西南大学网络教育课程名称【编号】《数字信号处理》【1077】大作业期末考试复习题及答案
数字信号处理期末考试试题以及参考答案.doc

2020/3/272009-2010 学年第二学期通信工程专业《数字信号处理》(课程)参考答案及评分标准一、 选择题 (每空 1 分,共 20 分)1.序列 x( n) cos n sin n 的周期为( A )。
46A . 24B . 2C . 8D.不是周期的2.有一连续信号 x a (t)cos(40 t) ,用采样间隔 T 0.02s 对 x a (t) 进行采样,则采样所得的时域离散信号 x(n) 的周期为( C )A . 20B . 2C . 5D.不是周期的3.某线性移不变离散系统的单位抽样响应为h(n) 3n u( n) ,该系统是( B )系统。
A .因果稳定B .因果不稳定C .非因果稳定D.非因果不稳定4.已知采样信号的采样频率为f s ,采样周期为 T s ,采样信号的频谱是原模拟信号频谱的周期函数,周期为( A ),折叠频率为( C )。
A . f sB . T sC . f s / 2D. f s / 45.以下关于序列的傅里叶变换X ( e j ) 说法中,正确的是(B )。
A . X ( eB . X ( eC . X (eD . X (e jjjj) 关于是周期的,周期为) 关于是周期的,周期为 2) 关于是非周期的) 关于可能是周期的也可能是非周期的6.已知序列 x(n) 2 (n 1)(n)(n 1) ,则jX (e )的值为()。
C2020/3/27 A. 0 B . 1C. 2 D . 3N 17.某序列的 DFT表达式为X (k ) x(n)W M nk,由此可看出,该序列的时域长度是(A),变换后数字域n 0上相邻两个频率样点之间的间隔(C)。
A.N B . MC.2 /M D . 2 / N8.设实连续信号x(t)中含有频率40 Hz的余弦信号,现用 f s 120 Hz 的采样频率对其进行采样,并利用 N 1024 点DFT分析信号的频谱,得到频谱的谱峰出现在第(B)条谱线附近。
《数字信号处理》期末考试A卷答案

《数字信号处理》期末考试 A卷答案
《数字信号处理》期末考试A卷答案 考试形式:闭卷考试考试时间:120分钟 班号学号姓名得分
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.δ(n)的z变换是 A 。 A. 1 B.δ(w) C. 2πδ(w) D. 2π 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( C ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=x(n-n0) D.y(n)=e x(n) 3.在应用截止频率为Ωc的归一化模拟滤波器的表格时,当实际Ωc≠1时,代替表中的复变量s的应为( B ) A.Ωc/s B.s/Ωc C.-Ωc/s D.s/ c Ω 4.用窗函数法设计FIR数字滤波器时,在阶数相同的情况下,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时,阻带衰 减比加三角窗时。( A ) A. 窄,小 B. 宽,小 C. 宽,大 D. 窄,大 5.用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= ( C ) 。 A. 1 1 1
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.已知某序列z变换的收敛域为有限z平面,则该序列为( )。 A.有限长序列 B.右边序列 C.左边序列 D.双边序列 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=n2x(n-n0) D.y(n)=e x(n) 3.下列关于因果稳定系统说法错误的是( ) A.极点可以在单位圆外 B.系统函数的z变换收敛区间包括单位圆 C.因果稳定系统的单位抽样响应为因果序列 D.系统函数的z变换收敛区间包括z=∞ 4.按时间抽取的基-2FFT算法的运算量按频率抽取的基-2FFT算法。( ) A.大于 B.小于 C.等于 D.大小不确定 5.序列x(n)=R7(n),其16点DFT记为X(k),k=0,1,…,15则X(0)为( )。 A.2 B.3
西南大学18年12月[1077]《数字信号处理》参考资料
![西南大学18年12月[1077]《数字信号处理》参考资料](https://img.taocdn.com/s3/m/1cf1f74127d3240c8447efad.png)
2、设计IIR数字滤波器,以巴特沃思滤波器为原型器。已知对数字幅度会产生畸变,要求模拟滤波器的幅度为分段常数的形式。
二、计算题。(20分)
1、给定某系统函数为 ,试用冲激响应不变法化为数字滤波器,给出相应的过程和数字滤波器的系统函数。
三、编程题。(每小题30分,共60分)
1、利用Matlab分析模拟信号 的频谱,
1)给出相关的程序,对每条语句加以必要的说明;
2)说明需要加海明窗的理由。
t= -1:0.01:1;%以0.01秒周期进行抽样,并加矩形窗截断,满足抽样定理
x=sinc(20*t);%得到点数为201的有限长序列
h=fft(x,1024);%做1024点的快速傅里叶变换,满足频域抽样定理
ff=1000*(0:511)/1024;%将数字频率转换为模拟频率,单位为Hz
西南大学网络与继续教育学院课程考试试题卷
类别:网教(网教/成教)专业:电气工程及其自动化2018年12月
课程名称【编号】:数字信号处理【1077】A卷
大作业满分:100分
一、简答题。(20分)
1、利用双线性映射法设计数字滤波器,有什么优缺点?
