四边形是平行四边形,,平行四边形是矩形.故④正确;11、以下命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线相互垂直的四边形是菱形C.两条对角线相互垂直且相等的四边形是正方形D.两条对角线相互均分的四边形是平行四边形【答案】 D【分析】解:两条对角线相等且相互均分的四边形才是矩形,该选项命题错误;两条对角线相互垂直且均分的四边形才是菱形,该选项命题错误;两条对角线相互垂直且相等且相互均分的四边形是才正方形,该选项命题错误;两条对角线相互均分的四边形是平行四边形,该命题正确.故答案为:两条对角线相互均分的四边形是平行四边形.12、如图,在四边形中,、、、分别是、、、的中点,要使四边形是菱形,则四边形只要要知足一个条件,是()A.四边形是梯形B.四边形是菱形C. 对角线D.【答案】 D【分析】解:在四边形中,、、、别是、、、的中点,,,;同理,,四边形是平行四边形;若四边形是梯形时,,则,这与平行四边形的对边相矛盾;若四边形是菱形时,点四点共线;若对角线时,四边形可能是等腰梯形;当时,;所以平行四边形是菱形;13、如图,在菱形中,,分别在,上,且,与交于点,连结.若,则的度数为()A.B.C.D.【答案】 C【分析】解:四边形为菱形,,,,,在和中,,(),,,,,,,.14、在中,,、分别是、的中点,在延伸线上,,,,则四边形的周长为()A.B.C.D.【答案】 A【分析】解:在中,,,,是的中点,,,,,,、分别是、的中点,,,四边形是平行四边形,四边形的周长.15、以下图,设表示平行四边形,表示矩形,表示菱形,表示正方形,则以下四个图形中,能表示它们之间关系的是()A.B.C.D.【答案】 D【分析】解:四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形,正方形应是N 的一部分,也是的一部分,矩形形、正方形、菱形都属于平行四边形,它们之间的关系是:.二、填空题(本大题共有 5 小题,每题 5 分,共 25 分)16、如图,在菱形中,对角线、交于点,为边的中点,若菱形的周长为,则的长为.【答案】 4【分析】解:四边形是菱形,,,,又,,在中,是斜边上的中线,,故答案为:.17、如图,已知矩形的对角线长为,、、、分别是、、、的中点,则四边形的周长等于.【答案】 16【分析】解:如图,连结、,、、、分别是、、、的中点,,,则四边形的周长等于.故正确答案是.18、如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快后,四边形成为矩形.【答案】 4【分析】解:设最快秒,是矩形,,要使是矩形,则,得.解得.19、图,在中,点是的中点,点,分别在线段及其延伸线上,且.给出以下条件:①;②;③;从中选择一个条件使四边形是菱形,你以为这个条件是________(只填写序号).【答案】③【分析】解:由题意得:,,四边形是平行四边形,①,依据这个条件只好得出四边形是矩形,②,依据是平行四边形已能够得出,所以不可以依据此条件得出菱形,③,,,,(),,四边形是菱形.20、如图,在中,,点,分别是边,的中点,延伸到点,使.若,则的长是.【答案】 7【分析】解:如图,连结.是的中位线,,,,,,是平行四边形,.是斜边上的中线,,.三、解答题(本大题共有 3 小题,每题10 分,共 30 分)21、如图已知正方形的边长为,点分别为各边的中点,求图中阴影部分的面积.【分析】解:连结、,∵ 、分别为边、的中点,∴,,同理,,,,,∵四边形是正方形,∴,,∴四边形是正方形,∴暗影部分的面积.22、如图,平面直角坐标系中,的三个极点坐标分别为,,.(1) 请画出对于直线作轴对称变换获得的,求点的坐标.【分析】解:(1)所作图形以下:点的坐标为.(2)将四边形向左平移个单位得四边形.则四边形与四边形重叠部分图形的形状什么?它的面积是多少?【分析】解:重叠图形为四边形,则四边形与四边形重叠部分图形的形状为菱形,它的面积为.23、已知垂直均分,,,(1)证明四边形是平行四边形.【分析】证明:垂直均分,,,在与中,,(),,,,,,,四边形是平行四边形.(2)若,,求的长.【分析】解:四边形 ABDF是平行四边形,,平行四边形是菱形,,,设,则,,即解得:,,.。

【数学八年级下册】人教版 数学八年级下册《特殊的平行四边形》 同步练习

【数学八年级下册】人教版 数学八年级下册《特殊的平行四边形》 同步练习

∵AC=BC, ∴DF=CF=CE=DE, ∴四边形 DECF 是菱形. 14.
s或 s或
s或
s.
15. .
16. .
三.解答题(共 6 小题) 17.解:(1)∵∠ACB=90°,D 是 AB 中点,
∴CD= AB, 同理:ED= AB, ∴CD=ED;
(2)∵CD=ED,F 是 CE 中点, ∴DF⊥CE, ∵CD= AB,AB=10, ∴CD=5,
动点,过点 D 分别作 DE⊥AB 于点 E,DF⊥AC 于点 F,点 G 为四边形 DEAF 对角线交
点,则线段 GF 的最小值为

