常用积分换元公式
定积分的计算方法总结

定积分的计算方法总结引言定积分是微积分中重要的概念之一,它可以用于求取曲线下的面积、求解物理问题中的积分以及解决各种与变化量有关的问题。
本文将总结定积分计算的常用方法,包括基本定积分公式、换元积分法和分部积分法。
基本定积分公式基本定积分公式是计算定积分时最基础也是最常用的方法之一。
以下为常见的基本定积分公式:1.$\\int x^m dx = \\frac{1}{m+1}x^{m+1}$,其中m为常数,m eq−1。
2.$\\int \\frac{1}{x} dx = \\ln|x|$,其中x为正实数。
3.$\\int e^x dx = e^x$。
4.$\\int \\sin x dx = -\\cos x$。
5.$\\int \\cos x dx = \\sin x$。
6.$\\int \\tan x dx = -\\ln|\\cos x|$。
换元积分法换元积分法是一种常用的定积分计算方法,它通过引入一个新的变量来简化被积函数的形式。
具体步骤如下:1.选择一个适当的变量代换,通常选择与题目给定的被积函数中具有根号、三角函数等特殊形式相关的变量。
2.根据选择的变量代换,将被积函数中的所有变量都用新的变量表示。
3.计算新的被积函数的导数,并将被积函数转换为对新变量的积分。
4.计算新的积分。
以下是换元积分法的一个例子:求解定积分$\\int 2x(x^2+1)^3 dx$。
解:设u=x2+1,则du=2xdx。
将被积函数中的所有x用u表示,则原积分变为$\\int u^3 du$。
计算新的积分得$\\frac{1}{4}u^4 + C$,其中C为常数。
最后,将u替换回x得到最终结果$\\frac{1}{4}(x^2+1)^4 + C$。
分部积分法分部积分法是解决定积分问题中的另一种常用方法,它是利用乘积的导数公式来简化积分计算的步骤。
具体步骤如下:1.选择一个适当的分部积分公式。
分部积分公式为$\\int u dv = uv -\\int v du$。
常用积分换元公式换元积分法的公式

常用积分换元公式换元积分法的公式积分换元法是求解积分的一种重要方法,通过引入合适的变量替换的方式,将原积分转化为更容易求解的形式。
下面是一些常用的积分换元公式和换元积分法:1.换元公式(1)第一类换元公式:设函数u=u(x)具有一阶连续导数,则有如下公式:∫f(u)du = ∫f(u(x))u'(x)dx(2)第二类换元公式:设函数x=x(u)可导,且反函数存在,则有如下公式:∫f(x)dx = ∫f(x(u))x'(u)du(3)第三类换元公式:设函数x=x(t),y=y(t)可导,且满足y=y(x),则有如下公式:∫f(x,y)dx = ∫f(x(t),y(t))x'(t)dt2.常见换元积分法(1)坐标换元法:根据问题中给定的坐标关系,选择适当的新坐标,从而简化积分的计算。
常见的坐标换元法包括:极坐标、柱坐标、球坐标等。
(2) 幂次换元法:对于形如∫f(x)(ax+b)^n dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为幂函数的积分。
(3) 三角换元法:对于形如∫f(x)sin(ax+b) dx或∫f(x)cos(ax+b) dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为三角函数的积分。
(4) 指数换元法:对于形如∫f(x)e^x dx的积分,可以引入变量u=e^x进行代换,从而将积分转化为指数函数的积分。
(5) 对数换元法:对于形如∫f(x)/x dx的积分,可以引入变量u=ln,x,进行代换,从而将积分转化为对数函数的积分。
(6) 倒代换法:对于形如∫f(g(x))dg(x)的积分,可以引入变量u=g(x)进行代换,然后将dg(x)用du表示,从而将积分转化为对u的积分。
(7) Weierstrass换元法:对于形如∫R(x,√(ax^2+bx+c)) dx的积分,可以引入变量u=√(ax^2+bx+c)+px+q进行代换,然后将积分转化为对u的积分。
常用积分换元公式

第一类换元积分法
部分常用的凑微分公式:
第二类换元积分法
1. 当被积函数中含有
1)a2x2,可令x asint或x a cost ;
2)a2x2,可令x atant ;
3)x2a2,可令x a sect .
通过三角代换化掉根式。
但是,去掉被积函数根号并不一定要采用三角代换,例如被积函数含有a2x2或x2a2时,还可利用公式ch2t sh2t 1 ,采用双曲代换x asht或x acht消去根式,所得结果一致。
所以应根据被积函数的具体情况尽量选取简单的方法对根式进行有理化代换。
1
2. 当有理分式函数中分母的阶数较高时,可采用倒代换x 1.
t
3. 类型 f (n ax b)dx:可令t n ax b ;类型f(n ax b )dx :可令t n ax b cx d cx d
(第四节内容)
4. 类型f(a x)dx:可令t a x.
适合用分部积分法求解的被积函数。
第二类换元积分法公式大全