答:(1)映射为单值映射,无混叠,适用面更广。
(2)频率会产生畸变,应预畸。
1077《数字信号处理》西南大学网教19秋作业答案

1077 20192判断题1、应用DFT分析无限长信号的频谱时,必然会产生误差。
. A.√. B.×2、离散周期信号的DFS中,频域的周期N对应数字频率为2π 。
. A.√. B.×3、实数序列的DFT为共轭对称的序列。
. A.√. B.×4、一个域的周期性,对应另一域的离散性。
. A.√. B.×5、单位圆上的零点,对应幅频特性的零值。
. A.√. B.×6、LP表示的滤波器类型是低通滤波器。
. A.√. B.×7、圆周卷积和线卷积相等的条件是圆周卷积的点数不小于线性卷积的长度。
. A.√. B.×8、单位脉冲序列的DTFT结果为1。
. A.√. B.×9、x(n)与h(n)的卷积的Z变换为X(Z)H(Z)。
. A.√. B.×10、所谓全通系统,就是其频率响应的幅度在任意需要考虑的频率点处均为常数。
. A.√. B.×11、FIR滤波器由于无原点外的极点,故相比IIR阶次更高。
. A.√. B.×12、对连续信号作频谱分析,设信号的采样频率为10KHz,频域的分辨能力为不大于10Hz,则对应DFS点数为1000 点。
. A.√. B.×13、靠近单位圆上的极点,对应幅频特性的极大值。
. A.√. B.×14、线性相位可分为第一类与第二类线性相位两种情况。
. A.√. B.×15、为满足线性相位要求,窗函数本身也应满足相应的对称性。
. A.√. B.×16、冲激响应不变法由于存在混叠,不能设计高通、带通滤波器。
. A.√. B.×17、FIR滤波器的结构往往是非递归型的。
. A.√. B.×18、单位延迟单元对应的硬件是存储器,其数目影响系统的复杂度。
. A.√. B.×19、时域加窗,频域会产生频谱泄漏。
. A.√. B.×20、从s域到z域映射,虚轴和单位圆、左半平面与单位圆内部,都必须对应。
本科专业认证《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲(Digital Signal Processing)编写单位:计算机与通信工程学院计算机科学与系(教研室)编写时间:2021 年 7 月《数字信号处理》课程教学大纲一、基本信息课程名称:数字信号处理英文名称:Digital Signal Processing课程类别:专业教育课程课程性质:选修课课程编码:08100J0257学分:2总学时:32学时。
其中,讲授学时20学时,实验学时12,上机学时0适用专业:计算机科学与技术、计算机科学与技术专业卓越工程师先修课程与知识储备:人工智能基础、信号与系统、MATLAB建模与仿真技术二、课程简介:该课程系统介绍了数字信号z域分析技术z变换,数字信号连续w域分析技术DTFT,数字信号离散w域分析技术DFT,以及数字IIR滤波和FIR滤波器的设计方法及实现结构。
通过本课程学习,学生能够掌握数字信号处理的基本原理和技术,为学习后续专业课程和从事数字信号处理算法研究及其工程实现技术打好基础。
三、教学目标1、课程思政教学目标:通过数字信号处理技术在国家民众生产生活中的影响,培养学生的爱国意识和对新技术的研究探索精神。
2、课程教学总目标:使学生掌握数字信号处理的基本分析方法和分析工具,为从事通信、信息或信号处理等方面的研究工作打下基础。
3、课程目标与学生能力和素质培养的关系:课程思政目标将科学研究精神与爱国主义有机融合,有利于培养德才兼备的通信专业人才;课程教学目标使学生掌握数字信号处理的分析和研究方法,培养学生独立分析问题与解决问题的能力,提高科学素质。
四、课程内容及学时分配本课程内容、建议学时以及知识单元如表1所示。