16.如图,在矩形 ABCD 中,AB=8,BC=6,点 P 为边 AB 上任意一点,过点 P 作 PE⊥
AC,PF⊥BD,垂足分别为 E、F,则 PE+PF=

三.题(共 6 小题) 17.已知:如图,在△ABC 和△ABE 中,∠ACB=∠AEB=90°,D 是 AB 中点,联结 DC、
A.
B.
C.
D.
10.如图,正方形 ABCD 中,DE=2AE=4,F 是 BE 的中点,点 H 在 CD 上,∠EFH=45 °,则 FH 的长度为( )
A.
B.5
C.
D.2
二.填空题(共 6 小题) 11.如图,已知直角三角形 ABC 中,∠ABC 为直角,AB=12,BC=16,三角形 ACD 为等
特殊的平行四边形
一.选择题(共 10 小题)
1.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对
角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方
形.其中正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:特殊的平行四边形同步测试题(人教新课标八年级下)
一、填空题(每题3分,共30分)
1.用一把刻度尺来判定一个零件是矩形的方法是.
2.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.
3.(08贵阳市)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.
A D
B C
4.如图1,DE∥BC,DF∥AC,EF∥AB,图中共有_______个平行四边形.
5.若四边形ABCD是平行四边形,请补充条件
(写一个即可),使四边形ABCD是菱形.
6.在平行四边形ABCD中,已知对角线AC和BD相交于点△O,ABO的周长为17,AB=6,那么对角线AC+BD=
⒎以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数
为.
8.延长正方形ABCD的边AB到E,使BE=AC,则∠E=°
9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD =2,那么AP的长为.
10.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D 的坐标是.
二、选择题(每题3分,共30分)
11.如图4在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=()
A.110°B.30°C.50°D.70°
12.菱形具有而矩形不具有的性质是()
A.对角相等B.四边相等
C.对角线互相平分D.四角相等
(6)
13.平行四边形ABCD中,对角线AC、BD交于点O,
点E是BC的中点.若OE=3cm,则AB的长为()
A.3cm B.6cm C.9cm D.12cm
14.已知:如图,在矩形ABCD中,E、F、G、H分别为边
AB、BC、CD、DA的中点.若AB=2,AD=4,
则图中阴影部分的面积为()
A.8B.6C.4D.3
A H
D
E G
B F C
15.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形()
A.①③⑤B.②③⑤C.①②③D.①③④⑤
16.如图是一块电脑主板的示意图,每一转角处都是
直角,数据如图所示(单位:mm),则该主板的周长
是()
A.88mm B.96mm C.80mm D.84mm
17、(08甘肃省白银市)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50,则∠AEF=()
A.110°B.115°
C.120°D.130°
18、(08哈尔滨市)某商店出售下列四种形状的地砖:①正三角形;②正方形;
③正五边形;④正六边形。

若只选购其中一种地砖镶嵌地面,可供选择的地砖共
有().
(A)4种(B)3种(C)2种(D)1种
19、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()
AB∥CD BC∥AD AB=CD BC=AD
A.2组
B.3组
C.4组
D.6组
20、下列说法错误的是()
A.一组对边平行且一组对角相等的四边形是平行四边形.
B.每组邻边都相等的四边形是菱形.
C.对角线互相垂直的平行四边形是正方形.
D.四个角都相等的四边形是矩形.
三、解答题
21、如图9,四边形ABCD是菱形,对角线AC=8cm,BD=
6cm,DH⊥AB于H,求:DH的长
图(9)
图(10)
22、已知:如图10,菱形ABCD的周长为16cm,
∠ABC=60°,对角线AC和BD相交于点O,
A D 求AC和BD的长.P F
B E C
图(11)
23、如图11,在正方形ABCD中,P为对角线BD上一点,
PE⊥BC,垂足为E,PF⊥CD,垂足为F,
A
E F
B D C
图(12)
求证:EF=AP
24、在ABC中,AB=AC,D是BC的中点,DE⊥AB,

DF⊥AC,垂足分别是E,F.
⑴试说明:DE=DF
⑵只添加一个条件,使四边形EDFA是正方形.
请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明
..... △E 、
25、如图,
ABCD 中,AE 平分∠BAD 交 BC 于 E ,EF∥AB 交 AD 于 F ,
试问:四边形 ABEF 是什么图形吗? 请说明理由.
A F
D
B E
C

26、如图,以 ABC 的三边为边在 BC 的同侧分别作三个等边三角形,即△ABD、
BC ACF ,请回答下列问题:
(1)四边形 ADEF 是什么四边形?并说明理由
(△2)当 ABC 满足什么条件时,四边形 ADEF 是菱形? (△3)当 ABC 满足什么条件时,以 A 、D 、E 、F 为顶点的四边形不存在.。

相关文档
最新文档