第二类换元积分法公式大全第二类换元积分法是求解不定积分中常用的一种方法,也被称为反三角函数法。
该方法适用于被积函数含有形如$f'(x)/f(x)$的因式,换元后将该因式化为常数,从而简化积分运算。
以下是第二类换元积分法中常用的公式:1. $\int f'(x)f(ax+b)dx=\dfrac{1}{2a}f^2(ax+b)+C$2. $\int \dfrac{1}{x^2-a^2}dx=\dfrac{1}{2a}\ln\left|\dfrac{x-a}{x+a}\right|+C$3. $\int \dfrac{1}{\sqrt{a^2-x^2}}dx=\sin^{-1}\dfrac{x}{a}+C$4. $\int\dfrac{1}{\sqrt{x^2+a^2}}dx=\ln\left|x+\sqrt{x^2+a^2}\right|+C$5. $\int \dfrac{1}{ax^2+bx+c}dx=\dfrac{1}{\sqrt{4ac-b^2}}\tan^{-1}\left(\dfrac{2ax+b}{\sqrt{4ac-b^2}}\right)+C$6. $\int \dfrac{1}{x^2+a^2}dx=\dfrac{1}{a}\tan^{-1}\dfrac{x}{a}+C$以上公式中,$f(x)$是反函数$f^{-1}(x)$的导数。
对于一般情况,我们可以通过合理的换元使得原函数变为上述公式中的一种形式,从而便于求解不定积分。
例如: $\int \dfrac{1}{2x+1}\ln(2x+1)dx$。
这里$f(x)=\ln(x)$的导数为$f'(x)=\dfrac{1}{x}$,而被积函数中含有$(2x+1)$的因式,因此我们可以尝试使用第一类换元积分法:$u=2x+1$,则$du=2dx$,积分变为:$$\begin{aligned}\int \dfrac{1}{2x+1}\ln(2x+1)dx&=\int \dfrac{1}{u}\ln u\cdot\dfrac{du}{2}\\&=\dfrac{1}{2}\int \ln u\cdot\dfrac{du}{u}\\&=\dfrac{1}{2}\ln^2(2x+1)+C\end{aligned}$$由此可知,使用第二类换元积分法可以更加灵活地求解各种类型的不定积分,为我们的微积分研究提供了便利。
第一换元积分法

x 2
c
.
tan
x 2
2 sin 2
x 2
2
sin
x 2
cos
x 2
1 cos sin x
x
csc
x
cot
x
.
csc x dx ln csc x cot x c . (新公式)
sec x dx
csc
2
x
d
2
x
(新公式)
ln
csc
2
x
cot
2
x
c ln sec x tan x
b)
x k dx
k
1
1
d
(
xk 1)
(k
1 1) a
d
(axk
1
b)
1 x
dx
d (ln x) d (a ln x)
1 b
d (a b ln x)
e xdx d (e x ) d (e x b)
cos x dx d (sin x) d (sin x b)
sin x dx d (cos x) d (cos x b)
dx
a
2
1
1
x a
ad 2
x a
1 a
arctan
x a
c.
例10, 例11加入基本积分表.
例12 .
x2
dx 4x
8
(
d x
(
x 2)2
2)
例 10
4
1 2
arctan (
x
2
2) c
.
在积分过程中, 适当的函数运算是必要的 .
例 13 .
一换元积分法二常用的定积分公式及应用教学内容

例2 计算 02sin2xco4sxdx.
解法1. 02sin2xco4sxdx022sinxco5sxdx
换元: tco x,s d tsixndx
换限: x0, t 1
x , t0
2
原式=
0
1
2t5dt
216t6
0
1
1 3
.
解法2. 02sin2xco4sxdx022sinxco5sxdx
0 aftd t0 afx d x a 0fx dx
a a T f x d a 0 x f x d 0 T x f x d T a x T f x dx
a 0 fx d x 0 Tfx d x a 0 fx dx
T
0
f
xdx
3.若 fx在 0,1 上连续,则
0 2fsixn d x0 2fco xd sx………⑤
二、常用的定积分公式及应用
1.设 fx 在 a,a上连续,则
a afx d x 0 afx fx dx………①
(1)若 fx为偶函数,fx f x ,
a fxdx 2afxdx
a
0
………②
(2)若 fx为奇函数, fx f x ,
a
a
fxdx0
………③
证 0 afx dx x x a ,t t,a d ;x x 0 d ,t t 0 a 0 f tdt
20 2co 5xsd co x s 2 1 6co 6x s 0 21 3
例3
计算 0
sixnsi3nxdx.
解 0 sx i s n 3 i x d n 0 x sx ic n 2 x o ds x
0 sixncoxsdx
2 0
不定积分中五个公式的推导(三角换元)