表1 课程内容及学时分配五、教学方法及要求1、教学方法要求要求任课教师具有通信工程专业背景;严格按照教学大纲执行教学计划,教材选择贴合教学大纲,体现教学目标;采用线上+线下混合式教学,课堂教学结合图形动画视频等多媒体资源,调动学生多种学习感官;课后利用微信、QQ、网络教学平台等多种线上资源,扩大学生的学习空间和形式;并通过一定的上机操作提高学生的动手实践能力,进一步加深理论知识;在讲授过程中,淡化公式推导,注重物理意义,去繁求简,抓住主线,由点到线,由线到面。
18春西南大学[1073]《信号与系统》机考随机答案
![18春西南大学[1073]《信号与系统》机考随机答案](https://img.taocdn.com/s3/m/b6d257395901020207409c29.png)
t 西南大学网络与继续教育学院课程考试一、计算题(本大题共1小题,每道题20.0分,共20.0分)1.二、判断题(本大题共10小题,每道题4.0分,共40.0分)正确的打√错误的打×1.抽取与内插意味着抽样率的转换。
对错2.系统函数可由比值形式定义,故与输入信号的形式有关。
对错3.实序列的频谱,其幅值偶对称,相位奇对称。
对错4.线性相位,指的是系统的相频特性与频率成正比。
对错5.系统为因果系统的充要条件是冲激响应是因果的信号。
对错6.一个域离散,对应另一个域的周期延拓。
对错7.冲激响应只适用于LTI系统。
对错8.连续时间LTI系统稳定的充要条件是所有极点的实部小于等于零。
对错9.任意普通信号可分解为冲激函数的叠加,可用卷积形式来描述。
对错10.离散系统原点处的零极点,不影响频率特性幅值,只影响相位。
对错三、单项选择题(本大题共10小题,每道题4.0分,共40.0分) 1.A.4B.-2C.2D.-42.A.B.C.D.3.A.因果不稳定B.非因果稳定C.因果稳定D.非因果不稳定4.关于三个变换之间的关系,下列叙述错误的是()。
A.s域的左半平面映射到z域的单位圆内部B.从s域到z域的映射是单值映射C.若原信号收敛,虚轴上的拉氏变换就是傅里叶变换D.s域的右半平面映射到z域的单位圆外部5.下列系统中,属于线性时不变系统的是()。
A.B.C.D.6.对离散系统系统频率响应仿真,调用的函数是()。
A.impulseB.freqsC.stepD.freqz7.关于稳定性的描述,下列叙述中错误的是()。
A.线性时不变系统的稳定性理论上与输入信号无关B.稳定性指的是系统克服扰动恢复到平衡态的能力C.稳定的充要条件是有界输入产生有界输出,简称BIBOD.冲激响应可以表征系统的稳定性8.A.B.C.D.9.A.中心频率点为±ω0,幅值为原信号频谱幅值的一半B.中心频率点为ω0,幅值为原信号频谱的幅值C.中心频率点为ω0,幅值为原信号频谱幅值的一半D.中心频率点为±ω0,幅值为原信号频谱的幅值10.关于信号的分解,下列叙述正确的是()A.任意普通信号可分解为冲激函数的叠加,可用卷积形式来描述B.信号能分解为实分量和虚部分量,故可对信号进行滤波C.傅里叶级数是一致性意义下的正交分解D.由于信号的可分解性,故在时域中可用冲激响应来表征系统。
数字信号处理期末试卷(含答案)

一、填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。
5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。
6、FFT 利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。
二、选择题(每题3分,共6题)1、 1、 )63()(π-=n j en x ,该序列是 。
A.非周期序列 B.周期6π=NC.周期π6=ND. 周期π2=N2、 2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
数字信号处理2009期末考试样卷

2008—2009 学年第3, 4 学期数字信号处理课程期末考试样卷注意:装订线左侧请不要答题,请不要在试卷上书写与考试无关的内容,否则将按相应管理规定处理。