出的
x2 a2 。 a
a 2 x 2 dx
x a sin t ,
2
a2 x 1 arcsin( ) x 2 a 2
a2 x2 C
t
2
2
a cos t d ( a sin t ) a 2 cos
t dt
a2 2
(1 cos
2 t ) dt
a2 a2 dt cos 2 td ( 2 t ) 2 4 a2 a2 a2 a2 t sin 2 t C t sin t cos t C 2 4 2 2 a2 x a2 x a2 x2 arcsin( ) C 2 a 2 a a a2 x 1 arcsin( ) x a2 x2 C 2 a 2
回代 tan t 因此,I ln x 1 ; sec t a cos t x2 a2 (为正) a
x x2 a2 C ' ln( x x 2 a 2 ) C a
x
x2 a2
a
【总结】对于三角换元法,当令 x a sin t 或 x a tan t 时,这种两情况显得比较 简单, 不需要讨论 a 2 x 2 或 a 2 x 2 开根号后的正负;而当令 x a sec t 的情况 较为复杂,需要讨论两种情况:
sec tan sec d sec tan 2 d sec tan ln | sec tan | tan d sec tan d sec sec tan ln | sec tan | C' 2 x2 a2 a2 x x2 a2 ln C' a 2 a
定积分的换元法

;
2
1
1+ x
∫
∫
5. 7. 8. 9.
∫
π
1
0
1 + cos 2 x dx ;
6.
π 2 π − 2 π 2 π − 2
cos x − cos 3 x dx ;
4cos 4 θ dθ
;
∫ ∫ ∫
−1 2
( x 2 1 − x 2 + x 3 1 + x 2 )dx ;
0 2 0
max{ x , x 3 }dx ; x x − λ dx
1 sec t ⋅ tan tdt sec t ⋅ tan t
= − ∫2 π
π dt = − . 12
练习题
一、 填空题: 填空题:
π 1. ∫ π sin( x + )dx = ___________________; ___________________; 3 3
π
2. 3. 4.
∫ ∫
π
0
t 1 = − ∫ t dt = = . 1 60 6
5
6 1
应用换元公式时应注意( 应用换元公式时应注意(一):
(1)用 x = ϕ ( t ) 把变量 x 换成新变量 换成新变量 t 时,积分限 积分限也
相应的改变 相应的改变. 改变.
求出 f [ϕ ( t )]ϕ ′( t )的一个原函数 Φ( t ) 后,不必 (2 ) 象计算不定积分那样再要把 Φ( t ) 回代成原变量 x 的函数, 的函数,而只要把新变量 t 的上、 的上、下限分别代 入 Φ( t ) 然后相减就行了. 然后相减就行了.
( λ 为参数 ).
1 , 当x ≥ 0时, 1 + x 三、 设 f ( x ) = 求 1 , 当x < 0时, 1 + e x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一类换元积分法
部分常用的凑微分公式:
(1)
1
()
dx d ax b
a
=+(2)1
1
()
1
n n
x dx d x
n
+
=
+
(3
d
=(4)
2
11
()
dx d
x x
=-
(5)1
(ln)
dx d x
x
=(6)()
x x
e dx d e
=
(7)cos(sin)
xdx d x
=(8)sin(cos)
xdx d x
=-
常用的凑微分公式
第二类换元积分法
1.当被积函数中含有
1)sin
x a t
=或cos
x a t
=;
2)tan
x a t
=;
3)sec
x a t
=.
通过三角代换化掉根式。
但是,去掉被积函数根号并不一定要采用三角代换,
22
ch sh1
t t
-=,采用双曲代换sh
x a t
=或ch
x a t
=消去根式,所得结果一致。
所以应根据被积函数的具体情况尽量选取简单的方法对根式进行有理化代换。
2.当有理分式函数中分母的阶数较高时,可采用倒代换
1
x
t
=.
3.类型f dx
⎰:可令t=;类型f dx
⎰:可令t=(第四节内容)
4.类型()x
f a dx
⎰:可令x
t a
=.
适合用分部积分法求解的被积函数。