院系:专业:班级:姓名:学号:题号一二三四五六七八九十总分得分考试时间:90分钟;试题数目:共五大题;试卷:共5页。
一、填空题(本大题20分,每空2分)1、/4()jnx n jeπ=的共轭对称部是0 。
2、假设)(nx的DTFT存在,当ωj eZ=时,)(nx的Z变换就是DTFT。
3、一个矩形窗长度为N,其频谱宽度(主瓣宽度)为2/N Hz。
4、ωω2cos)(=jeX的IDTFT为)2(41)2(41)(21)(-+++=nnnnxδδδ。
5、按频率抽取FFT的运算复杂度等于按时间抽取FFT 。
6、一个稳定系统的收敛域必包括为单位圆。
7、以20kHz的采样率对最高频率为10kHz的带限信号)(txa采样,N=500个采样点,频谱采样点之间的间隔是40 Hz。
8、以10kHz采样率对语音信号进行采样,并对其实时处理,所需的部分运算包括采集1024点语音值块、计算一个1024点DFT和一个1024点IDFT。
若每一次实乘所需时间为1sμ,那么计算DFT和IDFT后还剩40.96 ms来处理数据9、最小相位系统具有最小群延迟性质。
10、两序列的长度非别为1N和2N,当圆周卷积的点数L满足121-+≥NNL时,两序列的圆周卷积等于线性卷积。
二、判断题(本大题20分,每小题2分。
正确打√,错误打×)1. ()ax t为一连续信号,∑∞-∞=-=nsanTtts)()(δ,用)(txa调制)(tsa得)(txs,)(txs是离散信号。
(×)2.如果某个序列不能保证绝对可和,则这个序列不能进行DTFT。
(×)得分:得分:3.以采样频率s f 对频率为0f 的正弦信号采样时,得到的)(n x 所对应的模拟信离散信号号并不唯一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、编程题。
(每题30分,共60分)
1、利用计算机分析信号x(t)=
sin20πt
的频谱,试利用Matlab编写相关的程序,实
20πt
西南大学网络与继续教育学院课程考试试题卷
类别:网教专业:电气工程及其自动化 2018年6月
课程名称【编号】:数字信号处理【1077】 A卷
大作业满分:100分
一、简答题。
(20分)
1、试画出输入倒位序、输出自然顺序,基-2的快速傅里叶算法的基本的蝶形单元的
流图。
答:
现信号的抽样、频谱的计算、频谱的显示等,并对每条语句加以必要的注释。
答:
t= -1:0.01:1;%以0.01秒周期进行抽样,并加矩形窗截断,满足抽样定理
x=sinc(20*t);%得到点数为201的有限长序列
h=fft(x,1024);%做1024点的快速傅里叶变换,满足频域抽样定理
ff=1000*(0:511)/1024;%将数字频率转换为模拟频率,单位为Hz
plot(ff,abs(h(1:512)));%显示信号的幅度谱,由于对称性,只显示一半
二、计算题。
(20分)
1、某频谱分析仪在谱分析时,一次抽样的点数为2的整数次幂,要求频率分辨力≤
10Hz,信号最高频率≤4KHz,试确定最小的记录长度,最小抽样频率及一个记录中最少点
数N。
答:
2、设计一个线性相位FIR低通滤波器,已知抽样频率为Ω
s
=2π⨯1.5⨯103(rad/sec),
通带截止频率为Ω
p =2π⨯1.5⨯102(rad/sec),阻带起始频率为Ω
st
=2π⨯3⨯102(rad/sec),
阻带衰减不小于-50dB。
要求利用窗函数法进行设计,试给出设计过程和相应的Matlab程序。
答:
程序如下:
N=33;wc=.3;
wn=hamming(N);
n=0:N-1;a=(N-1)/2;
hd=sin(wc*pi*(n-a))./(pi*(n-a));
hd(a+1)=wc;
hn=hd.*wn';
[h,w]=freqz(hn,1);
plot(w/pi,20*log10(abs(h)));
grid;
xlabel('归一化频率')
ylabel('幅度/dB')。